Robert KALBARCZYK¹, Eliza KALBARCZYK²*, Irena NIEDŹWIECKA-FILIPIAK¹ and Liliana SERAFIN¹

OZONE CONCENTRATION AT GROUND LEVEL DEPENDING ON THE CONTENT OF NOₓ AND METEOROLOGICAL CONDITIONS

STĘŻENIE OZONU PRZY POWIERZCHNI ZIEMI W ZALEŻNOŚCI OD ZAWARTOŚCI NOₓ I WARUNKÓW METEOROLOGICZNYCH

Abstract: This study analyzed the temporal variation of tropospheric ozone (O₃) in Poznan (midwestern Poland) on the basis of data collected from a State Environmental Monitoring air quality assessment station. The aim was to investigate the distribution and variation of O₃ levels and to assess the relationship with nitrogen oxides (NOₓ) and meteorological conditions. These relationships were assessed by multiple regression analysis and cluster analysis. The O₃ levels showed a high annual, seasonal and daily volatility, and were significantly influenced by meteorological conditions and NOₓ levels. High O₃ levels were accompanied by above-average levels of radiation (Rad), air temperature (Tₐ) and wind speed (Wₛ), together with below-average values of NOₓ and humidity (Rₕ). Atmospheric pressure (Pₕ) had an ambiguous effect on O₃ levels.

Keywords: air quality, atmospheric gaseous pollutants, meteorological conditions, temporal variation

Introduction

Tropospheric ozone (O₃) is a secondary pollution produced not only by lightning but mainly by complex photochemical reactions occurring in the polluted air, for example with nitrogen oxides (NOₓ) [1, 2]. In urban areas, these reactions are mainly based on the oxidation of nitrogen compounds derived from anthropogenic sources, mainly road transport [3-5]. At ground level, ozone is one of the major components of the 'photochemical smog' observed mainly in summer in large cities and industrial areas around the world [6, 7].

Similar to other regions of Central Europe, elevated concentrations of O₃ in Poland are due to natural sources or natural phenomena unrelated to human activity, to the influx of air
pollution from other areas (including other countries), and to photochemical transformations resulting from intensive solar radiation and adverse weather conditions [8-10].

Meteorological factors are very significant for the gathering, scattering, flowing and transport of gaseous pollutants, including ozone [11-15]. O$_3$ can be transported over long distances and its maximum levels are recorded leeward of ozone emission precursors [16]. In urban areas air flow may be disrupted and so the levels recorded at a given station may not reflect the movement of air masses in a larger spatial scale. O$_3$ flows into Poland with air masses often coming from southern and south-western Europe [17-19]; apart from the wind, other meteorological conditions also significantly influence O$_3$ levels, especially solar radiation, temperature and humidity [20]. O$_3$ concentration also depends on other factors, such as terrain, altitude and geographic location [21].

O$_3$ has a significant effect on plants and animals, including humans [22-25]. Its elevated concentrations can cause dysfunction of the respiratory system: coughing, a limited ability to breathe deeply and absorb oxygen, deterioration of asthma symptoms and pneumonia. Other symptoms include eye irritation, headaches, and even depression among the elderly [26-29]. In plants, O$_3$ pollution causes damage to the surface of the lamina, a reduction of biomass production by increasing the dry matter content in leaves as an internal reaction to the presence of ozone, and also damage to the cell membrane, mitochondria and chloroplasts due to the inhibition of photosynthesis [22, 30, 31]. Finally, the strong oxidizing properties of O$_3$ cause the destruction of various other materials, most notably rubber and textiles [32], hence the importance of research on the distribution and variation of tropospheric O$_3$ levels in urban areas, their relation to the levels of nitrogen oxides and meteorological conditions. Therefore, the aim of this paper was to determine the distribution and the variation of the tropospheric O$_3$ levels in the Poznan conurbation (midwestern Poland), in relation to the NO$_x$ levels and the evolution of meteorological conditions.

Material and methods

The location of the measurement station and measurement conditions

Data was collected from a State Environmental Monitoring (PMS) station located in the north-western part of Poznan, a major Polish city with an area of 262 km2 and a population of about 550 thousand permanent residents (Fig. 1).
At the end of 2012, there were 554 registered vehicles per 1,000 inhabitants in the city [33]. The measurement station is located in the Botanical Garden (λ = 16°52′38″E, φ = 52°25′13″N, Hs = 84 m above sea level) in close proximity to residential and recreational areas. The measurement site was arranged so that the air flow around the inlet sampling probe and weather sensors was not limited by any obstacles. In addition, the arrangement of the sampling site was designed to prevent the suction of air discharged from the measuring instrument and poorly mixed air from the inside of the casing of the instrument.

The O₃ and NOₓ measuring instrument, and sensors used for the measurement of most meteorological elements, were located at a height of 3 m above the ground, with sensors to measure wind speeds at a height of 10-11 m above ground level.

Material

The study was based on the results of hourly measurements of tropospheric O₃ and nitrogen oxides NOₓ, collected in consecutive years from 2005-2012. O₃ levels were measured using O342M analyzer (infrared absorption), and NOₓ levels by AC32M analyzer (chemiluminescence in UV). Meteorological data were collected at the same time as the hourly measurements: total solar radiation (Rad), air temperature (Tₐ), relative humidity (Rₕ), atmospheric pressure (Pₕ), and wind speed (Wₛ).

Methods

The evolution of O₃ and NOₓ levels was examined hourly, monthly, seasonally (spring: March 1-May 31, summer: June 1-August 31, fall: September 1-November 30, winter: December 1-February 28/29) and annually. On the basis of hourly data there were established statistical indicators of O₃ and NOₓ: mean (x̄), minimum (Min), maximum (Max) and percentiles (Q₃₀, Q₆₀, Q₉₀). We also calculated the incidence of the analyzed gaseous pollutants in the time intervals in both a multi-year period (2005-2012), as well as in the selected years 2006 and 2009, namely the years with the greatest difference between O₃ and NOₓ levels. Daily data (calculated from at least 21 hourly measurements from a given day) were used to capture the relationship between the tropospheric O₃ and NOₓ levels and meteorological elements: Rad, Tₐ, Rₕ, Pₕ and Wₛ.

The relationships between the analyzed variables were confirmed by a Pearson correlation coefficient (r) at P ≤ 0.01. Daily data was used to construct the multiple regression equations used to extract a group of significant independent variables to determine the size of the O₃ concentration, and also to assess the effects of weather and NOₓ levels on O₃ levels [10, 14]. Due to the relatively large set of independent variables, the linear multiple regression model used a stepwise elimination of variables with statistically insignificant effect.

Regression equations were calculated based on the coefficient of determination (R²), F-Snedecor test and mean absolute bias error (MABE). MABE was calculated according to the formula:

\[MABE = \frac{1}{n} \sum_{i=1}^{n} |y_i - x_i| \]

where yᵢ is the actual value of O₃ level, and xᵢ - O₃ concentrations predicted by the multiple regression equations.
In addition, to obtain the strictest dependence describing the impact of independent variables on O_3 levels, we established four clusters of meteorological values and air NO_x levels, occurring at diverse O_3 levels, including high and low [18]. All measurements of analyzed variables were divided into clusters by using non-hierarchical k-means method in which a Euclidean distance was used. To determine the optimal number of clusters, we used a v-fold cross-validation. The significance of differences between clusters was estimated using an analysis of variance, using Fisher’s test at $P \leq 0.01$.

Before starting the analysis of regression and clusters in order to allow comparison of the variables (regardless of their original distribution and units in which they were measured), they were subjected to standardization according to the following formula:

$$z = \frac{y_i - \bar{y}}{S}$$

(2)

where: y_i - non-standardized variable, \bar{y} - arithmetic mean, S - standard deviation.

Results

In the analyzed period 2005-2012, the O_3 concentration curve course was almost inversely proportional to the NO_x concentration curve (Fig. 2a).

Long-term average for O_3 ($\bar{x} = 42.72 \mu g \cdot m^{-3}$) was only about 0.8 $\mu g \cdot m^{-3}$ lower than the average NO_x ($\bar{x} = 43.57 \mu g \cdot m^{-3}$), but between individual years it ranged from...
38.3 µg · m⁻³ in 2009 to 46.5 µg · m⁻³ in 2006. Tropospheric O₃ had a distinctly lower temporal variation over a year than NOₓ (Fig. 2b). Minimum O₃ levels ranged from 0.1 µg · m⁻³ in 2006 to 4.0 µg · m⁻³ in 2012, in all the years it was less than NOₓ minima which ranged from 0.4 to 8.3 µg · m⁻³.

Maximum O₃ concentrations were approximately 2-3 times lower than maximums for NOₓ and reached from 87.7 µg · m⁻³ in 2012 to 121.1 µg · m⁻³ in 2006. Over the years, O₃ level percentiles Q₃₀, Q₆₀ and Q₉₀ were in the following ranges: 26.6-33.6, 45.1-53.0, 63.5-82.0 µg · m⁻³, with NOₓ 22.8-28.4, 34.9-42.8, 73.7-97.2 µg · m⁻³. Over the years 2005-2012, the highest seasonal average O₃ level was recorded in spring, then in summer, and the lowest - in the fall or winter (Fig. 2c). Such distinct seasonality was not observed in the case of NOₓ levels (Fig. 2d).

Changes in the concentration of the analyzed pollutants during 24 h not only depended on the time of day, but also on the month (Fig. 3ab). In the years 2005-2012, the largest amplitude of daily O₃ concentrations occurred in April (59.7 µg · m⁻³), and then in the summer months, in August (57.0 µg · m⁻³) and July (55.8 µg · m⁻³), while the lowest - in December (7.1 µg · m⁻³) and January (11.0 µg · m⁻³). In the case of NOₓ the greatest differences between the 24 h maxima and minima were recorded in September (80.6 µg · m⁻³) and October (79.2 µg · m⁻³), and then in March (62.0 µg · m⁻³) and April (60.1 µg · m⁻³); the lowest were observed in July (35.5 µg · m⁻³) and February (35.8 µg · m⁻³).

![Fig. 3](image-url)
On average, the greatest tropospheric O_3 concentrations, above $80.0 \mu g \cdot m^{-3}$, occurred over five consecutive months, from April to August, between the hours of 11:00 and 17:00, while the lowest, less than $20 \mu g \cdot m^{-3}$, were observed, among others, in the period November-December between the hours of 6:00 and 9:00 and 15:00 and 20:00 (Fig. 3c). Temporal distribution of NO_x concentration during 24 h was different between months; the highest levels, above $100.0 \mu g \cdot m^{-3}$, were recorded most often in the period October-November at 17:00-19:00 hours (Fig. 3d), and the lowest when O_3 immission in the air was the highest.
Dynamics of changes in O$_3$ and NO$_x$, described by the means and standard deviations for consecutive hours over 24 h, were similar in 2006 and 2009, as well as in the entire period 2005-2012, although concentrations were different (Fig. 4ab). The biggest difference in tropospheric O$_3$ between the years 2006 and 2009 could be observed in the afternoon (12-15 h) and evening (19-20 h), while NO$_x$ levels in the evening (19-22 h), which was confirmed statistically. Distributions of the 24 h structure of O$_3$ and NO$_x$ levels confirm their different evolution in individual years (Fig. 5).

In 2006 the highest concentration of O$_3$ was recorded in the period May-July between the hours of 12:00 and 17:00 (> 100 µg · m$^{-3}$), while in 2009 - in the period of April-May and August, between the hours of 13:00 and 17:00 (> 80 µg · m$^{-3}$), which is slightly different than in the entire multi-year period (Fig. 3c). The concentration of NO$_x$ in 2006 ranged from < 20 µg · m$^{-3}$ in the period May-August - at 10:00-17:00 to > 120 µg · m$^{-3}$ in October - at about 18:00. In 2009, the distribution and range of recorded values of NO$_x$ were similar to the distribution in 2006; however, the highest concentration amounting to > 140 µg · m$^{-3}$ was recorded in November between 17:00 and 19:00 h.

In the years 2005-2012 about 73% of one-hour measurements of tropospheric O$_3$ were in the first three frequency ranges: 0-20, 20-40 and 40-60 µg · m$^{-3}$, in the next two classes, approximately 15% in 60-80 µg · m$^{-3}$ and about 7% in 80-100 µg · m$^{-3}$. Immission of O$_3$ in the range >100 µg · m$^{-3}$ occurred only in about 5% measurements (Fig 6a).
Frequency of NO\textsubscript{x} intervals differed from the distribution of tropospheric O\textsubscript{3} (Fig. 6b). Most often, with a frequency of approximately 35\%, NO\textsubscript{x} immission measurements fell within the first two ranges of 0-20 µg · m-3 and 20-40 µg · m-3, and then 15\% in 40-60 µg · m-3, 7\% in 60-80 µg · m-3, 4\% in 80-100 µg · m-3, and about 6\% measurements were > 100 µg · m-3. The frequency distribution of the results of both gaseous pollutants analyzed in 2006 and 2009 was similar to the distribution in the entire period 2005-2012 (Fig. 6). Most measurements fell within the first three frequency ranges, about 67\% in 2006 and 78\% in 2009 - in the case of O\textsubscript{3} immission and about 84\% in 2006, and 80\% in 2009 for NO\textsubscript{x} immission.

The frequency intervals > 100 µg · m-3 for NO\textsubscript{x} were most frequent in 2009 (8.3\%), while for O\textsubscript{3} in 2006 (7.6\%). High concentrations of O\textsubscript{3}, in the range from 100 to 180 µg · m-3, were most often recorded between 10:00 and 17:00, and NO\textsubscript{x} - at 5:00-8.00 and 18:00-22:00 hours (Fig. 7ab).

![Graphs showing distribution of O\textsubscript{3} and NO\textsubscript{x} measurements](image)

Fig. 7. Incidence [%] of O\textsubscript{3} and NO\textsubscript{x} measurements in 2005-2012 in intervals from 100-120 to 160-180 µg · m-3 (a, b), and ≤ 100 and > 100 µg · m-3 (c), and also ≤ 10 and > 10 µg · m-3 (d)

The study also evaluated changes in the share of results of measurements of O\textsubscript{3} and NO\textsubscript{x} levels in the consecutive hours of the day, also including the ranges of > 10 µg · m-3 ≤ 10 µg · m-3, > 100 µg · m-3 and ≤ 100 µg · m-3 (Fig. 7cd). Shares of measurements showing O\textsubscript{3} levels ≤ 100 µg · m-3 ranged on average from 85 to 100\%, and were least frequent in the afternoon, while > 100 µg · m-3 - from 0.1 to 14.5\%, and were least frequent at night (Fig. 7c).

The share of O\textsubscript{3} measurements ≤ 10 µg · m-3 ranged from less than 5\% at 11:00-14:00 - to about 25\% at about 5:00 and 21:00, while > 10 µg · m-3 - from about 74 to 95\% (Fig. 7d). Participation of NO\textsubscript{x} immission measurements in the range of > 10 µg · m-3...
≤ 10 µg · m⁻³, > 100 µg · m⁻³ and ≤ 100 µg · m⁻³ was almost inversely proportional to the distribution of O₃ results. The share of immission measurements of both air pollutants in the ranges ≤ 10 µg · m⁻³ and > 10 µg · m⁻³ was similar, but only at night, ie 24:00-3:00 h.

Daily O₃ levels can be significantly correlated with meteorological elements and the content of NOₓ in the years 2005 to 2012 (Table 1). A significant negative correlation existed between the concentrations of O₃ and NOₓ in all months, with the strictest correlation \((r \geq 0.4, P \leq 0.01) \) in the period from October to May. The immission of O₃ was also negatively influenced by two meteorological elements; \(R_h \) and \(P_h \). \(R_h \) index significantly influenced O₃ throughout the year, except in December; it was the strongest in May \((r \geq 0.71, P \leq 0.01) \) and July \((r \geq 0.70, P \leq 0.01) \). \(P_h \) significantly negatively influenced the O₃ level in the fall-winter months (October, November, and January), and positively in May and July.

Table 1

<table>
<thead>
<tr>
<th>Month</th>
<th>NOₓ [µg · m⁻³]</th>
<th>Rad [h]</th>
<th>(T_a) [°C]</th>
<th>(R_h) [%]</th>
<th>(P_h) [hPa]</th>
<th>(W_s) [m · s⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−0.48*</td>
<td>n.s.</td>
<td></td>
<td>−0.25*</td>
<td>−0.24*</td>
<td>0.75*</td>
</tr>
<tr>
<td>2</td>
<td>−0.53*</td>
<td>n.s.</td>
<td></td>
<td>−0.38*</td>
<td>n.s.</td>
<td>0.42*</td>
</tr>
<tr>
<td>3</td>
<td>−0.52*</td>
<td>n.s.</td>
<td></td>
<td>−0.33*</td>
<td>n.s.</td>
<td>0.34*</td>
</tr>
<tr>
<td>4</td>
<td>−0.48*</td>
<td>0.45*</td>
<td>0.32*</td>
<td>−0.53*</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>5</td>
<td>−0.41*</td>
<td>0.57*</td>
<td>0.52*</td>
<td>−0.71*</td>
<td>0.20*</td>
<td>n.s.</td>
</tr>
<tr>
<td>6</td>
<td>−0.20*</td>
<td>0.58*</td>
<td>0.58*</td>
<td>−0.66*</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>7</td>
<td>−0.23*</td>
<td>0.57*</td>
<td>0.72*</td>
<td>−0.70*</td>
<td>0.26*</td>
<td>n.s.</td>
</tr>
<tr>
<td>8</td>
<td>−0.22*</td>
<td>0.39*</td>
<td>0.54*</td>
<td>−0.45*</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>9</td>
<td>−0.38*</td>
<td>0.45*</td>
<td>0.48*</td>
<td>−0.60*</td>
<td>n.s.</td>
<td>0.32*</td>
</tr>
<tr>
<td>10</td>
<td>−0.46*</td>
<td>0.28*</td>
<td></td>
<td>−0.40*</td>
<td>−0.20*</td>
<td>0.63*</td>
</tr>
<tr>
<td>11</td>
<td>−0.60*</td>
<td>n.s.</td>
<td></td>
<td>−0.28*</td>
<td>−0.28*</td>
<td>0.81*</td>
</tr>
<tr>
<td>12</td>
<td>−0.63*</td>
<td>n.s.</td>
<td></td>
<td>n.s.</td>
<td>n.s.</td>
<td>0.68*</td>
</tr>
</tbody>
</table>

* significant with \(P \leq 0.01 \), NOₓ - nitrogen oxides, Rad - total solar radiation, \(T_a \) - air temperature, \(R_h \) - relative air humidity, \(P_h \) - atmospheric pressure, \(W_s \) - wind speed, n.s. - non significant, \(P > 0.01 \)

\(Rad, T_a \) and \(W_s \) had a positively significant effect on the O₃ level. \(Rad \) significantly determined the level of tropospheric O₃ in the air from April and October, most strongly in the May-July period \((r \geq 0.57, P \leq 0.01) \). A similar effect on O₃, in terms of strength, direction and period, was exerted by air temperature. Another meteorological factor, \(W_s \), had a positive influence in fall-winter months, from September to March, the strongest in November \((r \geq 0.81, P \leq 0.01) \).

Regression analysis showed that among the six variables, four had an effect on O₃ immission; NOₓ, \(T_a \), \(R_h \) and \(W_s \) (Table 2). The greatest standardized multiple regression coefficients, ie the strongest effect on O₃, were shown for NOₓ from March to May, \(T_a \) - in July and August, \(R_h \) - in May, June and September, and \(W_s \) - in the period from October to January.

\(NO_x \) significantly determined the O₃ immission in all months, \(R_h \) - in the period January-November, \(T_a \) - in the period April-September, and \(W_s \) - in the periods January-March and September-December, therefore slightly different than shown by the
analysis of correlation. The impact of the entire group of variables on \(O_3\), described by the
determination coefficient, ranged from about 43% \((F = 53.2, P \leq 0.01)\) in February to 75%
\((F = 239.5, P \leq 0.01)\) in May. The MABE calculated for individual regression equations
ranged from 4.8 µg · m\(^{-3}\) in September to 9.1 µg · m\(^{-3}\) in February.

Table 2

<table>
<thead>
<tr>
<th>Month</th>
<th>Standardized multiple regression coefficients</th>
<th>Statistical evaluation of the equation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO(_x)</td>
<td>Rad</td>
</tr>
<tr>
<td>1</td>
<td>0.24(^*)</td>
<td>-0.11(^*)</td>
</tr>
<tr>
<td>2</td>
<td>-0.37(^*)</td>
<td>-0.34(^*)</td>
</tr>
<tr>
<td>3</td>
<td>-0.51(^*)</td>
<td>-0.46(^*)</td>
</tr>
<tr>
<td>4</td>
<td>-0.52(^*)</td>
<td>0.21(^*)</td>
</tr>
<tr>
<td>5</td>
<td>-0.44(^*)</td>
<td>0.19(^*)</td>
</tr>
<tr>
<td>6</td>
<td>-0.31(^*)</td>
<td>0.39(^*)</td>
</tr>
<tr>
<td>7</td>
<td>-0.31(^*)</td>
<td>0.48(^*)</td>
</tr>
<tr>
<td>8</td>
<td>-0.41(^*)</td>
<td>0.48(^*)</td>
</tr>
<tr>
<td>9</td>
<td>-0.31(^*)</td>
<td>0.26(^*)</td>
</tr>
<tr>
<td>10</td>
<td>-0.21(^*)</td>
<td>-0.40(^*)</td>
</tr>
<tr>
<td>11</td>
<td>-0.22(^*)</td>
<td>-0.13(^*)</td>
</tr>
<tr>
<td>12</td>
<td>-0.37(^*)</td>
<td>0.49(^*)</td>
</tr>
</tbody>
</table>

\(R^2\) - determination coefficient, \(F\) - Snedecor’s test, MABE - mean absolute bias error, \(\bar{x}\) - average. Other explanations, see Table 1

The greatest difference between MABE and the \(O_3\) long-term average was determined
for four months, from April to July, which may testify to a better fit of regression lines to
empirical data than for other analyzed months.

Table 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>SS</th>
<th>Df(_{SSF})</th>
<th>SSE</th>
<th>Df(_{SSE})</th>
<th>Fisher’s test</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_3) [µg · m(^{-3})]</td>
<td>165.37</td>
<td>3</td>
<td>79.26</td>
<td>248</td>
<td>166.90</td>
<td>0.01</td>
</tr>
<tr>
<td>NO(_x) [µg · m(^{-3})]</td>
<td>145.43</td>
<td>3</td>
<td>79.26</td>
<td>248</td>
<td>119.24</td>
<td>0.01</td>
</tr>
<tr>
<td>(T_a) [°C]</td>
<td>115.39</td>
<td>3</td>
<td>125.93</td>
<td>248</td>
<td>73.30</td>
<td>0.01</td>
</tr>
<tr>
<td>(R_h) [%]</td>
<td>156.66</td>
<td>3</td>
<td>85.74</td>
<td>248</td>
<td>146.17</td>
<td>0.01</td>
</tr>
</tbody>
</table>

SS - sum square error of between-group variation, \(Df_{SSF}\) - number of degrees of freedom for sum square error SS, SSE - sum square error of within-group variation, \(Df_{SSE}\) - number of degrees of freedom for sum square error SSE, \(P\) - level of probability. Other explanation, see Table 1

In addition, based on the cluster analysis for the strictest dependence between \(O_3\) in
May and the analyzed group of variables, there were established four clusters (Table 3). All
variables included in the analysis were significant at \(P \leq 0.01\), we also confirmed
a significant difference between the determined clusters (Table 4).

Among 248 observations (8 years x 31 days), cluster 1 included 30 observations,
cluster 2 - 106 observations, cluster 3 - 78 observations and cluster 4 - 34 observations.
Cluster 4 included the highest levels of tropospheric \(O_3\) (90.8 ± 11.7 µg · m\(^{-3}\)), which was
accompanied by below-average NO\(_x\) (19.3 ± 8.2 µg · m\(^{-3}\)) and air humidity levels
(48.6 ± 8.6%), and above-average air temperature (15.2 ± 3.1°C). Daily maximum O₃ levels ranged, depending on the cluster, from 63.5 µg · m⁻³ in cluster 1 to 121.8 µg · m⁻³ in cluster 4.

Table 4

<table>
<thead>
<tr>
<th>Month</th>
<th>Cluster number</th>
<th>Number of observations</th>
<th>O₃ concentration [µg · m⁻³]</th>
<th>Independent describing the O₃ level variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>x̄ ± S, Max</td>
<td>NOₓ[µg · m⁻³]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x̄ ± S, Max</td>
</tr>
<tr>
<td>May</td>
<td>1</td>
<td>30</td>
<td>48.6 ± 11.0, 63.5</td>
<td>66.5 ± 16.7, 111.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>106</td>
<td>53.3 ± 9.3, 75.6</td>
<td>26.6 ± 9.9, 47.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>78</td>
<td>71.2 ± 7.8, 86.9</td>
<td>29.7 ± 10.3, 50.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>34</td>
<td>90.8 ± 11.7, 121.8</td>
<td>19.3 ± 8.2, 41.4</td>
</tr>
<tr>
<td>Σ1-4</td>
<td>248</td>
<td></td>
<td>63.1 ± 16.6, 121.8</td>
<td>31.4 ± 17.3, 111.5</td>
</tr>
</tbody>
</table>

x̄ - average, S - standard deviation, Max - maximum absolute. Other explanations, see Table 1 and 2

Discussion

Distribution of O₃ levels in Poznan, similar to other regions in the world, show a clear annual, seasonal and daily variation [2, 8]. Annual O₃ levels in 2005-2012 were higher than, for example, in Obinsk in Russia [14], and lower than in other regions of Poland, ie in the south-east, in Carpathians [34], or the north-west - in Widuchowa [11] and Szczecin [35].

Contrary to other pollutants, whose highest levels are generally recorded in the centers of large cities, the highest immission of O₃ is usually found on the leeward edges of conurbations [19, 30]. In the years 2005-2012 the highest level of O₃ was observed in spring, then in summer. The lowest could be found in fall and winter, similar to other regions of Europe [36], but different than in Spain [37].

Tropospheric O₃, apart from monthly variation, also shows daily variation, which is confirmed by the results of many papers [14, 18, 20, 36, 37]. In this paper, we show that O₃ temporal variation was lower than NOₓ, similar to Munir et al [4] and Adame et al [37]. In the years 2005-2012 percentiles Q₃₀, Q₆₀ and Q₉₀ of O₃ levels were lower than in Saudi Arabia [4], which can be attributed to differences in climate.

In Poznan, NOₓ had a different temporal distribution than O₃ - its highest levels were observed in the morning and afternoon; different than in the papers by Im et al [36] and Yasuyuki et al [38]. In the period 2005-2012 the greatest number of measurements of O₃ and NOₓ ranged from 0 to 40 µg · m⁻³, which was different than Nidzgorska-Lencewicz [35] showed for Szczecin, Poland. A large variation in tropospheric O₃, a secondary pollutant, is associated mainly with the differences in weather conditions in Poland in consecutive years and the content of ozone precursors, eg nitrogen oxides [1, 7].

A significant negative correlation between the levels of O₃ and NOₓ, similar to our paper, was shown by Silman [1], Im et al [36] and Yasuyuki et al [38], according to which NOₓ had a large significance for the production of harmful tropospheric O₃. In this paper we show significant correlations between O₃ levels and meteorological conditions, positive with radiation, air temperature, wind velocity, while negative with air humidity, and negative or positive with atmospheric pressure, which is similar to the findings of Liu et al [10], Aref’ev et al [14], Stathopoulou et al [17], Adame et al [37], Puc and Bosiacka [39].
An increase in O$_3$ with an increased wind velocity can be associated with the sources of pollution situated at a certain distance from the PMS station. Apart from NO$_x$, in the group of meteorological factors, the strongest impact on O$_3$ air levels was exerted by T_a, R_h and W_s; meteorological conditions explain about 40% to even 70% of the variation [8, 10, 18]. The lack of confirmation of the significant effect of Rad in the group of meteorological factors on O$_3$ levels may be caused by the co-linearity of the independent variables, i.e. a strong correlation between Rad and R_h.

Conclusions

The O$_3$ levels in Poznan had a distinct annual, seasonal and daily variation. Among the 8 analyzed years (2005-2012), the highest average O$_3$ level (46.5 µg · m$^{-3}$) was observed in 2006. It was always about two times higher in spring than in the autumn-winter season. In May-July, above-average daily O$_3$ levels were recorded mostly around noon and in the afternoon.

In the years 2005-2012, the evolution of NO$_x$ levels was significantly different from O$_3$; the highest levels were observed in autumn or winter in early morning and in the evening. There was a significant negative correlation between O$_3$ and NO$_x$ levels, the strongest in the period March-May. Maximum NO$_x$ levels were as much as 2-3 times greater than O$_3$ levels, and ranged from 197.6 µg · m$^{-3}$ in 2010 to 327.7 µg · m$^{-3}$ in 2011.

The high O$_3$ ranges \geq 100 µg · m$^{-3}$ were most frequent between 12:00 and 17:00 h, while the same range of NO$_x$ between 18:00 and 22:00 h. The distribution of O$_3$ depended not only on the content of NO$_x$ in the air, but also on meteorological conditions, mainly T_a, R_h and W_s.

The greatest determination coefficient for the entire group of variables was calculated for the regression equation for two months: May ($R^2 = 74.9\%$), and July ($R^2 = 74.5\%$). Moreover, correlation analysis showed that the level of tropospheric O$_3$ was significantly influenced by Rad and P_h. These two factors were not taken into account due to the strong correlation between Rad and R_h and T_a, and between P_h and W_s.

References

Ozone concentration at ground level depending on the content of NOx...

STĘŻENIE OZONU PRZY POWIERZCHNI ZIEMI W ZALEŻNOŚCI OD ZAWARTOŚCI NOₓ I WARUNKÓW METEOROLOGICZNYCH

1 Instytut Architektury Krajobrazu, Wydział Inżynierii Kształtowania Środowiska i Geodezji Uniwersytet Przyrodniczy we Wrocławiu
2 Zakład Ekonometrii Przestrzennej, Wydział Nauk Geograficznych i Geologicznych Uniwersytet im. A. Mickiewicza, Poznań

Słowa kluczowe: jakość powietrza, zanieczyszczenia gazowe atmosfery, warunki meteorologiczne, zmienność czasowa