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Abstract – The shift towards distributed generation and 

microgrids has renewed the interest in forecasting algorithms and 

methods, which need to take into account the advances in 

information, metering and control technologies in order to address 

the challenges of forecasting problems. Technologies such as 

machine learning have been proven useful for short-term 

electricity load forecasting, especially for microgrids, as they can 

also take into account several types of historical data and can 

adapt to changes often encountered in small-scale systems and on 

a short time scale. In this paper, we present a flexible and easily 

customized modular toolbox, called Divinus, for electricity use 

profiling and forecasting in microgrids. Divinus may support a 

variety of machine learning algorithms for forecasting and 

profiling that can be used independently or combined. For 

demonstration purposes, we have implemented Self-Organizing 

Maps for profiling and k-Neighbors for forecasting. The testing of 

the platform was based on electricity consumption data of the 

Euripus campus of the National and Kapodistrian University of 

Athens in Evia, Greece, from January 2010 till March 2018. The 

tests that have been carried out so far show that the platform can 

be easily customized and the algorithms examined yield high 

accuracy and acceptable mean errors for the case of a university 

campus energy profile.  

 

Keywords – Clustering algorithms; Forecasting; Machine 

learning algorithms.  

I. INTRODUCTION 

The distributed and renewable generation is growing and new 

systems such as microgrids are being implemented in the 

distribution network. This decentralized structure poses new 

challenges for reliable and quality services of the electricity 

distribution network and entities. In order to cope with these 

challenges, tools for short-term load forecasting need to be 

developed and used in the decision-making process for optimum 

control, dispatching and planning as well as for demand side 

management, and trading in the retail electricity market. Accurate 

models for electric power load forecasting are essential to the 

operation and planning of microgrids, especially in view of the 

electricity market deregulation and the anticipated price 

fluctuations in all four markets of the target model. In light of the 

above, forecasting has gained an increased importance in modern 

day’s microgrids, due to their integration in the main grid and 

their role in the electricity markets. Novel techniques and models 

are taking advantage of the advances in artificial intelligence 

algorithms, which allow for faster convergence, big data 

manipulation sets and solving more complex problems. 
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Algorithms where the underlying system is more or less treated 

as a black box and which use available data for the training of a 

model are usually grouped under the term machine learning. 

Arthur Samuel coined the term “Machine Learning” in 1959, 

defining it as “the ability to learn without being explicitly 

programmed.” Machine Learning, in its most basic form, is the 

practice of using algorithms to parse data, learn from them, and 

then make a determination or prediction about something in the 

world. 

Many of the recent advances in smart devices are the result of 

deep learning, a subset of machine learning that uses layers of 

neural networks to develop computer models that are roughly 

based on the structure of the human brain neurons. When 

machine learning systems are combined with big data, they 

provide for new capabilities and emerging technologies [1]. 

So, in contrast hard coding software routines with specific 

instructions to accomplish a particular task, machine learning is 

a way of “training” an algorithm to learn by itself. In this sense, 

“training” involves feeding huge amounts of data to the 

algorithm, allowing it to optimize itself towards performing a 

given task better and more quickly than expert humans [1], [2].  

Machine learning is being used extensively in many problems 

where big amounts of data are generated, such as weather 

forecasting. In this work, we focus on the data relevant to 

electrical consumption. Long and midterm forecasting has been 

used for years by power companies for operation and planning 

purposes. They have traditionally used more conventional 

algorithms, such as linear regression [3] and econometric models 

[4] with acceptable accuracy for the task at hand.  

The transition towards the smart grid and the emergence of 

microgrids and distributed generation and storage have dictated 

the restating of the load forecasting problem, setting new 

requirements. The amount of data generated by the new grid 

architecture is increasing dramatically considering the large 

number of intermediate and lower levels of real time metering 

and control introduced by new grid entities, such as smart 

metering, electrical vehicles, and distributed generation and 

storage. Algorithms that are able to classify these data and use 

them to train systems are required [5]. For the management of 

microgrids, the short-term forecasting problem needs to be 

solved.  

In this paper, we present a modular tool, called Divinus, which 

is able to make hourly forecasts at microgrid level, using 
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electrical load and, if necessary, environmental data of past years. 

The proposed architecture enables implementation, testing, 

combination and comparison of forecasting and clustering 

algorithms in order to obtain the optimum forecast for the 

problem studied. The paper is organized in four sections. 

Section II briefly reviews the state-of-the-art in machine learning 

algorithms used in load forecasting models. Section III presents 

the architecture of the proposed toolbox and Section IV presents 

and discusses preliminary results and future research directions. 

II. BACKGROUND AND LITERATURE REVIEW ON MACHINE 

LEARNING FORECASTING MODELS  

Depending on the application, electrical load forecasting 

algorithms are used for predicting the energy demand for the 

next hour (or half hour), next day, next few weeks up to the next 

year or periods of over a year, when investment planning is 

considered. Conventional forecasting algorithms have been 

developed taking into account the requirements and operation 

of the large main power grids of the conventional grid 

architecture. These are not appropriate for microgrids where the 

average and peak demand is not only several times smaller than 

in region-wide areas, but also its electricity consumption 

presents a much higher volatility [5]. 

In the conventional grid, which was developed based on the 

vertically integrated state-owned electricity companies, 

forecasting was used for long- and midterm forecasting for 

economic operation and planning.  The increasing application 

of renewable energy sources (RES), the interconnections 

between countries, cross-border and wholesale energy trading 

have created the need for next-day or even shorter interval   

forecasting (see Table I). Power companies have traditionally 

used simple forecasting models, like linear regression [3] and 

econometric models [4] with satisfactory performance for the 

purpose they were used for. Nowadays, the increase in 

computing power has allowed multiple regression models to be 

used for very large systems [6], [7], large metropolitan areas 

[8], or small areas [9]. Artificial intelligence techniques have 

also been applied using either neural networks [10], [11], or 

fuzzy logic [12], [13], [14]. 

Lately, the efforts concentrate on unsupervised learning 

neural networks such as Self Organizing Maps (SOMs) [15], 

[16], on Neural Networks [17] or on hybrid systems that 

combine both Self Organizing maps (SOMs) and algorithms, 

such as support vector machines (SVMs) [18] or k-Nearest 

Neighbors (kNN) [5]. 

TABLE I 

TIME HORIZONS & STEPS OF LOAD FORECASTING 

 Horizon Step 

VSTLF 30 Min – 1 Hour  1 Minute 

STLF 1 Day – 1 Week 1 Hour 

MTLF 1 Year 1 Week 

LTLF 10–20 Years 1 Year 

 

In case of microgrids, however, we need to focus on short 

and very short-term forecasting. Short term load forecasting 

(STLF) refers to a time horizon of the next day or maximum of 

the next week by step of 1 hour, while the very short-term load 

forecasting (VSTLF) refers to a time horizon of next hour or 

half-hour by step of 1 minute. Table I summarizes the time 

horizons and corresponding steps in load forecasting 

algorithms. 

Machine learning processes are so far the state-of-the-art 

solution in STLF and VSTLF as they can offer predictions with 

acceptable accuracy in a relatively short time. Depending on 

whether they use the labeled data, unlabeled data or both types, 

a machine learning process may be classified into three broad 

categories, namely, supervised, unsupervised and semi-

supervised. Unlabeled data usually consist of samples that are 

artifacts created either by the monitoring system or by humans 

and can be readily obtained, e.g. through sensors. On the other 

hand, labeled data are the processed data typically made of a set 

of unlabeled data, where each piece of data is augmented by 

some sort of meaningful “tag”, “label” or “class” that offers 

additional information or knowledge.  

Another categorization of machine learning tasks is done 

based on the desired output. If the desired output of the model 

is a class, then it is a classification problem, if it is a number, 

then it is a regression problem and if it is a set of input groups, 

it is a clustering problem. 

The main families of algorithms mostly used in microgrid 

forecasting problems are the support vector machines (SVM), 

k-Nearest Neighbors (kNN), Random Forest (RF) and artificial 

neural networks (ANN). 

A. Support Vector Machine 

Support Vector Machine (SVM) is a machine learning 

algorithm which can be used for both classification and 

regression tasks. Its formulation is based on the Structural Risk 

Minimization (SRM) principle, which has been shown to be 

superior to the traditional Empirical Risk Minimization (ERM) 

principle, used in conventional neural networks. SRM 

minimizes an upper bound on the expected risk, whereas ERM 

minimizes the error in the training data. It is this difference 

which equips SVM with a greater ability to generalize [19]. 

The advantage of SVM is that it is effective in high 

dimensional spaces and uses a subset of training points in the 

decision function making, it is also memory efficient. However, 

the algorithm does not directly provide probability estimates, 

because they are calculated using an expensive five- or ten- fold 

cross-validation [20]. 

Support Vector Machines models can be found in many 

forecasting models for both medium- and short-term 

forecasting or in combination with other algorithms. For 

instance, in [21], a method of Dragonfly Algorithm-based 

support vector machine (DA-SVM) was implemented to 

forecast the short-term load in the microgrid of an offshore 

oilfield group in the Bohai Sea, China. This method adopts the 

combination of penalty factor C and kernel parameters of SVM, 

which needs to be optimized as the position of dragonfly to find 

the solution. It takes the forecast accuracy calculated by SVM 

as the current fitness value of dragonfly and the optimal position 

of dragonfly obtained through iteration is considered as the 
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optimal combination of parameters C and s of SVM. The 

experimental results indicate that the DA-SVM algorithm has 

better global searching ability. In this case study, the root mean 

square errors of DA-SVA was about 1.5 % and the computation 

time saved was about 50 %.  

B. k-Nearest Neighbors 

k-Nearest Neighbors (kNN) is a supervised machine learning 

algorithm used for both classification and regression predictive 

problems. 

kNN is a simple algorithm that stores all available cases and 

predicts the numerical target based on a similarity measure, e.g., 

distance, proximity, or closeness functions, as it assumes that 

similar data points are close to each other. It has been used as a 

non-parametric technique, meaning that it does not make any 

assumptions on the underlying data distribution. kNN methods 

are known as non-generalized machine learning methods, since 

they simply “remember” all their training data and do not have 

the ability to generalize [22].  

The main advantage of kNN is that it is robust to noisy 

training data and effective if the training dataset is large. On the 

other hand, the user needs to determine the value of k, which 

corresponds to a positive integer, typically small, and the 

computation cost is high as it needs to compute the distance of 

each instance to all training samples.  

kNN models can be found in many forecasting models. For 

example, a kNN algorithm was used to construct a hybrid model 

comprised of a Wavelet Denoising-Extreme Learning Machine 

(ELM) and a kNN Regression in order to have a half-hour 

electricity load forecast, in New South Wales [23]. The training 

was done making use of 2 832 training load data from 1 January 

2017 00:30 to 1 March 2017 00:00 and 2 158 testing load data 

from 1 March 2017 00:30 to 14 April 2017 23:30. In [24], kNN 

models were used for day ahead load prediction using only 

limited temperature data as inputs, namely, the minimum and 

maximum daily temperatures. 

C. Random Forests 

The Random Forest (RF) technique is used in many 

forecasting models due to its simplicity and the fact that it can 

be used for both classification and regression tasks. RF is a 

supervised learning algorithm which builds multiple decision 

trees and merges them together to get a more accurate and stable 

prediction. More specifically, it constructs a multitude of 

decision trees during training and yields the class that is the 

mode of the classes (classification) or mean prediction of the 

individual trees (regression). RF corrects the decision trees 

habit of over fitting their training set because no single tree can 

learn from all of the instances and explanatory variables. No 

single tree can memorize all of the noise in the representation 

[25]. 

Its default hyperparameters often produce a good prediction 

result, which makes RF a very handy and easy to use algorithm. 

Its main limitation is the number of trees which it needs to yield 

these results. As the trees grow, the algorithm speed slows down 

and it becomes ineffective for real-time predictions. 

RF has been widely used in forecasting models. In [26], it 

was proposed to improve the accuracy in a STLF problem by 

combining it with a feature selection method based on the 

generalized minimum redundancy and maximum relevance. 

Another paper proposes using RF models for short-term electric 

load forecasting, making use of an ensemble learning method 

that generates many regression trees and aggregates their results 

[27]. 

D. Artificial Neural Networks 

Neural Networks (ANN) are a class of models within the 

general machine learning literature and also a specific set of 

algorithms that have revolutionized machine learning. The 

operating principle of ANNs is based on the functions of the 

human brain neurons; they provide powerful tools for 

modelling, especially when the underlying data relationship is 

unknown. Moreover, they can identify and learn correlated 

patterns between input data sets and corresponding target values 

[11], [15], [28]. They have been successfully applied in a 

variety of scientific fields, such as mathematics, engineering, 

medicine, economics, meteorology, psychology, neurology and 

many other.  

They have also attracted a lot of criticism on the grounds of 

(a) their “black-box” treatment of the system being modeled, 

which does not provide any insight regarding why and how the 

result was obtained; (b) the absence of specific rules for the 

determination of the network structure and the trial–and–error 

approach which reduces their trustworthiness as forecasting 

tools; (c) the fact that they are computationally intensive and 

therefore hardware dependent as they may require processors 

with parallel processing power, depending to their structure; (d) 

the fact that the network’s performance is evaluated against 

specific preset error values, which is the criterion for ending the 

training, even though  this error value does not necessarily yield 

the optimum results [11], [15], [28]. 

The reason why they have been applied in so many scientific 

fields is partly explained by the following four factors [11], 

[15], [28]: 

• There is an abundance of data generated in modern 

measurement systems, which can be utilized by the fairly 

large database required by ANNs where known inputs are 

compared with the corresponding outputs in order to 

“educate” the network.  

• The iterative comparison of the output value with the 

actual one and the amendment of the weights in 

accordance with the “education rule” and the calculated 

error decreasing with the increasing number of repetitions 

makes them an attractive option for systems where time 

series data are generated.  

There are dozens of forecasting models that all these years 

have been implemented on ANNs.  
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Fig. 1. Divinus architecture. 

 

For example, the model proposed in [29] for STLF in 

microgrids is based on a three-stage architecture, which starts 

with pattern recognition by a Self-Organizing Map (SOM), a 

clustering of the previous partition via a k-means algorithm, and 

finally demands forecasting for each cluster with a MultiLayer 

Perceptron Model, which is a class of feedforward ANN. 

Validation was performed with the data from a microgrid-sized 

environment provided by the Spanish company Iberdrola. In 

[30], a Self-Recurrent Wavelet Neural Network (SRWNN) is 

used as a forecast engine in a microgrid using the Levenberg-

Marquardt (LM) learning algorithm to train the SRWNN. In 

order to demonstrate the efficiency of the proposed method, it 

was tested against actual hourly load data of an educational 

building supplied by a microgrid. 

III. DIVINUS ARCHITECTURE 

The motivation behind developing the Divinus platform was 

to create a user-friendly tool able to put to test different existing 

or new forecasting and clustering algorithms working 

separately or combined. 

Divinus is a modular platform which allows to easily add, 

remove or modify various parts of it. It has a user-friendly 

interface whose only requirement is the proper formatting of the 

dataset to be used as input to the algorithms. 

The architecture of Divinus consists of several 

interconnected well-defined components where each one 

interacts directly with the other as it is depicted in Fig. 1. The 

tools used are a database where all information is stored, an 

appropriate programming language and a website hosting and 

displaying the results. 

The database allows storing data dynamically. The decision 

for the choice of the appropriate technology for this task was 

based on two criteria. The first one was the type of data to be 

processed. Our data consists of dates and time intervals 

associated with load as well as environmental data. This 

requires the use of a relational database and therefore only 

Structured Query Language (SQL) databases were acceptable. 

Second, for conceptual as well as cost considerations, we 

decided to use open source technologies. This narrowed down 

our choices to open-source relational databases. PostgreSQL 

was chosen as the most advanced open-source database 

available today [31]. 

Next we had to decide on the programming language to build 

Divinus and which had to be compatible with machine learning. 

Python was chosen as one of the most popular programming 

languages for machine learning and data mining. It enjoys a 

large number of useful add-on libraries and frameworks that are 

developed by a constantly increasing community. One of the 

biggest advantages of Python is Django, the open source high-

level Python Web framework [32] in which the core 

functionalities of our platform are based. 

The website hosting platform has been developed with the 

use of HTML, CSS and Javascript and is the point where all the 

data generated through the clustering and forecasting 

algorithms are collected and displayed. The website is 

connected, through Django, with the database from where all 

data are retrieved in Json format and are graphically presented. 

In such a way, the end user can interface in a friendly and 

efficient way with the platform and preview the profiles that 

were created or the loads that were forecasted for the days 

ahead.  

Next, we present the functional components of the platform, 

which enable the collection and organization of the data that 

will be saved in the database, the profiling and clustering of the 

collected data and the load forecasting based on the extracted 

profiles. 

A. Data Collection 

Data collection and management are one of the most 

important aspects of such platforms. The quality, granularity 

and format of data must be such that it should yield high 

accuracy results. Since the platform uses actual data, it is 

important to determine that the format and structure of the data 

input to the algorithms are appropriate. Divinus is designed to 

accept electricity consumption data, as well as environmental 

data, such as temperature, sun radiation, humidity, wind speed 

and pressure, and to specify the time interval in which the 

predictions will take place. However, in the current phase of 

development, we present test results concerning its forecasting 

potential, using the data which have previously been clustered 

using SOM. For this, we have used only electricity consumption 

data under the assumption that the clustered data have already 

incorporated the influence of the environmental conditions.  
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The data used for testing correspond to the electricity 

consumption of the Euripus campus of the National and 

Kapodistrian University of Athens (NKUA). The data were 

retrieved from the telemetering service of HEDNO, the Greek 

DSO of the Public Power Corporation (PPC), and consist of 

hourly measurements for both active and reactive loads from 

January 2010 to February 2018. Hourly measurements were 

used because this is the data granularity provided by HEDNO.  

First, the database was connected to the Django framework 

so that the tables created in the database could be used by the 

framework to retrieve or store data through PostgreSQL 

commands [31]. 

The next thing was to retrieve the data from the HEDNO 

telemetering service. As there was no API available to 

download the required data, an interface subroutine was 

developed through which Divinus entered the telemetering 

service at the beginning of each day and downloaded the data 

of the previous day in Excel format. Another subroutine then 

processed them and stored them in the Divinus database. If 

another metering service were to be accessed, this interface 

module would have to be adjusted to the specifics of the 

metering service. Using a python library called pandas, small 

changes and corrections were made to the data without 

damaging their formatting. These changes may involve 

converting one type of number into another or converting a file 

type to another in order to be easily editable. 

Next, the data were imported in the database using 

postgreSQL commands [31]. 

B. Clustering Algorithm – Self-Organizing Maps 

After importing and organizing the measurement data, we 

proceed with data clustering.  

The technology chosen for this goal is the Self Organizing 

Map (SOM) which falls under the category of unsupervised 

learning algorithms. SOM is a type of Artificial Neural Network 

able to convert complex, nonlinear statistical relationships 

between high-dimensional data items into simple geometric 

relationships on a low-dimensional display [33]. 

However, data pre-processing is required to take place before 

implementing the SOM algorithm. The data that were loaded in 

our system contained hourly values, which means that they 

contained a timestamp and the hourly consumption. This 

format, however, was not the desired one because although they 

could be clustered by the SOM, the clusters that would be 

created would not be useful for the forecasting algorithm 

following next. Therefore, the data were reorganized in an 

appropriate format.  

 The SOM implementation used is the minisom [32] 

algorithm as retrieved from the Python library, which is a 

minimalistic and Numpy based implementation of SOMs.  

First, we split the data into the data to be clustered and the 

data used to generate the clusters. Next, we specified the size of 

SOM and therefore the number of clusters needed for our type 

of data. This is application specific. Taking into consideration 

the use of the building as a university building hosting offices, 

classrooms and laboratories, we used four clusters. In 

particular, based on the common features that exist in various 

consumption profiles, one cluster includes the weekdays, the 

second cluster includes the weekends, the third cluster includes 

the holidays and the fourth includes consumption patterns that 

do not fall under any of the previous categories. 

The next step is the SOM training, which yields the row and 

column of the cluster where each data point belongs. After the 

training, our dataset has two additional pieces of information: 

the SOM row and the SOM column that act as identifiers of the 

cluster to which each data point belongs. As soon as these two 

fields are added in the reformatted dataset, a loop process passes 

these identifiers to the original dataset that is the one on which 

the pre-processing was performed. The data are now eligible to 

be used by the load forecasting algorithm.  

C. Machine Learning Forecasting Algorithm – k-Neighbors 

Typical STLF algorithms rely on the use of big amounts of 

past data to minimize the prediction error. In this work, we use 

the Divinus platform to investigate whether forecasting can be 

used with the previously clustered data and yield the same or 

better accuracy which would justify inserting one more level of 

data processing.   

The Divinus forecasting is a three-step process. The first 

stage of this process is to retrieve all the data needed based on 

the hourly consumption we want to forecast. This is done by 

retrieving the corresponding hourly consumption for the 

previous years. By retrieving the row and the column of the 

cluster in which they belong we are able to retrieve all the data 

contained in it. The second stage is to use these data for training 

and testing of the forecasting algorithm and the final stage is to 

perform the forecasting of the days that we wanted to predict. 

The forecasting algorithm used is the k-neighbors algorithm. 

The principle behind nearest neighbor methods is to find a 

predefined number of training samples closest in Euclidean 

distance to the new point, and predict the future hourly active 

loads. The number of neighbors, from which it will retrieve 

samples, is a user-defined value.  

In our case, the data have previously been clustered with 

SOM, so we need an algorithm such as k-neighbours to forecast 

future loads based on the corresponding past values that have 

common features. In our forecast implementation, the nearest 

neighbors used were k = 3. 

IV. RESULTS AND DISCUSSION 

According to our proposed methodology, the first step that 

should be completed in order to start the forecasting process is 

the creation of the clusters. Through SOM we create clusters 

out of the past data. The parameters that are used for SOM 

adjustments are the following: 

a) x: x dimension of the SOM; 

b) y: y dimension of the SOM; 

c) input_len: Number of the elements of the vectors in input; 

d) neighborhood_function: Function that weights the 

neighborhood of a position in the map. Possible values are 

the  'gaussian' or the 'mexican_hat'; 

e) sigma: Spread of the neighborhood function, needs to be 

adequate to the dimensions of the map; 
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f) decay_function: Function that reduces learning rate and 

sigma at each iteration [31]. 

TABLE II 

SOM PARAMETERS USED IN DIVINUS [25]  

SOM Parameters 

x 2 

y 2 

Input length 25 

Neighborhood 

function 
Gaussian 

Sigma 1.0 

Decay function None 

 

The parameters selected for SOM implementation were 

based on the clustering requirements posed by our data. The x 

and y dimensions were set to 2 in order to obtain four clusters 

(1-1, 1-2, 2-1, 2-2): based on the available historical data, four 

main patterns could be identified for the campus electricity 

consumption, two for the fall and spring semesters, one for the 

holidays, such as Christmas and Easter, and one for the days 

that did not fall under any of the previous categories, e.g. a day 

where a power failure occurred. The input length was set to 25 

for the day of the year and 24 hours of the day. The next 

parameter was sigma, which is the radius of neighbors in the 

SOM landscape. The default value of 1.0 was kept since trials 

with other values did not yield any significantly different 

results. 

Each cluster contains days that have similar consumption 

profiles. Figs. 2 and 3 show the results of the clustering for the 

active loads of 2017. In Fig. 2, the weekdays of 2017 are 

displayed, where some of them are weekdays with higher 

consumption than others, while others – with lower. For 

instance, the summer months, although they have the same 

pattern, have a lower consumption. Accordingly, Fig. 3 displays 

the weekends of 2017 following the same logic. Moreover, the 

clusters are coded as a two-dimensional matrix due to the fact 

that SOM translates all the data it clusters in two dimensions x 

and y, and therefore when we want to show a specific cluster, 

we just need to specify the x and y. In the figures, for readability 

purposes, we only show selected profiles. The platform user is 

able to preview the clusters he/she wants for the year of choice. 

 

Fig. 2. SOM Cluster [0,0] containing 255 days of 2017. 

 

Fig. 3. SOM Cluster [1, 1] containing 56 days of 2017. 

As soon as the clusters are created, we are able to proceed 

with load forecasting. The hourly forecast test results were 

conducted for: 
• the next month; 
• the next year. 
 

It should be noted that in the following forecasting results, 

holidays have been removed and only the data on weekdays and 

weekends have been used. The main criterion of evaluation is 

MAPE (Mean Absolute Percentage Error) which is calculated 

by (1) and is applied to N data points representing hours of the 

month or year: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∙∑|

𝑦𝑖 − �̂�𝑖
𝑦𝑖

|

𝑁

𝑖=1

,  (1) 

where yi is the real load and ŷi is the predicted load. 

A. One Month Ahead Hourly Prediction 

Overall, the forecasting was successful since the predicted 

hourly load is very close to the actual one for both February and 

March with a MAPE of 12.62 % for February and 7.84 % for 

March respectively, as shown in Table III and Table IV. Given 

that the load curves in question have high volatility and the 

system that we are studying is a low-consumption system 

compared to the consumption of a real microgrid, the resulting 

mean errors are considered small. 
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Fig. 4. Hourly prediction for February 2018: from 01/02/2018 to 28/02/2018. 

 

 

Fig. 5. Monthly prediction for March 2018 from 01/03/2018 to 31/03/2018. 

 

Figs. 4 and 5 show the respective graphical representations 

of the actual and forecasted load curves for February 2018 and 

March 2018.  

TABLE III 

FORECASTING ERROR FOR FEBRUARY 2018  

February 2018 

MAPE 12.62 % 

Maximum Absolute Percentage Error 55.43 % 

 

 

TABLE IV 

FORECASTING ERRORS FOR MARCH 2018  

March 2018 

MAPE 7.84 % 

Maximum Absolute Percentage Error 34.44 % 

B. One Year Ahead 

The second test scenario was the hourly forecast for a year. 

Having data from 2010 up to 2016, we used the toolbox to 

forecast hourly loads of 2017. The resulting MAPE was 
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15.96 %. The MAPE for every month and the average for the 

whole year 2017 is shown in Table V. 

Another similar test used data from 2010 to 2012 to predict 

the hourly loads of 2013. In this case, the training set included 

fewer years. The MAPE for every month and for the whole year 

of 2013 is shown in Table VI.   

TABLE V 

FORECASTING ERROR FOR 2017  

2017 Predictions MAPE 

January 16.10 % 

February 20.57 % 

March 13.03 % 

April 17.43 % 

May 11.27 % 

June 21.48 % 

July 29.20 % 

August 13.78 % 

September 15.55 % 

October 10.73 % 

November 11.75 % 

December 13.66 % 

2017 MAPE 15.96 % 

Maximum Absolute Percentage Error 164.29 % 

TABLE VI 

FORECASTING ERRORS FOR 2013  

2013 Predictions MAPE 

January 13.71 % 

February 35.96 % 

March 14.78 % 

April 14.97 % 

May 10.13 % 

June 14.33 % 

July 34.87 % 

August 35.52 % 

September 26.68 % 

October 16.35 % 

November 16.24 % 

December 17.13 % 

2013 MAPE 20.26 % 

Maximum Absolute Percentage Error 269.52 % 

 

The results are acceptable for both cases shown in spite of 

the average MAPE of 2013 being larger. This may be due to the 

fact that only 1/3 of the data was used for the training. Also, the 

months that have a higher error include summer months that 

generally present a higher volatility. 

The cases shown are not intended to test the performance of 

two well-known algorithms, namely SOM and kNN. They are 

rather used to illustrate the operation of the Divinus platform. 

More cases need to be studied and further tests need to be 

carried out with and without clustering using several forecasting 

techniques and the results should be compared with the 

published data. However, certain conclusions may be drawn 

even at this stage. 

Since the electricity demand in microgrids is characterized 

by a much higher volatility than the one in the main power grid, 

it would not be useful to compare these preliminary results 

against forecasting results for the main grid. Here we report on 

the comparison against results which combine SOMs with 

Neural Networks  [15] for 20 days ahead load forecasting in a 

microgrid, using the data of 4 months from 02/12/2010 to 

07/05/2011 for training, testing, and validation with 

percentages 60 %, 30 %, and 10 %, respectively. The MAPE 

errors reported for 1 hour, 12 hours, 1 day and 2 days were 

12.851 %, 13.712 %, 13.810 % and 14.495 %, respectively. 

The error increases when a longer step-ahead prediction was 

considered. Divinus performed hourly forecasts for the next 

year and the MAPE errors were found to be 15.96 % and 

20.26 % for 2017 and 2013, using training data of 5 and 2 years, 

respectively. 

Ongoing research involves the use of Divinus for the study 

of the performance of other algorithms for clustering and 

forecasting, used independently or in conjunction with each 

other, and the design of a subroutine that will enable forecasting 

for holidays, testing for lower forecasting time intervals and the 

optimal use of the functionality for environmental data. Also, 

electricity use forecasting studies will be carried out using 

various algorithms whose best results will be combined and 

integrated into one prediction.   

V. CONCLUSION 

This article presents a modular platform created for 

electricity consumption data clustering and forecasting in 

microgrids. The platform is built using open source tools, it is 

modular and independent of the algorithms it supports. The 

platform is user friendly and allows the user to select the data 

set and procedure for forecasting, as well as preview clustering 

and forecasting results in an interactive manner. In addition, due 

to its high modularity, it can be used as a test workbench 

through which the interaction between different algorithms can 

be measured. 

For the preliminary test results presented here, clustering was 

performed using Self-Organizing Maps and forecasting was 

performed with the use of the k-neighbors algorithm. The data 

from a university building were first clustered and then used for 

load forecasting. The proposed approach yielded very good 

accuracy for hourly forecasts of the next month and the next 

year.  
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