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Abstract – The complex initial permeability (CIP) as a function 

of frequency is one of the main properties of ferrites. This 

characteristic (CIP) is measured experimentally, therefore there 

can be found noisy, doubtful or incomplete parts of the spectrum. 

Thus there is a need for a method of evaluation of quality of CIP. 

In this article for evaluation of the quality of experimental CIP 

spectra of polycrystalline ferrite materials the KKR (Kramers-

Kronig relations) are used. In order to apply KKR to 

experimentally measured data (i.e. data with finite limits) the 

method of transforming these integral relations into summation 

relations with finite limits is developed and described. This method 

can be used only for CIP given over the wide frequency rage, so 

that the imaginary part of CIP is fully presented. Using KKR with 

the help of CIP spectra model (based on the effects coming from 

polycrystal grain sizes and defects distribution) partly removes 

aforementioned limit. Thus with the help of the model we can also 

make CIP spectra reconstruction (in cases when CIP is noisy or 

incomplete) and CIP spectra decomposition. 

Keywords – Mathematical model; Mathematical analysis; 

Permeability; Magnetic properties; Ferrites. 

I. INTRODUCTION

The research of magnetic components, used in power 

electronics, remains topical nowadays due to extensive use of 

electronics in everyday life. One of the magnetic component 

characteristics, which represents losses in ferrite materials 

(thus, can be used for improvement of power supply efficiency), 

is the complex initial permeability (CIP) spectrum 𝜇(𝑓)̇ =
 𝜇′(𝑓) − 𝑗𝜇′′(𝑓) as a function of frequency f, where  𝜇′(𝑓) and

𝜇′′(𝑓) stands for real and imaginary parts of �̇�(𝑓) respectivelly.

The experimental magnetic spectra, as a complex function, 

are measured by different scientists for a long time. Thus there 

are different approaches and methods, but each approach has its 

limitations. Thereby there can be found unclear, noisy or 

incomplete CIP spectra. And if we can repeat our own 

measurements again, then the spectra taken for analysis from 

different other author’s publications should be analyzed as they 

are, due to inability of performing measurements of original 

samples. This can lead to different interpretations of results.  

Such complex data can be evaluated by dispersion relations 

or Kramers-Kronig relations (KKR). The real part of a complex 

characteristic can be calculated by means of KKR from the 

imaginary part, – and vice versa. In this way – the complex 

function can be reconstructed even if one part is available over 

the full frequency range. Thus the KKR do not provide any 

physical nature analysis, but are used in the cases, when there 

is a need for mathematical evaluation of a complex function. 

Such cases can differ: in electric circuit theory – dispersion 

relations connect gain frequency dependence and phase; the 

impedance data over limited frequency domain can be 

evaluated with KKR [14], [15]; refraction of light and 

absorption in dispersing medium in optics [16], even 

application of KKR to S-parameters measured by vector 

network analyzer [17], etc. The special significance of these 

relations is in quantum electrodynamics and elementary particle 

physics, where data about one aspect of the phenomenon gives 

an indication to other. In this paper the Kramers-Kronig 

relations will be used in order to evaluate the quality of the 

experimental CIP and precise measured CIP data. 

II. THE ORIGINATE OF DISPERSION RELATIONS

The mathematical basis for dispersion relations comes from 

Cauchy integral (1) for complex value 𝑧: if function 𝑓(𝑧) is 

analytical in closed domain G, which is limited by closed loop 

𝛾[18], then: 

∮ 𝑓(𝑧)𝑑𝑧 = 0
𝛾

. (1) 

In accordance with (1), the analytical function 𝑓(𝑧′) can be

expressed in terms of the closed loop 𝛾 integral, which is limited 

by G domain, where 𝑓(𝑧) is analytical if 𝑧′ lies inside the closed

loop [18]:  

𝑓(𝑧′) =
1

2𝜋𝑖
∮

𝑓(𝑧)

𝑧−𝑧′ 𝑑𝑧. (2) 

The integral transforms to zero if 𝑧′ lies outside the closed

loop. 

Assuming, that 𝑧′ = 𝑥′ + 𝑖𝑦′and 𝑦′ → 0+we can get the

dispersion relations basic formula [19]: 

𝑓(𝑥′) =
1

𝜋𝑖
𝑃 ∫

𝑓(𝑥)𝑑𝑥

𝑥−𝑥′

∞

−∞
. (3) 

Now, separating 𝑓(𝑥′) into the real and imaginary part we

can get: 

𝑢(𝑥′) =
1

𝜋
∫

𝑣(𝑥)𝑑𝑥

𝑥−𝑥′

∞

−∞
, (4) 

𝑣(𝑥′) = −
1

𝜋
∫

𝑢(𝑥)𝑑𝑥

𝑥−𝑥′

∞

−∞
 , (5) 

where 𝑢(𝑥′) and 𝑣(𝑥′) are 𝑓(𝑥) real and imaginary parts.
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Fig. 1. Concept of Kramers-Kronig application to measured CIP [20]. 

A. Dispersion Relations in Accordance with CIP 

The frequency dependence of magnetic spectra of ferrites is 

one of the most important parameters of magnetic components. 

The main idea of this article is to analyze possibilities of 

application of dispersion relations to magnetic spectra of 

ferrites.  

In 1927 H. Kramers [9] and in 1926 R. Kroning [4] 

formulated relations between real and imaginary parts of 

complex function:  

  𝜒1(𝑣′) − 𝜒1(∞) =
2

𝜋
∫

𝑣𝜒2(𝑣)

𝑣2−𝑣′2 𝑑𝑣
∞

0
,  (6) 

  𝜒2(𝑣′) = −
2𝑣′

𝜋
∫

𝜒1(𝑣)−𝜒1(∞)

𝑣2−𝑣′2 𝑑𝑣
∞

0
,  (7) 

where 𝜒
1

(𝑣′) and 𝜒
2

(𝑣′) – are real and imaginary part of 

frequency dependent function; 𝑣 – frequency of sinusoidal 

magnetic field (which is applied to the device under test);  𝑣′– 

frequency for which the values of 𝜒
1

(𝑣′) and 𝜒
2

(𝑣′) are 

calculated. 

The KKR, written for the real and imaginary CIP 

components can be presented as follows [20]: 

𝜇′(𝑓) − 1 =
2

𝜋
∫

𝑥𝜇′′(𝑥)

𝑥2−𝑓2

∞

0
𝑑𝑥,   (8) 

𝜇′′(𝑓) = −
2

𝜋
𝑓 ∫

𝜇′(𝑥)

𝑥2−𝑓2

∞

0
𝑑𝑥.   (9) 

where 𝜇′(𝑓) and 𝜇′′(𝑓) – are frequency dependent functions 

of real and imaginary part of magnetic permeability; 𝑓 – 

frequency of sinusoidal magnetic field (which is applied to the 

device under test);  𝑥 – frequency for which the values of 𝜇′(𝑓) 

and 𝜇′′(𝑓) are calculated.  The difference between basic KKR 

(6, 7) and (8, 9) lies in physical nature of magnetic permeability: 

the value of 𝜇′(∞) = 1, thus second term in (7) will dissapear 

as: 

∫
𝜇′(∞)

𝑥2−𝑓2

∞

0
𝑑𝑥 = 0. 

For a successful application of KKR to experimental results 

we need to transform the integral relations ((8) and (9)) to the 

summation relations with finite limits. The  𝜇(𝑓)̇  experimental 

curves can be divided so that it can be assumed that each small 

piece of curve is linear within its limits and 𝜇′(𝑥) or 𝜇′′(𝑥) can 

be represented by the sum of linear function: 𝑦𝑖 = 𝑚𝑖𝑥 + 𝑐𝑖 

(see Fig. 1). Applying this concept to the whole experimental 

CIP gives us the summation relations ((10) and (11)) for the 

𝜇′(𝑓) and 𝜇′′(𝑓) [20]: 

𝜇′(𝑓) − 1 =
2

𝜋
∫

𝑥𝜇′′(𝑥)

𝑥2−𝑓2

∞

0
𝑑𝑥 =

2

𝜋
∑ ∫

𝑥(𝑚𝑖𝑥+𝑐𝑖)

𝑥2−𝑓2 𝑑𝑥
𝑏𝑖

𝑎𝑖
𝑖 ,  (10) 

𝜇′′(𝑓) = −
2

𝜋
𝑓 ∫

𝜇′(𝑥)

𝑥2−𝑓2

∞

0
𝑑𝑥 = −

2

𝜋
𝑓 ∑ ∫

𝑚𝑖𝑥+𝑐𝑖

𝑥2−𝑓2 𝑑𝑥
𝑏𝑖

𝑎𝑖
𝑖 .  (11) 
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Fig. 2. KKR application to EPCOS MnZn TDK-37 ferrite sample [13]. 

The coefficients mi and ci can be obtained from the same 

linear function, but written for two points: 𝑦(𝑎𝑖) and 𝑦(𝑏𝑖) 

(Fig.1): 

𝑦(𝑎𝑖) = 𝑚𝑖𝑎𝑖 + 𝑐𝑖,   (12) 

𝑦(𝑏𝑖) = 𝑚𝑖𝑏𝑖 + 𝑐𝑖.   (13) 

Now, from (12) and (13) sum we can get the 𝑚𝑖: 

𝑚𝑖 =
𝑦(𝑏𝑖)−𝑦(𝑎𝑖)

𝑏𝑖−𝑎𝑖
.   (14) 

Subtracting 𝑦(𝑏𝑖) −  𝑦(𝑎𝑖) and inserting (14) we obtain 𝑐𝑖: 

𝑐𝑖 =
𝑦(𝑎𝑖)𝑏𝑖−𝑦(𝑏𝑖)𝑎𝑖

𝑏𝑖+𝑎𝑖
.   (15) 

The final step is to substitute the integration in (10) and (11) 

with summation. In order to do this – we can use the integral 

solving relations [10] and write the final form of the KKR as 

[20]: 

𝜇′(𝑓) − 1 =
2

𝜋
∑ (𝑚𝑖(𝑏𝑖 − 𝑎𝑖) −

𝑚𝑖𝑓

2
𝑙𝑛

|𝑓−𝑎𝑖|(𝑏𝑖+𝑓)

(𝑓+𝑎𝑖)|𝑏𝑖−𝑓|
+𝑖

+
𝑐𝑖

2
𝑙𝑛

|𝑏𝑖
2−𝑓2|

|𝑓2−𝑎𝑖
2|

),   (16) 

𝜇′′(𝑓) =
2

𝜋
∑ (−

𝑚𝑖𝑓

2
𝑙𝑛

|𝑏𝑖
2−𝑓2|

|𝑓2−𝑎𝑖
2|

+
𝑐𝑖

2
𝑙𝑛

|𝑓−𝑎𝑖|(𝑏𝑖+𝑓)

(𝑓+𝑎𝑖)|𝑏𝑖−𝑓|
)𝑖 .  (17) 

The equations (16) and (17) now represent KKR in 

summation form, this allows for finite frequency limits of 

experimentally measured data.   

III. PRACTICAL USE OF KKR 

As it was mentioned above – the KKR can be used for 

evaluating the experimental CIP quality. For instance – 

application of KKR to CIP of our measured MnZn ferrite 

(material EPCOS TDK – 37, dimensions R12.5x7.5x5 (mm) 

and initial permeability of 6500) presented in Fig. 2. As it can 
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be seen – there are no significant difference in measured results 

(shown as solid lines) and KKR evaluation of 𝜇′(𝑓) and 𝜇′′(𝑓) 

(albeit there is difference in given and measured permeability 

values). Thus it can be assumed that CIP is measured correctly 

and can be used for further analysis. 

The same ferrite, but with larger dimensions – R40x24x16 

(mm), begins to show the attributes of dimensional resonance 

(such as 𝜇′′(𝑓) maximum frequency is lowered and resonance 

is more pronounced) [13]. In this case the application of KKR 

to measured permeability curve (Fig. 3) also shows good 

correlation, thus the measured data is reliable. 
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Fig. 3. KKR application to MnZn TDK-37 ferrite sample with dimensional 

resonance [13]. 

IV. THE USE OF KKR FOR CIP SPECTRA RECONSTRUCTION 

However, sometimes a necessity for analyzing the spectra of 

other author’s publications appears. Therefore the 

measurements cannot be performed again in order to precise 

noisy or doubtful areas of the CIP. For example, the CIP 

spectrum of Fe78Si13B9, measured with different sample 

thicknesses by Dok Won Lee, et al., in [5], Fig. 4, seems 

doubtful since the value of 𝜇′′(𝑓) in all of the three presented 

in Fig. 4 measurement cases stays practically the same, while 

the values of 𝜇(0) change considerably. More to it – the 

measured data within lower frequencies region (from 1 to ~50 

MHz) is noisy, especially for the real part of the permeability, 

so it is hard to find the correct value.  The KKR evaluation (Fig. 

5, green line) of the 𝜇′(𝑓) and 𝜇′′(𝑓) show, that in [5] measured 

CIP data are inaccurate. 

 

 

Fig. 4.  CIP spectrum of Fe78Si13B9, measured with different sample thicknesses: 

(a) 27.5 m, (b) 54,9 m, (c) 110 m [5]. 
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Fig. 5. KKR application to CIP spectrum of Fe78Si13B9. [5], Fig. 3, a. 

A. CIP Spectra Reconstruction with the Help of Spectra 

Modeling 

The example of noisy CIP data of Ni0.2Zn0.3Fe2O4 ferrite film, 

found in [6], additionally is not measured fully. Here the chosen 

measurement frequency represents CIP at 2•107<f<3•109 Hz, 

Fig. 6. Thus, for correct evaluation this spectrum needs to be 

extrapolated till zero. For such a case a model based on grain 

distribution effects was developed.  
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Fig. 6.  KKR application to CIP spectrum of Ni0.2Zn0.3Fe2O4 ferrite [6]. 

The model is discussed in details in [1], [2]. Briefly – the 

model uses concept that log normally distributed ferrite grains 

can be represented by low loss oscillators. Thus, the whole 

𝜇′′(𝑓) can be made from the sum of absorption curves of these 

low loss oscillators. Performing the statistical averaging of 

permeability of grains and making several assumptions we 

finally can get the expression for the 𝜇′′(𝑓) as: 

𝜇′′(𝑓) = 𝜇𝑚𝑎𝑥
′′ 𝑒𝑥𝑝[−(𝑙𝑜𝑔𝑓 − 𝑙𝑜𝑔𝑓𝑢)2/2𝜎2],          (18) 

where 𝜇𝑚𝑎𝑥
′′  and 𝑓𝑢, are the maximum amplitude of 𝜇′′(𝑓) 

and its corresponding frequency; 𝜎 = 2𝜎𝐷 for ferrites without 

inragrain defects and 𝜎 = 𝜎𝐷 for technical quality ferrites; 𝜎𝐷 ≈
0.22 [3]. With the help of Eq. (18) symmetrical 𝜇′′(𝑓) (Fig. 7, 

𝜎 = 0.44) can be modelled. 
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Fig. 7.  Possibilities of the use of Eq. (18) for modelling symmetrical CIP (with 

𝜎 = 0.44), and asymmetrical CIP (with 𝜎𝑎 = 0.2 and 𝜎𝑏 = 0.6) [20]. 

The value of 𝜎 for experimental spectrum can be found from 

condition that it and its theoretical approximation should be 

equal at some point at frequency 𝑓𝑎 ≠ 𝑓𝑢, thus getting: 

𝜎 = |𝑙𝑜𝑔(𝑓𝑢 𝑓𝑎⁄ )| √2𝑙𝑛[𝜇𝑚𝑎𝑥
′′ 𝜇′′(𝑓𝑎)⁄ ]⁄ . (19) 

Now, considering, that most of experimentally analyzed 

ferrites do not have the ideal microstructure, and due to 

intragrain defects the CIP of these ferrites show asymmetrical 

attributes the model can be modified. For this purpose Eq. (18) 

can be used with two values of 𝜎: one, 𝜎𝑎, for frequencies 𝑓𝑎 <
𝑓𝑢 and other, 𝜎𝑏, for 𝑓𝑎 > 𝑓𝑢. With these two values of 𝜎 the 

asymmetrical CIP can be modelled.  

Returning to Fig. 6 – where the model was applied, 

controlling the slope of the imaginary part at frequencies f > 

8•108 Hz. The slope was chosen so, that slope of the real part 

calculated with KKR (at frequencies 3•108 < f < 2•109 Hz) will 

be the same as the experimental one. The analysis of this 

spectrum showed, that real part was measured successfully and 

imaginary part is reliable up to 1…2 GHz (w/o taking in 

account the noise). 
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Fig. 8. Analysis of CIP of Ni0.55Zn0.45Fe2O4 ferrite [11]. 

The above example of incomplete spectrum does not stand 

as solitary instance. The other incomplete spectrum is presented 

in [11]. The CIP data of Ni0.55Zn0.45Fe2O4 ferrite measured by 

Islam R. (Fig. 8) is cut at about f = 104 Hz. More to it – the 

𝜇′′(𝑓) part shows high increase of amplitude at lower 

frequencies, but, at the same time, 𝜇′(𝑓) part does not show any 

additional changes of amplitude. This doubtful area should be 

checked with KKR, but for the correct evaluation of the curves 

we need the full spectrum. So, we prolonged the 𝜇′(𝑓) part till 

5 MHz and applied KKR. As it can be seen – there is no any 

increase of amplitude at lower frequencies for the 𝜇𝐾𝐾𝑅
′′ (𝑓), so 

it can be concluded that this increase of amplitude can be a 

measurement error. 

The example of incomplete, noisy CIP, but which provides 

reliable data – can be chosen from 3M Company flux-field 

directional materials (AB5016RF ferrite [12]). The AB5016RF 

CIP (Fig. 9) is cut at the frequency f = 800 MHz, and there is 

slight noise at lower frequencies up to 10 MHz. Once again – 

with the help of the model and several KKR iterations the 

curves were prolonged up to 1010 Hz, and precised. The analysis 

shows that CIP data is precise and reliable; the data within the 

noisy area of the CIP was also precised with the help of KKR 

and can be seen in Fig. 9 (the parameters of the model for the 

in this case are: 𝜎𝑎 = 0.35,  𝜎𝑏 = 0.79.). 
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Fig. 9. Analysis of CIP of 3D AB5016RF ferrite [12]. 

V. DECOMPOSITION OF CIP 

The nature of KKR – its ability to calculate the missing part 

of complex function if the other is present – can be used for CIP 

spectra decomposition. 

Basically – there can be found three dispersion regions 

within full CIP spectrum (Fig. 10), more frequently are 

encountered the domain wall (DW) and natural spin resonance 

(NSR) regions [8]. The contribution of DW and NSR in total 

CIP spectrum is hard to measure directly. Thus, in order to test 

the hypothesis that KKR can be used for spectra decomposition 

the spectrum measured by J. Slama, et al. all was chosen. [7] 

(Fig. 11). This spectrum has two resonances: DW resonance 

near f = 90 MHz and NSR near f = 1.6 GHz. 
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Fig. 10.  Typical CIP dispersion regions [8] (calculated with KKR from 𝜇′′(𝑓)): 

𝜇𝐷𝑊
′ (𝑓) – domain wall component, 𝜇𝐷𝐼𝐹

′ (𝑓) – diffusion aftereffect component, 

𝜇𝑁𝑆𝑅
′ (𝑓) – natural spin resonance component. 
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Fig. 11. CIP of NiZn ferrite [7] with DW and NSR resonances. 

The separation of DW and NSR parts of this spectrum can be 

done as follows: firstly we need to use the model provided by 

[1], [2], and reconstruct the DW resonance curve without spin 

resonance (Fig. 12); then with the help of KKR the real part of 

DW resonance can be obtained; finally we can evaluate the DW 

part contribution to whole CIP.  
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Fig. 12. KKR evaluation of DW component of the measured [7] CIP spectrum.  

The parameters of the model for the DW component case 

are:  

𝜎𝑎 = 0.35, 𝜎𝑏 = 0.79. 

Identically we can get the real part of the spin resonance 

(Fig. 13). 
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Fig. 13. KKR evaluation of NSR component of the measured [7] CIP spectrum. 

This example proves the hypothesis that KKR can be used 

for spectra decomposition at least in the cases when DW and 

NSR resonances can be easily identified.  

VI. RESULTS 

This investigation proved that application of Kramers-

Kronig relations to the CIP data form great mathematical tool 

for evaluating the experimental CIP spectra quality, helps to 

identify the real values of noisy spectrum and points to doubtful 

data (and, such wise, precise losses in ferrites).  

The proposed approach allows using the KKR for the finite 

frequency region of CIP. The only limitation for this approach 

is to ensure that analyzed spectrum is presented fully within the 

given frequency region.  

The above mentioned limitation we can overcome by 

combined use of the KKR and the model [1], [2], which further 

enhances KKR possibilities. With the help of the model we can 

reconstruct incomplete spectra (in the case if the measurement 

equipment limitations does not allow for full spectra 

measurements, or in case of analyzing the spectra of other 

author’s publications), as well as for spectra decomposition.  

The results of spectra decomposition showed that very 

complicated measurements can be successfully substituted by 

application of the KKR together with the model to the CIP and 

evaluation of the each part of CIP separately.  

All these practical applications of KKR prove that use of 

Kramers-Kronig relations on experimental CIP data is reliable 

and indispensable in the cases when the studied data is doubtful 

or is not fully presented.  
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