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Abstract: The paper explains a method for discerning théspafra water supply system in need of renovation.
The results are based on technical data collestedtbe last twenty one years, concerning more tivarhundred
sections of both renovated and nonrenovated pgeelilm the study, an appropriately prepared datwae used
for training an artificial neural network (ANN) ithe form of a multilayer perceptron (MLP). Furtleemparison
between the responses of the trained Mafd the decisions made by human experts showesfasatiry
consistency, although 15% of the database recoodiiped certain discrepancies. The presented metrotelp
create an expert system capable of supportingéfhee operation of a water distribution system.
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I ntroduction

Water supply systems are responsible for the intakatment and supplying water to
various recipients. Such systems usually compriseater intake, purification facilities,
transit pipelines, pumping stations, storage faefliand a distribution network. In Poland,
households consume 73% of municipal water. It igartant that the end user be not only
provided with high quality water but the supply meertain technical requirements such as
appropriate water pressure over longer periodsr. t

The pipeline network is particularly vulnerable ttamage and simultaneously
constitutes the most capital-intensive part of dewaupply system (up to 70% of total
cost), especially in large cities. It is commonlgderstood [1] that operating costs are
caused chiefly by distributing water from the strdacilities to pipeline connections, from
where it is further supplied to the end users. figh failure rate results mainly from the
fact that a large number of distribution pipes @wacentrated in a rather small area, which
incidentally also contributes to higher costs. flsttion pipelines in cities are often
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subjected to repeat mechanical stress, for exarpltbe proximity of roads. Considering
that over half of all failures can be associatethwistribution pipes, there is a need to keep
them in good technical condition. This, in turnquées methodical renovation of selected
pipeline sections in order to avoid serious watgpsy breakdowns.

The expert systems have become significantly populahe last decades [2-4]. In
order to create them, artificial intelligence hasei employed in the form of genetic
algorithms [5], fuzzy logic [6] and artificial nealrnetworks (ANNS). Initially being used to
recognize speech or images, they have since besressiully applied in chemistry,
medicine and molecular biology, but also in ecologyd environmental protection.
Likewise, a remarkable interest in the applicatodrartificial neural networks to various
prognoses and evaluations has been observed avegrasit few years. ANNs have been
employed to enhance environmental engineering tiranticipating soil contamination,
emission of nitrous oxide and concentration of pgtlic aromatic hydrocarbons [7, 8],
predicting solar activity to facilitate the managarh of solar power plants [9] and
evaluating the performance of cyclone separato8§. [ANNs have also been used for
prediction and classification in various problems the border between environmental
engineering and meteorology. One notable examptiesapplication of a neural model
coupled with a fuzzy logic system in order to detbe possibility of tornadoes in the states
of Kansas and Alabama, described in [11]. Kaur [aftempted to recognize tornadic
circulations in the atmosphere using data from agdber weather radar system and MLP
(multilayer perceptron). Moreover, self-organiziagtificial neural networks and radial
basis function networks (RBFN) have been succdgsfubed for the automatic
classification of cloud types in satellite imagds3,[ 14], which can be very helpful in
weather forecasting. Numerous applications of AN be found in the field of
atmosphere protection [15] and they are largelysibdes thanks to the MLP and the
RBFN [16].

Artificial neural networks have also been employedsolve problems related to the
broadly defined water resource management. A nem@del using flexible Bayesian
methods was used to predict the degree of exgtmitaif groundwater and surface water
and tested on the Opole Province in Poland [17]FREand MLP networks as well as
general regression neural networks (GRNN) were essfally used for evaluating the
separation of chromium ions from aqueous solutieite the help of ultrafiltration [18].
MLP networks were also used for modeling the deptfiles of dissolved oxygen in the
Thesaurus reservoir on the Nestos river [19]. Thatilayer perceptron was utilized to
predict algal concentrations in the coastal watefsHong Kong [20] and in Lake
Kasumigaura, the second-largest lake in Japan [3&}eral types of artificial neural
networks (including MLP, RBFN and GRNN) were impkamted to predict total
phosphorus concentrations in the Odra river in b[@2]. Another interesting example is
the application of MLP and RBFN neural networkdtie estimation of failure indicators
for water distribution networks and water connetdio[23, 24]. Kutylowska [23]
emphasized that determining failure indicators \pasticularly difficult in the case of
distribution networks. It should be noted thatuedl indicators are among many variables
dictating the necessity of renovation, which wil discussed further in the text. Therefore,
failure indicators alone may prove insufficientlead to erroneous decisions, especially
when they come with a high degree of uncertaintifPMvas also applied for localization
of the damage states in the water supply systerRzieszow [25]. Ciezak et al. [26]
proposed application of autoregressive integratewimg average (ARIMA) model for
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prediction of water demand time series in municipgtems of Wroclaw and Brzeg and
compared the results with outcomes obtained for Mtk forecast quality for the applied
ARIMA model and MLP were satisfactory and compagalflossibilities of water demand
predicting by means of ARIMA models and ANNs wellsoatested for water supply
system in Krakow [27]. The neural network model wasommended as a more effective
tool, which generates more reliable forecasts.dbéfit variants of self-organizing Kohonen
neural networks were also implemented for classifim of water pipes diameters [28].

Artificial neural networks seem to be an effectit@l in supporting renovation
decisions regarding selected parts of a water gupydtem. The advising system using an
ANN is not prone to subjectivity, unlike expert pjmins. Nevertheless, exploiting the
possibilities offered by neural networks requiremprehensive data, detailing the technical
condition of the system. On the other hand, if sadatabase exists, there is no need to
develop an analytic description of the task at harte neural network can postulate or
abort renovation of a specific part of the systerely on grounds of the relation between
the input and the output data.

Characteristics of water supply in Lodz

The neural network described further in the papas tested on Lodz - one of the
biggest cities in Poland. Water for the needs afiZ s taken mainly from drilled wells
located in the city or in neighbouring towns. Tleenaining water demand is satisfied by
the intake on the Pilica river in Tomaszow MazowiecCurrently, daily water
consumption of Lodz is equal to about 110,060 Fine municipal water supply system has
been subjected to repairs and renovations sinceahyg 1990s. The renovation plan was
established based on expert decisions; howevénlipithe renovation works concentrated
on large pipes transporting water from the intakatside Lodz and only then the remaining
parts of the system were gradually renovated.

Today, Lodz exploits over two thousand kilometers veater supply pipelines
including:

* 230 km of mains,
e 1,170 km of distribution pipes,
* 600 km of water connections.

The study was focused on the distribution pipeliremstituting the longest water
supply sub-network in the city. In 2013, 48% of thipelines were made of cast iron, 32%
were made of polyvinyl chloride (PVC) while the r@ming 20% were asbestos-cement,
high-density polyethylene (HDPE) and ductile iroipgs. The age structure of the
distribution system was as follows:

e 38.6% - pipes 31-50 years old,

e 23.6% - pipes 11-20 years old,

e 14.3% - pipes older than 50 years,

e 14.0% - pipes 21-30 years old,

* 8.5% - pipes younger than 10 years.

The diverse age structure helped to assemble a $migof data containing information
on the technical condition of the water supply egsin the city.
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Featur es of the neural network

The study employed a feedforward neural networkthia form of a multilayer
perceptron [29]. A network of this type is formedthree layers, called the input layer,
hidden layer and output layer (Fig. 1). In the cafshidden neurons the sigmoid activation
function described by equation (1) was used while butput neurons obeyed linear
transformation

2
f(x) oot 1)

The MLP was trained assuming backpropagation ared Ltevenberg-Marquardt
algorithm [30]. The training consisted in iteratigelection of biases and weights of the
synaptic connections between the neurons so thaWittP responses to the input data were
consistent with the expert decisions concerningvation of a specific pipeline section.
The following encoding rule was accepted:

« 1 -if the expert recommended renovation,
e 0 -if renovation was not suggested.

In order to find the optimal structure of the MLRetworks containing different
number of neurons in the hidden layer were testeflitionally for the same number of
hidden neurons training was repeated several tiffiles.sum of the squared differences
between the expected value {1,0} and the outputievalvas accepted as a selection
criterion. Selection of the best structure was mbgeletermining the minimum sum of
squared deviations from among the analyzed vari&imslly, after selection the best MLP
structure, the output from the neural network ttdakvalue 0 or 1 using threshold 0.5.

(decision about renovation)

output layer

hidden layer

input layer

X, X,

X3
input dataset

Fig. 1. Structure of the multilayer perceptron (MILRed in the study
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Description of the ML P input data

The data set designated for testing the neuron indeeeloped in order to determine
current renovation needs, was extracted from thebdae of the Company of Water Supply
and Sewage Disposal in Lodz. The company maintaixtensive electronic records
concerning the technical condition of the waterptymetwork as well as the information
on completed renovations, carried out over the paenhty one years. Considering the
complexity of the water supply infrastructure arg: tlong time span covered by the
database, preparation of data fed into the neuodleinvas made using a special version of
Mb_GIS Utility software (Geographic Information $§m1) dedicated for water supply
companies. The software provides automated anabysié comparison of the spatial
information stored in the database. All data atéélan the database was taken for training
and testing MLP.

The data on the water distribution system conditi@ne prepared in such a way so as
to introduce them into the neural model. Table dwghthe components of the set of records
used as the input data. The expected network otdpiton the value 1 or 0, depending on
whether the expert advised conducting or abortiagovation in a specific instance
represented by the input vector.

Table 1
Components of the training vectors
No. | Component | variation range
Input data
1 Pipe diameter [mm] 100-250
2 Pipe material
1. Castiron
2. Asbestos-cement
3. Polyvinyl chloride (PVC) [l {r2345
4. Steel
5. High-density polyethylene (HDPE)
3 Age [years] 11-94
4 Failure rate from the last 3 years [failure/knaf}e| 0-8
5 Failure rate from the last 10 years [failure/keal} 0-3.5
6 Existence of forces affecting the pipeline H {0 ]}
1-yes;0-no '
Output data
1 Necessity of renovation
1-yes; 0-no [l {03

Failures of water supply infrastructure are siguifitly influenced by the piping
material and construction. For this reason, the typmaterial used for a particular section
of the pipeline was considered among the input ttathe neuron model. Such an approach
required encoding each of the five materials in ftren of an integer number (Table 1).
The effort was also undertaken to replace the ofpeaterial with its theoretical operating
time, for example, 80 years with regard to cash ipipes; however, this idea did not
produce satisfactory results. Several tests, waeother component representing the length
of a given section was added to the input vectiokndt improve the results, either. In the
latter case, the lack of improvement in the neumsodel operation appeared justified,
because the information on failures regarding #atiens of specific lengths was indirectly
contained within the failure coefficients. Besidi introduction of additional components
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into the teaching vector caused growth of the Hestraicture and thereby obstacles in
successful training.

As the data pertaining to the completed renovatiwese collected over more than
20 years, the operating time of a given sectiothefpipeline was calculated up to the point
at which a decision was made to renovate it. Funibee, data were discarded if renovation
was encouraged by circumstances other than baditatftondition of the pipeline, such
as planned reconstruction or renovation of thorfaurgls in the city.

The set of data defined according to the aboveribest procedure was used as the
input to the neuron model. Altogether, the dataltasgained over two hundred records:

« 105 records regarding the already-renovated sextibthe pipeline system,
e 100 records regarding the pipelines that had niobgen subjected to renovation.

The data were further randomly divided into a tirinset containing 70% of all
records (143 samples) as well as a validation sdtaatest set, each containing 15% of
cases from the general database (31 samples esthhe sets were randomly selected
from the complete set of data. The training anddagibn sets were used for training the
MLP. The testing set was not used for training boly for assessment of its quality.
As a result of iterative training, consisting iretpresentation of multiple input vectors
together with the corresponding expert decisiohg MLP learned to recognize the
necessity of renovation based on the technicalitiondf a pipeline. As it was mentioned
before, when the output signal of the MLP took &useaof 0.5 or higher, it was assumed
that the section of a pipeline defined by the inpeittor should be renovated. When the
output signal was lower than 0.5, it was concludlest renovation was not necessary.
Application of the above rule proved that the nenedwork containing five neurons in the
hidden layer was the most effective. Using less tiie neurons resulted in less accurate
responses. When more than five neurons were ubednetwork became overtrained,
i.e. the responses concerning the expert decisides from the training set were better but
simultaneously much worse with regard to the test s

Analysis of results

Examination of the responses generated by theettameural network revealed
agreement with the decisions made by experts f6rr&@ords from the database. In spite of
this fact, 30 responses of the MLP were not coasistith the expert decisions. In the
majority of these cases (23 records), the MLP {jedlia pipeline as requiring renovation,
although such actions had not been undertakeneirpdist (Table 2). Detailed analysis of
the input data set demonstrated that 12 of thesesoaere related to the pipeline sections
shorter than 250 m with at least one failure ingicaexceeding a value of
1.0 failure/km/year. Usually, such short pipelinecttons were not considered by the
experts, even if they were characterized by higliraindicators. Also, the MLP selected
4 cast iron pipelines to be renovated due to the& exceeding 65 years. In five cases of
PVC pipes, the neural model suggested renovatigardéess of pipeline age, because there
existed at least one failure indicator having ahhiglue. In 4 of 5 cases, renovation was
recommended with regard to relatively young pipelsections, less than 50 years in
operation. One can surmise that the need to readliase sections was mainly caused by
the errors made during the installation of PVC pjpmmmonly replacing old grey cast iron
pipes in the 1960s and 1970s.
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The neural model identified 7 pipeline sectiong thed been unnecessarily renovated
in the past (Table 3). Usually, the MLP questionedducting renovation when the pipeline
was less than 60 years old (with one exception) wahen the failure indicators did not
exhibit particularly high values. Such responsethefneuron model seemed substantiated
by the fact that the pipelines had been designedafoleast 50 years of continuous
operation. In two cases, the MLP discarded renomatif asbestos-cement pipes as they
were not subjected to mechanical stress.

Table 2
List of pipeline sections singled out by the neunowdel as requiring renovation
No. of
apipeline ’ Operatin 3-year failure 10-year failure ) Expert
spe(?tion Dl[?]lan%er rzgtpeer iOzII Eeriod ’ )i,ndicator i¥1dicator Dylzzgllc decisipon on
inthe [years] [failure/lkm/year] [failure/lkm/year] renovation
database
107 150 1 69 1.9 15 1 0
129 100 1 87 0 0.7 0 0
130 100 1 61 13 1.1 0 0
135 150 1 61 2 1.1 1 0
136 100 3 52 0.8 0.7 0 0
138 150 1 60 0.9 0.7 0 0
143 125 1 66 0.8 1 1 0
144 100 1 55 1.8 0.8 0 0
147 200 1 54 1.6 1.3 0 0
151 100 1 64 1.7 0.9 0 0
152 100 1 61 1.3 15 1 0
153 100 1 56 1.7 0.9 0 0
154 150 3 45 0 1.2 0 0
155 200 1 56 1.2 1.3 0 0
166 200 2 62 0 0.9 1 0
178 150 3 43 1.1 0.6 0 0
181 100 1 58 1 1.1 0 0
183 150 3 45 1.8 0.4 1 0
184 100 1 80 0.4 0.5 0 0
189 100 3 49 0.5 0.8 0 0
190 125 1 74 0.5 0.5 0 0
191 200 1 65 0.2 0.8 1 0
203 200 1 65 0.4 0.6 1 0
Table 3
List of pipeline sections rejected from the renawaplan by the neuron model
No. of
apipeline ) Operatin 3-year failure 10-year failure h Expert
gegion Dl[?]lan%er rzgtpeer iOzII Beriod ’ )i/ndicator i¥1dicator Dylzzgllc decispon on
inthe [years] [failure/lkm/year] [failure/lkm/year] renovation
database
12 100 1 54 0 0.9 1 1
31 200 1 57 0.7 0.5 0 1
32 150 1 49 0.7 0.7 1 1
38 250 1 43 1.1 0.3 1 1
61 150 2 54 0.8 0.4 0 1
85 125 1 64 0.6 0.7 0 1
91 100 2 53 0.9 0.6 0 1
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As a result of the study a computer program has beeated in the MATLAB
computing environment. The program allows makingiglen about renovation of
pipelines in Lodz based on factors presented id€Tablt should be noted that the quality
of decisions made by the neuron model dependsenreftability of the data employed in
the training process. A relatively low number dfuifees of the distribution network in Lodz
(from 0.21 to 0.26 failure/km/year) (Fig. 2), refsat in the years 2010 to 2014, suggests
prudent renovation planning. Therefore, the expletisions concerning the completed
renovations of the water supply network could basatered reliable enough in order to
train the neuron model.
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Fig. 2. Number of failures of the water supply eystin Lodz in the years 2010 to 2014

Summary and conclusions

The article suggests using an artificial neuronwoek MLP type as a tool for
supporting renovation decisions, concerning watgply systems in large cities. The
method was tested on the water pipelines in Lodth thie help of data collected routinely
over a period of more than 20 years.

During the study, a trained neural network was @rathby comparing its responses
with expert recommendations made in the past. Aljhogood agreement was achieved
between them, a subset of contrary decisions wastifitd. In the majority of these
conflicting cases, the MLP recommended renovatibthe pipeline section that had not
been previously picked by the experts. Additionalgcording to the MLP a few of the
completed renovations were unnecessary. Considgringbility of the MLP to transfer the
acquired knowledge onto new circumstances, noepted during the training process, the
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neural model can be employed to form current retiovglans, especially in the absence
of human experts. However, reliable historical data required for the MLP to generate
objective decisions.

In financial terms, implementing such an experttesys by a municipal water and

sewage company can help optimize its resourcegmtgsid for maintaining efficient and
uninterrupted operation of the water supply infiacture.
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