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UŻYCIE ZREDUKOWANYCH CHARAKTERYSTYK I-V  BLAESSERA  
W PROGNOZOWANIU EFEKTYWNO ŚCI KONWERSJI PV  
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Abstract:  The article presents theoretical foundations of application of the reduced I-V Blaesser’s characteristics 
in predicting a photovoltaic cell/module (PV) efficiency, together with calculation procedures. A detailed analysis 
of the error of this transformation method of characteristics was carried out. Its practical application in predicting 
efficiency of operation of various PV cells and modules in medium and high insulation conditions was 
demonstrated. The practical suitability of the presented method in early detection of ageing phenomena, such as, 
for example, absorber degradation taking place in PV modules, was demonstrated. The article was prepared on the 
basis of the results of testing five different PV modules with various constructions, made of different materials and 
absorbers, such as: c-Si, mc-Si, CIS, a-Si_SJ, a-Si_TJ. The used measurement data were collected during the  
16-year period of the experimental PV modules testing system operation in Opole University, equipped with a data 
acquisition system. 
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The presented article is the second one in the series on non-standard application of commonly known 
calculation models and procedures in PV measuring. The first one titled: The use of two-diode 
substitute model in predicting the efficiency of PV conversion in low solar conditions [1] - regarded 
the non-standard application of a two-diode model in assessment of operation quality, including 
suitability for work in very low and low insulation conditions and in simple assessment of PV cells 
and modules degradation level. The second - currently presented, regards the application of 
standardised Blaesser’s characteristics in assessment of construction and material degradation of cells 
and modules, in the medium and high insolation conditions. Similarly to the first, it was written in the 
form of a guide to the above mentioned studies, with detailed introduction and comment sections. 
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Introduction 

In order to assess technical condition of operating PV modules and the degree of 
degradation of their construction (e.g. absorber), it is necessary to compare their parameters 
in reference to always the same environment conditions defined in the  
IEC-60 904-3 standard [2], as so-called Standard Test Conditions (STC). These conditions 
cannot be maintained in most of the carried out measurements. The conditions included in 
the norm IEC-60 904-3 demand presentation of the obtained results of PV cells and 
modules at: PV cells temperature TC = 25±2°C, intensity of the falling solar radiation  
GPOA = 1000 W/m2 and spectral distribution of AM 1.5 type. Meeting these conditions for 
the measurements taken in external conditions may be very problematic. Therefore it 
becomes necessary to apply the mathematical conversion procedures, which enable 
converting individual I-V characteristic points of PV cells/modules from measurements 
other than STC to the values, which can be obtained in STC. A correction of the measured 
actual characteristics I-V of PV cells and modules to the reference conditions defined as 
STC must be carried out. One of the four below presented correction methods for PV cells 
is used most frequently [3, 4]: 
1) With the use of the procedures from the norm IEC-60 891 [5]: 
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2) Blaesser’s method [6]: 
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3) Method of Anderson [7]: 
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4) Two-Exponential Model [8, 9] (analytic): 
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where:  
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Index 1 refers to the measured parameters of a cell characteristics, index 2 refers to the 

results obtained after the correction to the final cell temperature TC and radiation intensity 
G. T2-T1 is the corrected temperatures difference, G2-G1 is the corrected difference of 
radiation value. 

The first three methods require a few parameters, such as short-circuit current 
temperature coefficient α and open circuit voltage β as well as serial resistance Rs of the 
analysed element. The procedure within IEC-60 891 standard uses the fourth parameter 
referred to as “K curve correction coefficient.” Such parameters are not used in  
a two-diode model, but they are required in the curve simulation computer software I-V [9]. 
More information regarding the PV characteristics linearization and their temperatures 
corrections can be found in [10-15]. 

Summing up: 
1) The above mentioned methods for characteristics correction to STC conditions can be 

applied only for the conversion not greater than [3]: ∆TC = ±(30, max 40) K - of a cell 
temperature and for ∆G = ±300 W/m2 - of solar radiation intensity. Then, for the 
applied correction methods 1-3, a relative error of voltage measurement is, 
respectively: δUOC ≅ 2% and < 2.5%, for limit ranges of temperature correction,  
i.e. 30 and 40 K. Whereas a relative error of current measurement: δISC ≅ 8% for the 
radiation correction range ∆G = ±300 W/m2. In the case of the 4th correction method - 
the obtained errors are greater and amount to: δUOC ≅ 3 at ∆TC = ±30 K, δUOC ≅ 5.5 at 
∆TC = ±40 K and δISC ≅ 14% at ∆G = ±300 W/m2.  

2) The application of characteristics correction methods to the STC operation conditions 
is quite troublesome in practical, engineering work. Irrespective of the applied method, 
it requires determining the actual values of coefficients and resistance. These 
coefficients change along with the progressing degradation of PV modules 
construction. Moreover, some of them, for example resistances (Rs, Rsh) and a diode 
excellence coefficients (n1, n2) [16, 17] change their values along with the increase of  
a cell temperature and the values of falling radiation. More information regarding the 
influence of absorber degradation on the value of n coefficient can be found in [18-21].  

3) Considering tight restrictions regarding the possible range of corrections - their direct 
use in comparing/analysing I-V characteristics of the modules, operating in a wide 
range of variability of conditions (i.e. high range of TC and G values fluctuation) - is 
practically impossible. However, already in 1997 during the 14th EPSEC in Barcelona, 
G. Blaesser presented a new method of comparison, based on the use of so called 
reduced I-V characteristics of PV modules, which should be almost independent from 
meteorological conditions in the location where they operate [22]. 

Blaesser’s reduced I-V  characteristics of PV modules 

The reduced current voltage (I-V) characteristics of PV module is obtained from the 
ordinary form of I-V characteristics, by normalisation of current I to the value of short 
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circuit current of a module ISC and voltage U to the value of open circuit voltage UOC of  
a PV module. Therefore, it is a function of: 
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The measured (source/original) I-V curve of a PV module is a set of pairs of values 
(“points”) (I, U), from the short circuit point (ISC, 0) to the open circuit point (0, UOC). 
These points form a curve on the plane (I, U), which function graph I = F(U) - is referred to 
as I-V characteristics. As the reduced characteristics use the normalised values of I/ISC and 
U/UOC, all characteristics are automatically rescaled to the range from 0 to 1. This operation 
allows to locate all characteristics in one graph, irrespective of the atmospheric conditions 
present during measurement taking, and compare them.  

Note: The basic limitation of the above mentioned procedure [22] regards comparison 
of the measured curves with characteristics extrapolated to STC, only with maintaining the 
minimum lighting level of modules GPOA ≥ 600 W/m2. 

Analysis of the method error in Blaesser’s reduced I-V  characteristics 

Theoretical analysis 

The method of Blaesser’s reduced current voltage (I-V) characteristics is based on 
translation of current (I,0) and voltage (0,U) coordinates of the actual measurement points, 
using the simplified Blaesser’s procedures, i.e. the expressions: (3) and (4). Then: 
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After simplifying and assuming that I2 is a module current for TC = T2 and GPOA = G2, 
similarly to I1 and to U2 and U1 we obtain:   
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Analysis of the current coordinate translation function (11): 

By translating ISC1 to the conditions T2 and G2 according to (11) and dividing both 
sides, we obtain: 
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Analysis of the voltage translation function (12): 

 
Using the voltage translation function (12) and substituting for U = UOC1, we obtain: 

 DUUU OCOC += 12  (16) 

That means that the voltage translation value is: 

 12 OCOC UUDU −=  (17) 

Introducing the definition of the reduced values of voltage translation and resistance Rs 
of the formula: 
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the function of voltage coordinate translation takes the form: 
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where ε - means a voltage translation error and defines inaccuracy of transformation at 
voltage axis. 

A voltage translation error function „ε”: 
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Summing up: 
Comparing the expressions (13) and (20) we obtain translation functions of points 

coordinates of the Blaesser’s reduced characteristics (23): 
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Expression of the translation error function of Blaesser’s reduced characteristics 

Using the definition (8) and the function of translation of points coordinates of 
Blaesser’s reduced characteristics (23) one can notice that the translation changes the 
reduced characteristics: 

 )( 11 vfi =   (24) 
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Then, the absolute and relative error of the translation method takes the form, 
respectively: 
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Practical estimate of the method error in Blaesser’s reduced I-V characteristics 

Analysis with the use of one-diode substitute PV model 

The form of a one-diode substitute PV module is described by the expression (28): 
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where: q
kTU T = - free enthalpy (thermodynamic potential) of 26 mV for silicon at 

temperature 300 K, n - diode quality coefficient in a one-diode model, N - number of cells 
in a PV module. 

Due to the fact that in Blaesser’s translation method, the parallel resistance of  
a cell/module is not taken into consideration, i.e. it is assumed that Rsh = ∞, the expression 
(28) is simplified to the form (29): 
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Then, the function F(U) for the conditions T1 and G1 assumes the form: 
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Considering that: 
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then, Blaesser’s reduced characteristics function assumes the form: 
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and in the case of a reduced characteristics with translation to the conditions T2 and G2: 
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In this case, using (26) and (33) and (34), absolute error of Blaesser’s reduced 
characteristics translation assumes the form: 

 
( ) ( )11

11

11
1

11
1

12

)()(
−++−+

−=−+=∆
irv

nNU

U
irv

nNU

U

ii

s
T

OC
s

T

OC

eevfvfi
ε

ε
32143421

 (35) 

 ( )
( )

εε ⋅













+−=⋅=∆

−−+
T

OC
s

T

OC

nNU

U
irv

nNU

U

ee
dv

d
vf

dv

d
i

1
11

1 1

1
1

1

1  (36) 

Relative error is determined in line with (27), having determined (35) or (36) before. 
Whereas a simplified form of absolute error of translation of reduced characteristics, for 
the case when Rs = 0 (i.e. rs = 0), is presented by the relation (37): 
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Fig. 1. The graph of normalised I-V characteristics, according to Blaesser’s method, and the function 

sequence of absolute and relative errors, determined according to (35) and (36) for the case of 
translation from 467 to 978 W/m2 lighting level 

In Figure 1 the following curves are presented: red - normalised I-V characteristics of  
a module built of 36 ideal cells connected in series, with zero resistance Rs = 0 Ω, without 
parallel resistance (i.e. Rsh = ∞ Ω and for the assumed diode excellence coefficient in  
one-diode substitute model n = 1.5; blue - value of absolute error, determined: according to 
(36) - curve with asterisk and according to (35) - dashed curve; green - value of absolute 
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error, determined according to (27) for the previously determined relative errors, according 
to (36) and (35). The analysis of Figure 1 brings the following observations: 
a) The ideal I-V characteristics of the module as well as its normalised characteristics has 

almost zero inclination in the range of voltages v < 0.6 (Rsh = ∞) and a very sharply 
falling side (large inclination) of characteristics for voltages close to v ≅ 1. In 
consequence, we see almost zero value of translation errors in voltages range v < 0.6 
and a very fast increase of errors values after exceeding so called “I-V characteristics 
elbow” and getting closer to the value ν to 1. That is, after exceeding v > 0.9 (the effect 
of a very high value of derivative in this area of the curve).  

b) The results obtained from the relation (36) and (35) are basically comparable. The 
obtained differences result from the fact that the derivative from the relation (36) in 
direct vicinity v→1 heads to ∞ for Rs = 0 Ω and distorts the actual error value, which 
does not take place in the case of actual modules, i.e. when their Rs > 0. 

c)  Despite using a considerable simplification of a module model, the obtained relative 
error result δI of translation for ∆GPOA = 311 W/m2 amounting to δi (v = 0.85) = 9%, is 
comparable to the actual results when using characteristics correction procedures with 
the use of translation from methods from (1) to (3), which is within the range  
δISC ≅ 8% [3].  

d) In the analyses, the reduced voltage value v = 0.85, as the reference voltage was 
assumed - because in the actual cells/modules, the value (0.8-0.85)·UOC ≅ Um - is the 
engineer’s method for fast estimation of the maximum power point voltage value, from 
the value UOC [23]. 

Summing up: 
1. The expressions from (33) to (36) have entangled forms. The only method for plotting 

and solving them is the use of numerical solutions or specialist software,  
e.g. Mathematica or similar. 

2. The described method of determining the error, introduced by the idea of Blaesser’s 
reduced characteristics translation method, has its weak spots:  
a) it does not take into consideration the occurrence of modules parallel resistance 

(Rsh), which influences the changes of characteristics in the range of low lighting 
levels,  

b) the identified error ε - translation in voltage axis, does not differentiate between 
the error originating from the increase of cells temperature TC in the module and 
the error from the increase of lighting level G (see Fig. 10). These factors have 
contradictory influence on the increases of output voltages in modules. 

c) The used parameters of modules, such as n, Rs, do not have fixed values but 
change, along with the increase of TC of cells in a module and with the change of 
its lighting level, which causes additional errors. They also change along with the 
process of a module construction ageing/degradation.  

d) Determining I-V characteristics of modules for different values of radiation 
intensity GPOA in open space conditions, leads in practice to taking measurements 
of I-V characteristics of modules for various spectral distributions of solar 
radiation. The following values are different: Air Mass (AM), Average Values of 
Photon Energy (APE) and the contents of the useful fraction (UF) of the solar 
spectrum. 
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e) Comparing Blaesser’s reduced characteristics for different values of radiation 
intensity G, without taking into consideration the changes of ambient temperature 
(Tamb) involves the comparison of the obtained, normalised PV modules 
characteristics operating at different levels of adjustment of spectral sensitivity 
characteristics to the spectral distribution of the solar radiation. 

3. The analysis of the remark from point 2 suggests that it is actually very difficult to 
filter out the external factors, influencing errors of translation of Blaesser’s reduced 
characteristics, in order to determine the error of the method when applying the above 
mentioned function.  

Analysis with the use of a PV cell simulator 

A program simulator of a silicon PV cell made for laboratory-didactic classes was used 
for further analysis. The input data were generated numeric tables of AM1.5G spectrum, 
according to the procedures included in the SMART2 [24] application - relevant to the 
spectrum reference distribution from the norm IEC 60904-3. The module consisting of 32 
(N = 32) silicon cells connected in series, in which a single I-V characteristics was 
generated by the above mentioned simulator. Thus the characteristics is generated by linear 
scaling (x32) of voltage values from a single PV module cell characteristics. 

 

 
Fig. 2. The result window of the PV silicon cell operation simulator called “Silicon Solar Cells” 

The simulator was prepared according to the procedures describe in [25, 26]. Table 1 
presents the cell material parameters taken from [25], required for the simulator operation. 
The simulation was carried out for two leakage resistance values Rsh = 276 Ω, and  
100,000 Ω - further marked in figure as Rsh = ∞ Ω, i.e. without leakage resistance. The 
assumed value of the module serial resistance Rs = 0.37 Ω. The application contains 
numerical procedures for plotting and solving implicit functions, which ideally suited 
solving the current task. 
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Fig. 3. A tab of input data registry window and setting a cell material and construction parameters - left 

figure; program information - right figure 

Table 1 
Si Solar Cell Model Parameters [25] 

Factor/ parameter Value 
Temperature of the Cells 49°C 

Relative Permittivity 11.7 
Break of Material Coefficient 3.44 

Donor Density 1e+020 cm–3 
Acceptor Density 1e+015 cm–3 

Depth of Building in the Joint 0.35 µm 
Cell Thickness 300 µm 

Hole Diffusion Coefficient 1.5 cm2/(Vs) 
Electron Diffusion Coefficient 35 cm2/(Vs) 

Holes Lifetime 1 µs 
Electron Lifetimes 350 µs 

Effective Surface Recombination 
Velocities of Holes 

100,000 cm/s 

Effective Surface Recombination 
Velocities of Electrons 

100 cm/s 

Series Resistance 0.37 Ωcm2 
Shunt Resistance 100,000 / 276 Ωcm2 

 
Table 2 includes parameters of atmospheric data required to generate the input 

reference spectrum. Next, the spectrum numerical table was rescaled linearly to five 
spectrum distributions with total powers: 1000, 700, 500, 300 and 200 W/m2. Thus obtained 
files of input spectra with various powers had identical spectral distribution with the same 
APE and content of each UF fraction. The data was presented in Figure 4. The spectra were 
generated in bandwidth 0.28-2.8 µm and scaled to obtain the above mentioned power, in 
order to adjust to actual operating conditions, with the use of a typical pyranometer CM21 
made by K&Z. When determining energetic parameters, the integration area was restricted 
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to B = 0.3-1.7 µm, in order to adjust to measurement conditions of the actual 
spectroradiometer used in measurements. 

 
Table 2 

Atmospheric parameter values used in detailed simulation [27] 

Air Mass 1.5 
Turbidity - β 0.084 at 500 nm (β = 0.0316) 

Precipitable Water (w) 1.4164 atm-cm 
Atmosphere Ozone Content UO3 0.3438 atm-cm 

Reference Atmosphere Mid Latitude Summer 
Aerosol Model S&F Rural 

NO2 
use defaults from selected 

atmosphere 
Surface Pressure 1013.25 mb 

Latitude 52o 
Altitude 0 km 

Extraterrestrial Spectrum Gueymard 2002 (synetic) 
Tilted POA 37o 

Spectral Results 
Global Tilted Irradiance  

B = 280-2800 nm 
 

 
Fig. 4. Distributions of spectra of the radiation lighting the tested PV module used in the analysis, plus 

their energy characteristics 
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- AM 1.5G;
- atmospheric water content: 1.4164 atm-cm;
- atmosphere ozone content: 0.3438 atm-cm;
- turbidity: 0.084 at 500 nm (β =0,0316);
- solar spectrum: global (direct + diffuse);
- tilted POA =37o.

Solar radiation = Reference spectral IEC 60904-3:

P
(λ

) 
[W

m
-2

µm
-1

]

λ [µm]

 GPOA=1000 W/m2

 GPOA=700 W/m2

 GPOA=500 W/m2

 GPOA=300 W/m2

 GPOA=200 W/m2

GPOA APE UF(c-Si) UF(mc-Si) UF(CIS) UF(a-Si_SJ) UF(a-Si_TJ)

[W/m2] [eV] [-]
1000 1.60 0.558 0.636 0.729 0.384 0.668
200 1.60 0.558 0.636 0.729 0.384 0.668

B=(0.3-1.7) µm
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Fig. 5. Graphs of the normalised Blaesser’s I-V characteristics: a) for an idealised module, i.e. with no 

leakage resistance (Rsh > 100 kΩ), b) for an actual, monocrystalline silicon module with leakage 
resistance Rsh = 276 Ω. The temperature of modules in cells was TC = 49°C 

In Figure 5 the value of Blaesser’s normalised characteristics are presented, for  
an idealised module without leakage resistance - Figure 5a, and an actual module with 
leakage resistance Rsh = 276 Ω (Fig. 5b). Both modules had the same cells temperature  
TC = 49°C and serial resistance Rs = 0.37 Ω. Despite the fact that spectral (energy) 
parameters of the falling solar radiation spectrum were identical, with the only difference of 
lighting intensity, in both cases the normalised characteristics differ considerably.  

In the case of an idealised module without leakage resistance Rsh = ∞ (Fig. 5a), the 
curves almost cover each other in the full range of lighting value changes. They differ only 
at the bend, so called “elbow”, which is the effect of a non-linear component occurrence ln 
(G2/G1) in (10). In the area of low values of the reduced voltages “v” i.e. for v < 0.6, the 
curves have the same, zero inclination. In the area of reduced voltages v→1, i.e. close to  
v ≅ 1, all curves go down with the same inclination equal to 1/Rs. 

 

 
Fig. 6. The influence of the module leakage resistance (Rsh) on the speed of decreasing of the normalised 

I-V characteristics and the translation error δi for the translation in the range from  
200 to 1000 W/m2 
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In the case of an actual module, with leakage resistance Rsh = 276 Ω (Fig. 5b), the 
curves are at a considerable distance. The largest distance occurs during the largest load of 
the module, i.e. in the area of low values of reduced voltages “v” and low values of falling 
radiation, i.e. for low values of photocurrents generated in the modules. In the area of 
reduced voltages v→1, i.e. close to v ≅ 1, as in figure a), all curves go down with the same 
inclination equal to 1/Rs. The occurring differences, caused by the influence of leakage 
resistance Rsh, in the module, become even more visible in the measured characteristics, 
along with decreasing their lighting values GPOA below 500 W/m2. 

 

 
Fig. 7. The influence of the module leakage resistance (Rsh) on the speed of decreasing of the normalised 

I-V characteristics and the translation error δi for the translation in the range from  
300 to 1000 W/m2 

 
Fig. 8. The influence of the module leakage resistance (Rsh) on the speed of decreasing of the normalised 

I-V characteristics and the translation error δi for the translation in the range from  
500 to 1000 W/m2 
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marked i1 (GPOA = 200 W/m2; TC = 49°C) and i2 (GPOA = 1000 W/m2; TC = 49°C) illustrate 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

i=
I /

 I
S

C 
[-

]

v=U / U
OC 

[-]

 i1(GPOA=300W/m2; TC=49oC) 

 i
2
(G

POA
=1000W/m2; T

C
=49oC) 

G
POA

: from 300 W/m2 to 1000 W/m2

∆G
POA

= 700 W/m2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆i
 [-

] Subtracted by "i
1
=I/I

SC1
" on "i

2
=I/I

SC2
"

 ∆i=f '(v
1
)×ε

0

10

20

30

 δ=100×(i2-i1)/i1

 δ=100×f '(v1)×ε/i1

δ i [
%

]

for v = 0.85;   δ = 4.15%

for v = 0.85;   δ ≈ 18%

R
s
=0.37Ω; R

sh
=276Ω

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
G

POA
: from 300 W/m2 to 1000 W/m2

∆G
POA

= 700 W/m2

i=
I /

 I
S

C 
[-

]

v=U / U
OC 

[-]

 i
1
(G

POA
=300W/m2; T

C
=49oC) 

 i
2
(G

POA
=1000W/m2; T

C
=49oC) 

-0.05

0.00

0.05

0.10

0.15
R

s
=0.37Ω; R

sh
=∞

 ∆i=f '(v
1
)×ε

 Subtracted by "i
1
=I/I

SC1
" on "i

2
=I/I

SC2
" ∆i

 [
-]

-10

0

10

20

30

 δ=100×f '(v
1
)×ε/i

1

 δ=100×(i
2
-i

1
)/i

1

δ i [
%

]

for v =0.85;   δ ≈ 5.3%

a) b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
G

POA
: from 500 W/m2 to 1000 W/m2

∆G
POA

= 500 W/m2

i=
I /

 I
S

C 
[-

]

v=U / U
OC [-]

 i
1
(G

POA
=500W/m2; T

C
=49oC) 

 i
2
(G

POA
=1000W/m2; T

C
=49oC) 

0.00

0.04

0.08

0.12

0.16

0.20

∆i
 [

-]
 Subtracted by "i

1
=I/I

SC1
" on "i

2
=I/I

SC2
"

 ∆i=f '(v
1
)×ε

0

4

8

12

16

20

for v = 0.85;   δ = 3.9%

 δ=100×(i2-i1)/i1

 δ=100×f '(v1)×ε/i1

δ i [
%

]

R
s
=0.37Ω; R

sh
=276Ω

for v = 0.85;   δ = 7.7%

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
R

s
=0.37Ω; R

sh
=∞G

POA
: from 500 W/m2 to 1000 W/m2

∆G
POA

= 500 W/m2

i=
I /

 I
S

C 
[-

]

v=U / U
OC [-]

 i1(GPOA=500W/m2; TC=49oC) 

 i2(GPOA=1000W/m2; TC=49oC) 

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

 ∆i=f '(v1)×ε
 Subtracted by "i

1
=I/I

SC1
" on "i

2
=I/I

SC2
"

∆i
 [-

]

-2

0

2

4

6

8

10

 δ=100×f '(v1)×ε/i1

 δ=100×(i
2
-i

1
)/i

1

δ i [
%

]for v = 0.85;   δ ≈ 4.4%

for v = 0.85;   δ ≈ 2.4%

a) b)



Application of the reduced I-V Blaesser’s characteristics in predicting PV modules and cells … 

 

359

the reduced I-V characteristics of the modules, obtained in operation condition defined in 
the graphs. The dashed blue curve - marked ∆i = f’(v1)×ε - illustrates the flow of absolute 
error for translation of i1 curve, from the conditions (GPOA = 200 W/m2; TC = 49°C) to  
(GPOA = 1000 W/m2; TC = 49°C), determined according to (26). The blue curve with  
a circle, marked as: Subtracted by "i1 = I/I SC1" on "i2 = I/I SC2" - the actual, total translation 
error of the reduced Blaesser’s characteristics, occurring during translation from GPOA1 to 
GPOA2, at the same cells temperature in the module (TC - const), determined according to 
(38). The dashed green curve - marked in the graph as δ = 100×f’(v1)×ε/i1 - the absolute 
error flow for the same translation, determined according to (27). Whereas the green curve 
with an asterisk - marked in the graphs as δ = 100×(i2 – i1)/i1 - the absolute error flow of 
translation, determined according to (39). The graphs on the left in Figures 6-9, marked a 
present the obtained translation data for an idealised module (i.e. for Rsh = ∞), those on the 
right - for an actual module with typical resistance as in the modules with c-Si Rs = 276 Ω.  

 

 
Fig. 9. The influence of the module leakage resistance (Rsh) on the speed of decreasing of the normalised 

I-V characteristics and the translation error δi for the translation in the range from  
700 to 1000 W/m2 
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200 5.5 8.3 2.6 31.6 
300 5.3 5.3 4.1 18.0 
500 4.4 2.4 3.9 7.7 
700 2.8 0.9 2.9 2.6 
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2. In the range of values GPOA ≥ 700 W/m2, for the actual modules having leakage 
resistance Rsh = 276 Ω, there is equalisation of translation error, calculated according to 
Blaesser’s method, i.e. (26) and (27), with the actual results determined according to 
(38) and (39). 

3. The significance of translation error and its flow in the function “v”, calculated 
according to (26) and (27) and the level of distortion versus the actual value, 
determined according to (38) and (39) strictly depends on the shape of I-V 
characteristics, therefore on the value present in the resistance module Rsh. For the 
modules with low leakage (i.e. large values of Rsh, Figs. 6-9a) - the obtained values are 
similar within the range of low voltages, i.e. up to so-called elbow of I-V 
characteristics, occurring for v < (0.7-0.8). Additionally, during translation to STC 
from the range GPOA ≥ 500 W/m2 - the value of the calculated translation error of 
normalised I-V curves according to the formula (27) and the measured actual, 
according to (39) is within the range of 1%, which fully conforms with [6]. However, 
in the case of higher leakage in a module (i.e. for low values Rsh, Figs. 6-9b) - the rule 
for the low voltages “v” range does not apply.  

4. If during translation of normalised I-V curves of modules from the area of low GPOA 
values to STC conditions - the occurrence of actual leakage resistance Rsh is not taken 
into consideration, it results in a major distortion of the flow calculated according to 
Blaesser’s method (26) and (27), i.e. a translation error, in lower ranges of normalised 
voltages (“v”), in particular. The situation is much improved in the case of testing 
idealised modules, i.e. with no leakage resistance (Rsh = ∞), however, this does not 
reflect the real conditions.  

Simplified method for determining actual translation errors: 

Using the definition of the Blaesser’s reduced characteristics (8), where the 
expressions )( 11 vfi =  and )( 22 vfi =  present the reduced I-V characteristics for the 

conditions, respectively: (G1,TC1) and (G2,TC2), then using to (26) and (27), the absolute and 
relative translation error of the I-V curve of the module, from the conditions (G1,TC1) to 
(G2,TC2) can be presented in the form, respectively: 

 ( ) ( )1211

12

vfvf)v(f)v(fi
ii

−=−+=∆
32143421

ε  (38) 

 
)v(f

)v(f)v(f

i

ii
[%]i

1

12

1

12 100100
−=−=δ  (39) 

The expression (37) in the form of a difference ( ) ( )12 vfvf − , means the numerical 

result of the difference of two processes, for example with the use of typical software for 
measurement data processing (e.g. OriginPro). The result of the subtraction was presented 
in Figures 6-10, marked as: Subtracted by "i1 = I/ISC1" on "i2 = I/ISC2".  

Whereas the expression (39) means that it is necessary to divide the difference of two 
processes by the stabilised first one. It should be remembered that numerical operations in 
these processes can be carried out only in the conditions of unification of the “v” voltage 
variable, for both processes.  
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The above presented Blaesser’s method of determining translation errors according to 
(38) and (39) is a very simple operation in order to obtain reliable results, without the need 
to carry out very complex mathematical operations!!  

The obtained results are comparable to earlier presented methods, but there are no 
limitations. In Figure 10 the obtained results of translation error of the normalised I-V 
curves of an actual polycrystalline mc-Si module are presented, for the translation from the 
measurement conditions (G = 467 W/m2 and TC = 47°C) to the conditions (G = 978 W/m2 
and TC = 62°C) and (G = 817 W/m2 and TC = 62°C), i.e. from the area of measurement 
conditions of I-V characteristics more than 450 W/m2. The graphs were plotted using the 
expressions (26) and (27) and the simplified method, i.e. the expressions (38) and (39). It 
should be noted that many obtained results are similar; it should be remembered that  
a guaranteed quality of translation of the Blaesser’s normalised curves to STC conditions 
can be maintained only measurements for GPOA > 600 W/m2 [6]). The only difference is the 
lack of differentiation by the translation error in voltage axis (ε) - the error originating from 
the increase of cells temperature TC in the module from the error from the increase of 
lighting level G (see Fig. 10). These factors have contradictory influence on the increases of 
output voltages in modules. 

 

 

Fig. 10. Graph of absolute and relative errors of a I-V curve translation to the conditions (G = 978 W/m2 
and TC = 62°C) from the area G > 450 W/m2 for an actual, polycrystalline PV module, carried 
out for translation for the value: a) 511 W/m2 and b) 161 W/m2. The graphs were plotted using 
the expressions (26) and (27) and the simplified method, i.e. the expressions (38) and (39) 

In further analyses, the presented new method based on (38) and (39) shall be the main 
method in practical application for determining translation errors, as he most reliable and 
not limited by any restrictions. 

Research results 

The assessment of the technical condition of the working PV modules and the level of 
degradation of their construction was carried out using the characteristics of the I-V of 
tested modules that were recorded for two extremely different days occurring in areas with 
higher latitudes. The first one, characterized by low insolation and average temperatures, 
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second one - hot summer day with high insolation - called HIHT (High Irradiance, High 
Temperature). 

 

 
Fig. 11. Graphs of the normalised Blaesser’s I-V characteristics for a monocrystalline module (c-Si): a) at 

the beginning of exploitation, i.e. from 2001, and b) after 16 years of use, i.e. from 2016 

 
Fig. 12. Graphs of absolute and relative I-V translation errors for an actual, monocrystalline (c-Si) PV 

module, for the translation value: a) 182 W/m2; b) 266 W/m2; c) 610 W/m2 and d) 121 W/m2 
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Figure 11 presents graphs of the normalised Blaesser’s I-V characteristics for  
a monocrystalline module (c-Si): a) at the beginning of exploitation, i.e. from 2001, and b) 
after 16 years of use in extreme operation conditions, i.e. from 2016. The distributions 
obtained in Figure 11a and the flow of translation of I-V curves function from the initial 
exploitation period (i.e. from 2001 - Fig. 12), confirm good quality of the construction of 
the monocrystalline module used in the tests. However, 16 years of exploitation in extreme 
conditions caused considerable degradation of materials and construction of the tested PV 
module, noticed in the changes of distribution of the module normalised I-V curves (see 
Fig. 11b). The presence of a very large increase of serial resistance Rs can be noticed, 
already after exceeding the solar radiation value above GPOA > (150-300) W/m2 and in the 
range of higher temperatures of cells operation TC in the PV module. This is caused by 
construction and material degradation, including, for example, cracks in a module cell or 
cells, structural damage of a cell surface layer, including various hairline cracks, etc. 

 

 
Fig. 13. Graphs of the normalised Blaesser’s I-V characteristics for a polycrystalline module (mc-Si):  

a) at the beginning of exploitation, i.e. from 2001, and b) after 16 years of use, i.e. from 2016 

Figure 13 presents graphs of the normalised Blaesser’s I-V characteristics for  
a polycrystalline module (mc-Si): a) at the beginning of exploitation, i.e. from 2001, and  
b) after 16 years of use. The distributions obtained in Figure 13a and the flow of translation 
of I-V curves function from the initial exploitation period (i.e. from 2001 - Figure 14a, I-V 
red curve), versus the I-V black curve from 2016, confirm good quality of the 
polycrystalline module absorber. 

The effects of a PV module 16 years of use: increase of the mc-Si module leakage  
(i.e. decrease of Rsh resistance), and the occurrence of a strong correlation between the 
increase of lighting intensity level GPOA, cells operation temperature TC and a decreasing Rsh 

(increase of the module leakage - Fig. 13b). Moreover, in Figures 13b and 14b,c one can 
notice the appearance of a characteristic discontinuity in the characteristics of low “i” 
current values, so-called discontinuity in the vicinity of a module UOC voltage with low 
lighting conditions, occurring during periods of high level of insolation and temperatures. 
The phenomenon described in [1] frequently occurring in amorphous modules, is an effect 
of the slow degradation of a cell crystalline structure.  
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Fig. 14. Graphs of absolute and relative I-V translation errors for an actual, polycrystalline (mc-Si) PV 

module, for the translation value: a) 801 W/m2; b) 779 W/m2; c) 604 W/m2 and d) 329 W/m2 

 
Fig. 15. Graphs of the normalised Blaesser’s I-V characteristics for a single-joint module of amorphous 

silicon (a-Si_SJ): a) at the beginning of exploitation (after initial ageing period), i.e. from 2002, 
and b) after 15 years of use, i.e. from 2016 

In a single-joint PV module of amorphous silicon, due to high Rs resistance and low 
Rsh, the translation error of I-V curves to STC conditions, even during an initial period of 
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exploitation, i.e. after the initial ageing period, was very high, amounting to: δ = 36% for 
the change GPOA = 178 →1019 W/m2, δ  = 31%, for GPOA = 214 → 1019 W/m2, δ = 28%, 
for GPOA = 599 →1019 W/m2, δ = 20%, for GPOA = 917 →1019 W/m2. It presented high 
dependence of the increase of Rs on the increase of GPOA and temperature TC, with 
simultaneously increasing Rsh. 

 

 
Fig. 16. Graphs of absolute and relative I-V translation errors for an actual, single-joint PV module of 

amorphous silicon (a-Si_SJ), for the translation value: a) 841 W/m2; b) 805 W/m2; c) 420 W/m2 
and d) 102 W/m2 

The effects of a 16-year exploitation of a PV module: decrease of a module FF 
coefficient, increase of Rs, and decrease of Rsh resistance. Moreover, a characteristic 
discontinuity appeared in the characteristics of low “ i” current values, so-called 
discontinuity in the vicinity of a module UOC voltage with low lighting conditions  
(Fig. 15b), occurring during periods of high level of insolation and temperatures; the 
phenomenon has been described in [1]. 

In the case of a triple-joint module made of amorphous silicon (Figs. 17 and 18), no 
degradation traces were identified during 14 years of exploitation in the same extreme 
conditions. Similarly to the module a-Si_TJ, the CIS module (see Figs. 19 and 20) had no 
visible traces of degradation after 14 years of exploitation, except for a slight increase of Rs 
resistance and the appearance of the influence of radiation increase GPOA and cells 
temperature on the increase of Rs. 
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Fig. 17. Graphs of the normalised Blaesser’s I-V characteristics for a triple-joint module of amorphous 

silicon (a-Si_TJ): a) at the beginning of exploitation (after initial ageing period), i.e. from 2002, 
and b) after 14 years of use, i.e. from 2016 

 
Fig. 18. Graphs of absolute and relative I-V translation errors for an actual, triple-joint PV module of 

amorphous silicon (a-Si_TJ), for the translation value: a) 957 W/m2; b) 742 W/m2; c) 511 W/m2 
and d) 121 W/m2 
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Fig. 19. Graphs of the normalised Blaesser’s I-V characteristics for a CIS module: a) at the beginning of 

exploitation, i.e. from 2001, and b) after 16 years of use, i.e. from 2016 

 
Fig. 20. Graphs of absolute and relative I-V translation errors for an actual, CIS PV module, for the 

translation value: a) 950 W/m2; b) 544 W/m2; c) 513 W/m2 and d) 102 W/m2 

Conclusions 

The following conclusions and observations can be drawn from the analysis of the 
above mentioned analysis method: 
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1. The presented method of using the reduced I-V characteristics, according to Blaesser’s 
method, in which after normalisation of I/ISC and U/UOC values, the characteristics are 
automatically rescaled to the range from 0 to 1 - in each axis, offers the opportunity to 
place all characteristics in a single graph, irrespective of atmospheric conditions 
during measurements taking.  

2. Placing all characteristics in a single graph, irrespective of atmospheric conditions 
during measurements taking, provides perfect opportunities of making analyses of the 
influence of such factors as GPOA or TC of a module cells on the values of serial 
resistance Rs or leakage Rsh, obviously after a prior filtration of I-V curves, according to 
the second parameter. This process enables analyses of mechanical and material 
degradation level of the PV modules.  

3. In diagnosing the level of degradation of modules material structure, using only the 
reduced I-V characteristics of the modules, without translating into STC conditions - 
the presented method is not limited in using I-V characteristics measured above the 
minimum level of GPOA ≥ 600 W/m2. 

4.  Making regular records of I-V characteristics of the modules operating in open space 
and placing them in a single graph, together with the characteristics recorded directly 
after the module start up, provides the basic material for analysing the speed and level 
of degradation of operating modules and assessing their technical condition. 

5. Implementing the function for regular (e.g. annual) recording of I-V characteristics of 
operating PV modules would enable a fast and simple method for performing the basic 
analysis of their technical conditions on location. Their dismantling and transport to  
a research laboratory would not be necessary. 
The authors hope that the above publication shall contribute to popularizing the 

research method as a cheap and effective method of estimating usability of modules to 
operate outdoors. This will allow to intensify research on optimisation of newly created 
cells and modules to the conditions reflecting actual climatic conditions in specified 
geographical regions. 
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