Algorithm for Increasing Traffic Capacity of Level-Crossing Using Scheduling Theory and Intelligent Embedded Devices

Ivars Alps¹, Mikhail Gorobetz², Anatoly Levchenkov³, ¹, ², ³Riga Technical University

Abstract - In this paper the authors present heuristics algorithm for level-crossing traffic capacity increasing. The genetic algorithm is proposed for this task solution. The control of motion speed and operation with level-crossing barriers are proposed to create control centre and installed embedded intelligent devices on railway vehicles. Algorithm is tested using computer. The results of experiments show big promises for rail transport schedule fulfilment and level-crossing traffic capacity increasing using proposed algorithm.

Keywords – genetic algorithm, intelligent transport system, level-crossing control, rail transport

I. INTRODUCTION

Nowadays in cities number of vehicles is constantly increasing. Traffic jams are the main reason for a lot of problems for public transport like delays, inefficient usage of energy etc. Fulfillment of the schedule under such conditions is unforeseen and service level of public transport is going down. In cities, where the road and rail transport are mixed the conflicts between these types of transport are often obvious. Road transport is forced to wait at the closed level crossing while the train goes pass level crossing. This downtime negative impact on urban transport is one of the reasons of public transport delays. In Riga such a conflict takes place for many years is Sarkandaugava’s level crossing, between the stations Mangali and Sarkandaugava. Morally and physically the outdated equipment and methods are still used to control this level crossing. Since this railway line is busy with passengers and rolling stocks transport, traffic jams in this part of city is significant and the current situation is disaffecting for Railway Company and for City council as well.

On the one hand the city traffic requests to ensure a continuous traffic flow on the streets, on the other hand rail transport has to ensure passengers and cargo in accordance with the schedule. Since the movement of these various transport systems is organized by various organizations, in practice often conflicts are possible. Which mode of transport should be the priority? Therefore some solutions to fulfill the schedule are necessary. There are some different ways to reach the goal.

The first possible solution is to organize railway transport flow at night, when the road transport unit’s amount has fallen to a minimum. This method is not acceptable, since rail transport should be followed the schedule.

Another solution is to build a bridge over railway, but this project implementation will take much time and resources. Therefore this solution increases expenses of City council and railway transport companies and this project is not confirmable in current economical situation.

In previous papers the authors proposed several solutions such as optimal speed and schedule control [8][9] and “green wave” [10], which allows the transport units to switch the traffic lights and transport units moving on the route without any additional braking on the traffic lights, thereby taking into account the schedule.

In this paper new improved algorithm for rail-crossing capacity increasing and schedule completion [3] is proposed and adopted to for industrial controller to control rail-crossing barrier appropriate railway safety requirements.

Optimal train traffic organization on the given rail line is very important to reduce vehicle standby time, i.e. increase the level crossing capacity. The existing control system analyzing shows, that the level crossing is closed before the deadline, required by the security rules. Current level-crossing control system does not take into account the train location on the route and speed of movement. Analysis of timetable shows, that according to the existing schedule the trains, going in opposite directions, passing through the rail-crossing one by one. Due to this lack the level-crossing total time in a closed position is longer than it might be.

II. STATEMENT OF THE PROBLEM

Two hypotheses are run for problem solving;
1. The existing schedule adjustment could reduce the level-crossing time position in a closed position
2. Installing built-in intelligent devices on the trains and level-crossings could increase the level-crossings in open position time without violating security regulations and other directive requesting.

If railway transport units moving on the route appropriate optimal schedule and level-crossing go to stop mode considering into account trains current location and moving speed, this could decrease city transport standby time at railroad crossing, increase railroad crossing traffic capacity, eliminate often braking and acceleration, finally save energy [12].

The purpose of this research is to create algorithm for rail transport moving control on the route according predefined schedule to put into practice the programmable logical controller.

Object of research is the city and rail transport system. Main tasks of the research are:
- to define structure of rail transport with built-in intelligent devices;
- to create mathematical model for existing control system;
- to develop algorithm for schedule fulfilment for rail transport;
- to create computer model of the proposed embedded control system;

Proposed rail transport control system consists of control centre, trains and level-crossings with built-in intelligent devices as shown in Fig.1. Control centre receive signals from each railway transport units about current location, moving speed and other parameters, according predefined schedule, data and algorithms control centre calculate and send through GSM transmitter relevant signals to each transport units about optimal moving speed and for each level-crossing closing units about optimal closing and opening time.

Fig. 1. Rail transport system control scheme.

Railway transport control scheme is shown in Fig.2. Transport units receive GPS signal about current location and through transmitter send to control centre set of transport unit’s characterized data. Trains continuously receive from control centre several signals about optimal moving speed on the route to provide better service and fulfill schedule. Control centre appropriate to the unforeseen changes or emergency cases is able to react quickly and develop corrected action plan according to predefined characteristics for each transport system elements, passenger trains, cargo, rolling stocks, traffic control lights and level-crossings [8].

Level-crossing control scheme is shown in Fig.3. Level-crossing built-in controller sends and receives signal from control centre through GSM transmitter. Received signal through Signalization Centralization and Blocking device operates level-crossing electrical elements, signal lights and gate barrier. Sensor block receives the signals from level-crossing electrical elements and other sensors about normal operations. In case of any damages appropriate signal will be sent to control centre immediately for decision making according to predefined safety precautions.

Fig. 2. Railway transport unit control scheme.

Fig. 3. Level-crossing control scheme.
III. Mathematical Model for Algorithm

A. Main railway objects

The following objects are given:

\[\text{ST} = \{\text{ST}_1, \text{ST}_2, \ldots, \text{ST}_k\} \] - set of stations

\[\text{LC} = \{\text{LC}_1, \text{LC}_2, \ldots, \text{LC}_m\} \] - set of level crossings, where each level crossing is between two stations \(\text{ST}_i, \text{ST}_j \).

\[\text{RS} = \{\text{RS}_1, \text{RS}_2, \ldots, \text{RS}_n\} \] - set of rolling stocks

\[\text{SCH} = \{t_{d_{RS}}, t_{t_{RS}}, \ldots, t_{d_{RS}}, \ldots, t_{t_{ST}}\} \]

- set of scheduled departure time for each rolling stock at the station \(\text{ST} \) before level-crossing (depends on movement direction).

B. Infrastructure constants

\[S_{\text{ST,ST}} \] - distance between stations \(\text{ST}_i, \text{ST}_j \), (m)

\[S_{\text{ST,LC}} \] - distance from station \(\text{ST} \) to level-crossing \(\text{LC} \), (m)

\[t_{\text{calc, clos}} \] - minimal time to close the level-crossing, (s)

\(d \) - directions \(d \in \{\text{odd, even}\} \)

\[R^d = \{R_1, R_2, \ldots\} \] - set of routes in each direction \(d \)

\[S_{c_R}^d \] - distance from level-crossing to closure control point for each route \(R \) in each direction \(d \), (m)

\[S_{o_R}^d \] - distance from level-crossing to opening control point for each route in each direction, (m)

\[t_{c_R}^d \] - time delay between crossing the closure control point and level-crossing for each route in each direction, (s)

\[t_{o_R}^d \] - time delay between level-crossing closure and route opening for each route in each direction, (s)

\[S_{\text{ST,RS}}^d \] - distance from opening control point to the station for each route in each direction, (m)

C. Rolling stock RS constants

\(\text{id}_{RS} \) - id number

\(\text{id}_{RS} \) - type

\(d_{RS} \) - direction

\(R_{RS} \) - route

\(L_{W,RS} \) - length of wagon, (m)

\(N_{W,RS} \) - number of wagons

\(L_{RS} \) - length of train, (m)

\(V_{RS} \) - initial speed, (m/s)

\(V_{\text{max,RS}} \) - max speed, (m/s)

\(T_{d,RS} \) - scheduled departure time, (min)

\(T_{a,RS} \) - scheduled arrival time, (min)

\(a_{RS} \) - acceleration, (m/s²)

\(b_{RS} \) - deceleration, (m/s²)

D. Equations for each RS

\[t_a = \frac{(V_{\text{max}} - V)}{a} \] (1)

- acceleration time to maximal speed, (s)

\[S_a = \frac{(V_{\text{max}} - V)}{2} \] (2)

- acceleration distance to maximal speed, (m)

\[S_{\text{const}} = |(S_{\text{ST,LC}} - S_{c_R}^d)| - S_a \] (3)

- distance of movement with constant speed to the closure control, (m)

\[t_{\text{const}} = \frac{S_{\text{const}}}{V_{\text{max}}} \] (4)

- time of movement with constant speed to the closure control, (s)

\[t_{\text{total}} = t_a + t_{\text{const}} \] (5)

- total time from starting movement to the closure control, (s)

\[\text{IF } S_{\text{ST,LC}} \geq S_{c_R}^d \text{ THEN } \]

\[t_{\text{clos}} = T_d \cdot 60 + t_{\text{total}} + t_{c_R}^d \] (6)

- level-crossing closing time, (s)

\[\text{ELSE :} \]

\[t_{\text{clos}} = T_d \cdot 60 - t_{\text{total}} + t_{c_R}^d \] (7)

- level-crossing closing time, (s)

\[S_{\text{clos}} = S_a + S_{\text{const}} + t_{c_R}^d \cdot V_{\text{max}} \] (8)

- distance from movement starting to closing point, (m)

\[S_{\text{clos,LC}} = S_{\text{ST,LC}} - S_{\text{clos}} \] (9)

- distance from closing point to level-crossing, (m)

\[t_{\text{clos,LC}} = \frac{S_{\text{clos,LC}}}{V_{\text{max}}} \] (10)

- time of movement from closing point to level-crossing, (s)

\[t_b = \frac{V_{\text{max}} - b}{2} \] (11)

- braking time from maximal speed, (s)

\[S_b = t_b \cdot V_{\text{max}} \] (12)

- braking distance from maximal speed, (m)

\[\text{IF } S_b > S_{\text{st,RS}}^d \text{ AND } t_{\text{RS}} = \text{'with stop'} \text{ THEN } \]

\[t_{\text{last,RS}} = (T_d - T_a) \cdot 60 - t_a - t_b \] (13)

- last wagon movement time with constant maximal speed, (s)

\[S_{\text{last,RS}} = V_{\text{max}} \cdot t_{\text{last,RS}} \] (14)

- last wagon movement distance with constant maximal speed, (m)

\[S_{\text{last,RS}} = S_{\text{ST,ST2}} + L - S_{\text{st,RS}}^d - S_{\text{const,RS}} \] (15)

- distance from last wagon braking point to opening control point, (m)

\[t_{\text{br,op}} = -\frac{V_{\text{max}} + \sqrt{V_{\text{max}}^2 + 2*(-b)*S_{\text{last,RS}}}}{(-b)} \] (16)

- time from last wagon braking point to opening control point, (s)

\[t_{\text{open}} = t_{\text{clos}} + t_a + t_{\text{const}} + t_{\text{br,op}} \] (17)

- level-crossing opening time, (s)

\[S_{\text{clos,open}} = (S_{\text{ST,LC}} - S_{\text{clos}}) + S_{\text{st,RS}}^d + L \] (18)

- distance from real closing point to opening point, (m)
the whole process will stop when the

t_{\text{open}} = t_{\text{clo}} + S_{\text{clo,open}}/V_{\text{max}} \quad (19)

- level-crossing opening time, (s)

\[IF \quad t_{\text{o}}^d > 0 \quad THEN \]
\[t_{\text{clo}} = 0 \quad (20) \]

- level-crossing closing time, (s)

\[S_{\text{clo}} = S_{\text{ST,LC}} \quad (21) \]

- distance from movement starting to closing point, (m)

\[S_{\text{clo,open}} = S_{\text{clo,LC}} + S_{\text{o}} + L \quad (22) \]

- distance from closing point to opening point (m)

\[IF \quad S_{\text{a}} \leq S_{\text{clo,open}} \quad THEN \]
\[j = \text{rand}(1,k), \quad i = \text{rand}(1,p) \]
\[t_{\text{open}} = t_{\text{clo}} + t_{\text{a}} + (S_{\text{clo,open}} - S_{\text{a}})/V_{\text{max}} \quad (23) \]

ELSE:
\[t_{\text{open}} = t_{\text{clo}} + \sqrt{2S_{\text{clo,open}}/a} \quad (24) \]

- level-crossing opening time, (s)

IV. ALGORITHM FOR TASK SOLUTION

Genetic algorithm for task solution is proposed.

A. General steps of genetic algorithm

Step1. Randomly generated schedule
According to genetic algorithm operation sequence, the first
step is random initialization of possible schedule population.

\[SCH = \{sch_1, sch_2, ..., sch_p\}, \]
\[sch_i = \{x_1, x_2, ..., x_k\} \]

Step2. Evaluate schedule according fitness function
Each randomly generated schedule is evaluated by fitness function

\[V^S = \{F(sch_1), F(sch_2), ..., F(sch_p)\} \]

Step3. Arrange schedules according evaluate
At this step randomly generated schedules are rearrange
appropriately to this evaluating value

\[\overline{SCH} = \{\overline{sch_1}, \overline{sch_2}, ..., \overline{sch_p}\}, \]
\[F(\overline{sch_1}) = \max(V^S) \]

Step4. Select the best schedules for elite set
From rearranged schedules predefined amount of best
schedules are selected for elite set

\[Sch_E \subset \overline{Sch} \]

Step5. Select schedules for crossover
Predefined amount of schedules is selected for crossover
from elite set

\[Sc = \overline{Sch} \]

Step6. Use crossover for new schedules generation
Appropriate predefined crossover conditions create the new
generation of schedules

Step7. Mutation, random changes in schedules
\[x_{ij}^r = x_{ij}^r + 1, \quad sch_j^r \in SCH', \]
\[i, j = 1, p \]

Step8. Evaluate new schedules population according to fitness function

\[V^S = \{F(sch_1'), F(sch_2'), ..., F(sch_p')\} \]

Step9. Combine result of new population and elite set

\[SCH = SCH_E \cap \overline{SCH'}; \]

Step10. Arrange new populated schedules according to evaluation

\[\overline{SCH'} = \{\overline{sch_1'}, \overline{sch_2'}, ..., \overline{sch_p'}\}, F(\overline{sch_1'}) = \max(V^S) \]

Step11. Deleting the worst schedules

\[SCH = SCH \cap \{sch_{p+1}, sch_{p+2}, ...\} \]

Step12. Stop criterion. The whole process will stop when the
generation equals to the-defined time, numbers of population
and other criteria.

B. Fitness function for Genetic Algorithm

Fitness function is expressed as following

\[F(X) = f(\Delta t, T_{\Sigma}) \rightarrow \min \]

where:

\[X = \{x_1, ..., x_n\} \] - deviation of the original schedule SCH (s)

\[\Delta t = \sum_{i=1}^{n} x_i / n \rightarrow \min \] - average deviation from

original schedule SCH (s)

\[T_{\Sigma} = \sum_{j=1}^{n} \Delta t_{\text{closed}} \rightarrow \min \] - total summary time,

when level-crossing is in close position (s),

u - number of intervals between level-crossing closing and opening
C. Restrictions related to railway safety

Check of the new schedule to avoid time crossings on the same railway track

Compare each train \(i = 1, n \) with other \(j = 1, n \) trains in the same direction -:

\[d_i = d_j, \quad i \neq j \]

1. step. \(T_{d_{\text{check}}} = T_d + x_i; \ T_{a_{\text{check}}} = T_a + x_i; \)

2. step. IF \((T_d + x_i < T_{d_{\text{check}}} \text{ AND } T_a + x_i > T_{a_{\text{check}}})\) OR
\((T_d + x_i > T_{d_{\text{check}}} \text{ AND } T_a + x_i < T_{a_{\text{check}}})\) OR
\((T_d + x_i > T_{d_{\text{check}}} \text{ AND } T_a + x_i > T_{a_{\text{check}}} \text{ AND } T_d + x_i < T_{a_{\text{check}}})\) OR
\((T_d + x_i < T_{d_{\text{check}}} \text{ AND } T_a + x_i < T_{a_{\text{check}}} \text{ AND } T_{d_{\text{check}}} < T_a + x_i)\)
THEN
Schedule failed
ELSE
Schedule successful

V. COMPUTER EXPERIMENT IN DEVELOPING OF ALGORITHM

A. Existing system structure investigation

The level-crossing of Sarkandaugava in Riga is selected for the computer experiment with the 24-hour train schedule. The structure of level-crossing and elements location on the route are shown in Fig.4.

![Diagram of level-crossing](image)

Fig. 4. The structure of level-crossing.

ST = \{MNG, SRK\} - two stations Mangali (MNG) and Sarkandaugava (SRK)
LC = \{PRB\} - one level-crossing PRB
RS = \{RS_1, RS_2, \ldots, RS_90\} - 90 trains between two stations in 24 hours time period.

\[\text{R}_{od} = \{\text{R}_{od_i}\} \text{ - one route in odd direction} \]
\[\text{R}_{ev} = \{\text{R}_{ev_1}, \text{R}_{ev_2}\} \text{ - two routes in even direction} \]
\[\text{S}_{MNG,SRK} = 3100 \text{ m} \]
\[\text{S}_{MNG,LC} = 2728 \text{ m} \]
\[\text{S}_{SRK,LC} = 372 \text{ m} \]

Train types \(I_{us} \subseteq \{\text{cargo, pas}\}. \)
‘Cargo’ - rail transport units without stop at SRK station.
‘Pas’ - rail transport units with stop at SRK station.

Routes’ characterized parameters are shown in Table I.

Table I. Routes’ Parameters

<table>
<thead>
<tr>
<th>Sc</th>
<th>So</th>
<th>Sst</th>
<th>tc</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{R}_{od}</td>
<td>1691</td>
<td>116</td>
<td>256</td>
<td>40</td>
</tr>
<tr>
<td>\text{R}_{ev}</td>
<td>1064</td>
<td>216</td>
<td>2512</td>
<td>0</td>
</tr>
<tr>
<td>\text{R}_{ev}</td>
<td>172</td>
<td>216</td>
<td>2512</td>
<td>0</td>
</tr>
</tbody>
</table>

Since in existing structure of level-crossing in Sarkandaugava the approaching points An, Ap1 and Ap2 are located too far or too close from the level-crossing, some time constants are necessary for secure level-crossing operate in close mode. Table I. with tc marked the delaying time constant for closing in odd direction, and with t0 marked the untimely time constant for closing in even direction.

All necessary numerical values of all 90 rolling stocks on Sarkandaugava-Mangali stage for calculations are combined in Table II.

B. Parameters of genetic algorithm

Following parameters are selected to implement genetic algorithm.

- Random selection
- Uniform crossover
- Crossover rate = 0.8
- Mutation rate = 0.02
- Bits for one variable = 5
- Population size = 100
- Number of generations = 1000
- Limits for \(\chi \): -5 < \(\chi \) < 5

In order to avoid too big changes in schedule it is set to permissible summary average deviation from the original schedule which should not exceed 10 minutes.

Unauthentifiziert | Heruntergeladen 13.09.19 02:21 UTC
TABLE II

LIST OF ROLLING STOCKS

<table>
<thead>
<tr>
<th>id</th>
<th>t</th>
<th>d</th>
<th>R</th>
<th>Lw</th>
<th>Nw</th>
<th>L</th>
<th>V</th>
<th>Vmax</th>
<th>a</th>
<th>b</th>
<th>Std</th>
<th>Td</th>
<th>Sta</th>
<th>Ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS₁</td>
<td>3648</td>
<td>cargo</td>
<td>even</td>
<td>Reven1</td>
<td>20</td>
<td>45</td>
<td>900</td>
<td>8.61</td>
<td>8.61</td>
<td>-</td>
<td>-</td>
<td>SRK</td>
<td>902</td>
<td>MNG</td>
</tr>
<tr>
<td>RS₂</td>
<td>3650</td>
<td>cargo</td>
<td>even</td>
<td>Reven1</td>
<td>20</td>
<td>40</td>
<td>800</td>
<td>7.38</td>
<td>7.38</td>
<td>-</td>
<td>-</td>
<td>SRK</td>
<td>938</td>
<td>MNG</td>
</tr>
<tr>
<td>RS₃</td>
<td>3654</td>
<td>cargo</td>
<td>even</td>
<td>Reven1</td>
<td>20</td>
<td>40</td>
<td>800</td>
<td>7.38</td>
<td>7.38</td>
<td>-</td>
<td>-</td>
<td>SRK</td>
<td>1015</td>
<td>MNG</td>
</tr>
<tr>
<td>RS₄</td>
<td>3649</td>
<td>cargo</td>
<td>odd</td>
<td>Rodd1</td>
<td>20</td>
<td>57</td>
<td>1140</td>
<td>0</td>
<td>5.17</td>
<td>0.1</td>
<td>-</td>
<td>MNG</td>
<td>904</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₅</td>
<td>3651</td>
<td>cargo</td>
<td>odd</td>
<td>Rodd1</td>
<td>20</td>
<td>35</td>
<td>700</td>
<td>0</td>
<td>12.92</td>
<td>0.1</td>
<td>-</td>
<td>MNG</td>
<td>929</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₆</td>
<td>3655</td>
<td>cargo</td>
<td>odd</td>
<td>Rodd1</td>
<td>20</td>
<td>35</td>
<td>700</td>
<td>0</td>
<td>12.92</td>
<td>0.1</td>
<td>-</td>
<td>MNG</td>
<td>999</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₇</td>
<td>3657</td>
<td>cargo</td>
<td>odd</td>
<td>Rodd1</td>
<td>20</td>
<td>57</td>
<td>1140</td>
<td>0</td>
<td>5.17</td>
<td>0.1</td>
<td>-</td>
<td>MNG</td>
<td>1030</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₈</td>
<td>3663</td>
<td>cargo</td>
<td>odd</td>
<td>Rodd1</td>
<td>20</td>
<td>57</td>
<td>1140</td>
<td>0</td>
<td>5.17</td>
<td>0.1</td>
<td>-</td>
<td>MNG</td>
<td>1137</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₉</td>
<td>6136</td>
<td>pas</td>
<td>even</td>
<td>Reven2</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>SRK</td>
<td>928</td>
<td>MNG</td>
</tr>
<tr>
<td>RS₁₀</td>
<td>6138</td>
<td>pas</td>
<td>even</td>
<td>Reven2</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>SRK</td>
<td>966</td>
<td>MNG</td>
</tr>
<tr>
<td>RS₁₁</td>
<td>6140</td>
<td>pas</td>
<td>even</td>
<td>Reven2</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>SRK</td>
<td>980</td>
<td>MNG</td>
</tr>
<tr>
<td>RS₁₂</td>
<td>6142</td>
<td>pas</td>
<td>even</td>
<td>Reven2</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>SRK</td>
<td>1003</td>
<td>MNG</td>
</tr>
<tr>
<td>RS₁₃</td>
<td>6144</td>
<td>pas</td>
<td>even</td>
<td>Reven2</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>SRK</td>
<td>1045</td>
<td>MNG</td>
</tr>
<tr>
<td>RS₁₄</td>
<td>6146</td>
<td>pas</td>
<td>even</td>
<td>Reven2</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>SRK</td>
<td>1066</td>
<td>MNG</td>
</tr>
<tr>
<td>RS₁₅</td>
<td>6148</td>
<td>pas</td>
<td>even</td>
<td>Reven2</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>SRK</td>
<td>1085</td>
<td>MNG</td>
</tr>
<tr>
<td>RS₁₆</td>
<td>6150</td>
<td>pas</td>
<td>even</td>
<td>Reven2</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>SRK</td>
<td>1116</td>
<td>MNG</td>
</tr>
<tr>
<td>RS₁₇</td>
<td>6133</td>
<td>pas</td>
<td>odd</td>
<td>Rodd1</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>MNG</td>
<td>919</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₁₈</td>
<td>6135</td>
<td>pas</td>
<td>odd</td>
<td>Rodd1</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>MNG</td>
<td>947</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₁₉</td>
<td>6137</td>
<td>pas</td>
<td>odd</td>
<td>Rodd1</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>MNG</td>
<td>981</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₂₀</td>
<td>6139</td>
<td>pas</td>
<td>odd</td>
<td>Rodd1</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>MNG</td>
<td>1008</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₂₁</td>
<td>6141</td>
<td>pas</td>
<td>odd</td>
<td>Rodd1</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>MNG</td>
<td>1024</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₂₂</td>
<td>6143</td>
<td>pas</td>
<td>odd</td>
<td>Rodd1</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>MNG</td>
<td>1045</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₂₃</td>
<td>6145</td>
<td>pas</td>
<td>odd</td>
<td>Rodd1</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>MNG</td>
<td>1065</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₂₄</td>
<td>6147</td>
<td>pas</td>
<td>odd</td>
<td>Rodd1</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>MNG</td>
<td>1090</td>
<td>SRK</td>
</tr>
<tr>
<td>RS₂₅</td>
<td>6149</td>
<td>pas</td>
<td>odd</td>
<td>Rodd1</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>0</td>
<td>20.7</td>
<td>0.6</td>
<td>0.8</td>
<td>MNG</td>
<td>1120</td>
<td>SRK</td>
</tr>
</tbody>
</table>

...

| RS₉₀| 3668 | cargo | even | Reven1 | 20 | 40 | 800 | 7.38 | 7.38 | - | - | SRK | 1388 | MNG | 1394 |
| RS₉₁| 3671 | cargo | odd | Rodd1 | 20 | 57 | 1140 | 0 | 5.17 | 0.1 | - | MNG | 1397 | SRK | 1407 |

134
C. Result of genetic algorithm implement

As it is shown in Fig. 5 all selected genetic algorithm parameters are entered in appropriate machine code.

According to the genetic algorithm steps the computer experiment results are summarized in Table III.

VI. CONCLUSIONS

Analyzing the data from algorithm the conclusions are:
- being compared with the original schedule the changed schedule total level-crossing time in the closed position has been decreased from 248min (14892sec) to 174min (10447 sec)
- changed schedule average deviation is not over 5 minutes
- genetic algorithm can be used to solve public and cargo transport flow organization tasks

Schedule changes in ratio + / - 5 min give possibility to reduce significantly the level-crossing being in closed position, thereby significantly increasing the capacity of the level-crossing.

Reducing of level-crossing being in closed position gives several possibilities:
- increasing of city transport flow through level-crossing
- increasing of rail passengers and cargo transport flow on the route Mangali – Sarkandaugava without negative effect on current city transport flow

To define saving up energy and further embedded devices usage for intelligent transport system creating is necessary to implement additional researches.
TABLE III. (CONTINUATION)

<table>
<thead>
<tr>
<th>Train</th>
<th>Direction</th>
<th>Route</th>
<th>Original depart time</th>
<th>Original arrival time</th>
<th>Deviation</th>
<th>Result depart time</th>
<th>Result arrival time</th>
<th>Level-crossing closed</th>
</tr>
</thead>
</table>

REFERENCES

Ivars Alps is a doctoral student of Institute of Industrial Electronics and Electrical Engineering at Riga Technical University since engineering and machine building in 1986. M.sc.ing. degree in 2008. Main fields of scientific interests are neural networks, artificial immune algorithm, scheduling theory, intelligent electric transport systems. He has several publications in proceedings of international conferences. E-mail: ivars.alps@rtu.lv

Mikhail Gorobetz is graduated Dr.sc.ing., assistant professor and leading researcher of Riga Technical University Institute of Industrial Electronics and Electrical Engineering. Results of research activities are published in various international scientific proceedings and journals in such fields as adaptive control systems, neural networks, genetic algorithms, modeling and simulation of dynamic processes. He is leader of various Latvian projects and participant in international projects. He is author of many study books and patented inventions.

Anatoly Levchenkov is graduated Dr.sc.ing. and professor of Riga Technical University Institute of Industrial Electronics and Electrical Engineering. He is author of various international scientific papers. Main scientific research interests are optimization theory, multi-criteria decision support systems, embedded electric devices and systems, intelligent logistics systems and scheduling theory. He is leader of many Latvian and international projects. He is author of various study books and patented inventions.

Contacts: anatolij.levchenkovs@rtu.lv