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Abstract – Electrical machines, induction motors in particular, 

play a key role in domestic and industrial applications. They act as 

a work horse in almost every industry and are responsible for a 

big proportion of total generated electricity consumption 

worldwide. The faults in induction motors are degenerative in 

nature and can lead to a catastrophic situation if not diagnosed 

earlier. The failures can cause considerable financial loss in the 

form of unexpected downtime. Broken rotor bar is a very common 

and frequently occurring fault in most of industrial induction 

motors. To select a better, more accurate and reliable fault 

diagnostic technique, this paper presents a comprehensive 

literature survey on the existing motor current signature analysis 

(MCSA) based fault diagnostic techniques. Different well-known 

MCSA based fault diagnostic techniques are summarized in the 

form of basic theories, considering complexity of their 

implementation, merits and demerits. 
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I. INTRODUCTION 

Induction motors are acting as a work horse in domestic and 

industrial applications because of their high power to weight 

ratio, rugged structure, low price, easy maintenance and 

reliability [1]. They play a significant role in about 80% of 

industries such as transportation, petroleum industries, mining 

industries, ship propulsion, aerospace, nuclear plants and many 

other [2]. 

Because of mechanically moving parts and rough industrial 

environment, induction machines are always vulnerable to 

faults. These faults are usually degenerative in nature, i.e. they 

tend to increase with time. Hence, it is very important to detect 

them at their early stages to avoid any catastrophic situations 

like shut down of the entire process [3]. In addition, detection 

of faults at the early stages gives a lot of advantages like 

reliability of operation, increased motor life and economic 

benefits [1]. When motor starts becoming faulty it tends to 

change some of its parameters, such as mechanical vibrations 

[4], [5], electromagnetic field distributions [6], [7], temperature 

[8], stator’s current [9]–[11]. Since induction motors are 

proportionally among the biggest energy consumers worldwide, 

their proper maintenance and early fault diagnostics will 

increase efficiency as well. The bar charts in Fig. 1 show energy 

usage by induction motors in different sectors per hour 

downtime cost and comparison of rewinding versus recondition 
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of motors as investigated by [12]. In this paper, the author 

analyzed a paperboard plan with 485 motors having two 

operating production lines with an average downtime cost of 

$6375 per hour and concluded that preventive maintenance 

program costs $73 900 per year and gives a total saving of 

$569 360 per year having a payback period of as short as 1.6 

months. It is evident considering the figure that induction 

motors are a major consumer of total generated electricity and 

can lead to a major economic loss if faults are not timely 

diagnosed and repaired effectively.    

 
(a) 

 
(b) 

 
(c) 

 
Fig. 1. Worldwide energy usage by electrical machines (a), an average loss due 

to failures (b) and a comparison of rewind vs. recondition cost (c). 
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Fig. 2. Importance of fault diagnostics as reflected in the annual scientific research and publications. 

  

It is also claimed in [12] that with preventive maintenance 

programs total motor rewinds reduced from 85 % to 20 % of the 

total motor repairs. A lot of research is being done on earlier 

fault diagnostics of induction motors with regard to the above-

mentioned advantages. The graphs shown in Fig. 2 as taken 

from Scopus describe annual trends in scientific research 

published each year on fault diagnostics of induction machines. 

II. TYPES OF FAULTS AND DIAGNOSTIC TECHNIQUES 

A variety of faults found in literature can be divided mainly 

into three categories as shown in [13] and presented in Table I. 

Faults in electrical machines can be broadly divided into three 

categories: electrical, mechanical and external or 

environmental. Electrical faults are mainly associated with 

stator side and can be easily detected and controlled using some 

simple protective devices which can monitor the condition of 

supply voltage and loading conditions. Moreover, some flexible 

AC transmission systems (FACTS) device-based control of 

various parameters like voltage balancing, reactive power 

control can also be found in literature [14]. Mechanical faults 

make a big proportion of overall faults and they are 

degenerative in nature, i.e. they tend to increase with time. The 

early diagnosis of these faults is very important in order to avoid 

any catastrophic situations like shutdown of the entire industry 

or some portion of industry leading to a major economic loss 

[15]. These faults are difficult to detect at the early stages, but 

it is equally important. The main fault diagnosis technique 

found in literature is mainly associated with signal processing 

and pattern recognition using motor stator current signal or 

mechanical vibration signal. 

In this paper, some commonly used techniques used for 

broken rotor bar fault diagnostic of induction machines are 

reviewed and comparison is done to consider advantages and 

drawbacks of each technique.  

 

TABLE I 

CATEGORIES OF MOST COMMON FAULTS, TYPES AND THEIR DIAGNOSTIC METHODS 

 

Sr. No. Category Types 
Location of the 

faults 
Common diagnostic methods 

1 Electrical 

• Unbalanced supply voltage 

• Over or under voltage 

• Phase reversal 

• Inter-turn short circuit fault 

• Earth fault 

Mainly stator 
• Relays & Switches 

• MCSA 

2 Mechanical 

• Broken rotor bar  

• Broken end rings 

• Eccentricity fault 

• Bearing fault 

• Rotor winding failure 

Mainly rotor 

• Mechanical vibration detection 

• MCSA 

• Finite Element Analysis 

3 Environmental 

• Ambient temperature 

• External moisture 

• Vibrations due to bad foundation, 
etc. 

Both • Sensors and protective devices  
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A. Envelope Detection (Hilbert Transform) 

Hilbert transform converts a real valued signal into a 

complex analytical signal. It can be used to find out the 

envelope of a signal, which is useful in many respects, e.g. in 

demodulation of an amplitude modulated (AM) signal. It can be 

considered as a filter which shifts phases of all frequency 

components of its input signal by π/2 radians. Implementation 

strategy of Hilbert transform to get current envelope is shown 

in Fig. 3.  

Mathematically, it can be defined as the convolution of given 

signal with not integrable function 1/(πt), as follows, 

 𝐻(𝑡) =
1

π
∫

𝑓(𝑥)

𝑡−𝑥
d𝑥

∞

−∞
.  (1) 

The analytical signal can be obtained as, 

 𝐴(𝑡) = 𝑓(𝑡) + jℎ(𝑡).  (2) 
This can be expressed in polar coordinates as, 

 𝐴(𝑡) = 𝐵(𝑡)ejφ(𝑡)  (3) 
where B(t) – envelope of analytical signal and φ – phase of 

analytical signal. 

As discussed earlier, the harmonics produced by broken rotor 

bar (BRB) in stator current spectrum depends on slip. Under 

very low slip and no-load conditions the frequency of these 

harmonics becomes very close to the frequency of the 

fundamental component. This fact makes it very difficult to 

detect harmonics because of spectral leakage of fundamental 

one [16]. In other words, those harmonics are usually buried 

under the spectrum of the fundamental component. 

This problem can be solved by using some filters to remove 

fundamental component. The filters commonly found in 

literature are notch filters [17], Hilbert transform [16], etc. 

Some techniques like Hanning window and Bartlett 

periodogram [18], shifting to DC level [19], quad demodulation 

[20], Park’s vector [21], air gap torque and swing angle [22], 

[23], etc. have been proposed to avoid this problem. To 

overcome this problem some literature suggests a minimum 

percentage of load for experiment. Also, high frequency 

resolution is required for successful separation of sideband 

signals. The same kind of problem has also been reported in 

cases when load changes during the sampling time.  

Speed changing devices such as gear boxes also give the 

same kind of side band frequencies which can be separated by 

taking a set of two motor current signature analysis (MCSA) 

tests at entirely different load references. [16] used a simple 

Hilbert transform to get analytical signal of stator current, found 

its envelope and by doing its spectral analysis proved that the 

main frequency component was successfully eliminated, and 

fault harmonics were clearly readable. 

In [16], the number of samples required to get a minimum 

spectrum resolution of 0.01 was (5  105) by using the formula 

N = Tmfs. But [24] proposed a reduced stator current envelope 

taking only one sample per cycle rather than using high 

sampling frequencies to reduce aliasing effects in conventional 

Fourier analysis based techniques. In this paper, the authors 

used the points at θ(𝑡) = 2𝑘π (𝑘 = 0, 1, … )  of current 

envelope and found that the number of samples required was 

reduced to (4997) instead of (5  105) giving similar results. 

They used a large industrial and a lab-based machine to validate 

the results and showed that the proposed method is able to 

segregate fault harmonics from the overall spectrum very 

efficiently. The authors also claimed that due to a smaller 

number of samples required, this technique can be easily 

implemented on simple available computational hardware like 

digital signal processor (DSP) or field-programmable gate array 

(FPGA). 

In [25], the authors proposed that any fault, such as broken 

rotor bar, produces a series of harmonics having frequencies 

integral multiple of fundamental fault component frequency. 

These harmonics are distributed in the entire frequency 

spectrum as shown by the following equation for the broken 

rotor bar. 

 𝑓asym = 𝑓1 + 2𝑘𝑠𝑓1, 𝑘 = ±1, ±2, ±3, …,  (4) 

where,  𝑓asym = 𝑓1 ± 2𝑠𝑓1  is fundamental harmonic 

component. 

It is proposed that if fault current spectrum is taken by 

considering harmonic order k as an independent variable rather 

than frequency, the fault can be detected and analyzed more 

easily and will require less memory and computational power. 

In the proposed technique the authors took stator current, 

shifted it to rotor frame of reference, performed its spectrum 

analysis and rescaled it on harmonic order axis.  

The authors also mentioned some drawbacks of this 

technique, for example, slip should be accurately measured, 

high frequency resolution is required, and some mechanical 

vibrations may damage the result. 

Fast Fourier transform (FFT) based MCSA successfully 

gives fault pattern when machine is in the steady state condition 

but it has certain drawbacks in transient intervals [26]. Some 

methods like short term Fourier transform (STFT), wavelet 

transform (WT), Gabor transform (GT) can be regarded as 

extension of MCSA suitable for transient conditions. 

However, the above-mentioned approaches give very 

complex time frequency patterns. These complex 3D patterns 

require a huge amount of hardware memory, computational 

power and trained staff to deal with. In [26], the authors 

proposed a simplification technique in which firstly they 

Fig. 3. Implementation strategy of Hilbert transform to get current envelope. 
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transformed stator current to rotor side and then obtained a re-

scaled spectrogram using harmonic order tracking analysis. 

B. Park’s Vector Approach 

Induction motor models are complex because of their mutual 

and varying inductances as a function of rotor position, also 

three circuits are required to represent a three-phase machine. 

This three-phase model can be transformed into an equivalent 

two-phase circuit as shown in figure with ds-qs as direct and 

quadrature axis of stator and dr-qr as direct and quadrature axis 

of rotor. Using this approach, the number of circuits and hence 

the number of equations is reduced but the problem of varying 

inductances still exists. 

In 1920, R. H. Park proposed a technique to resolve this issue 

by transforming stator variables to a fictitious winding rotating 

with rotor at synchronous speed, hence made stator inductances 

static with respect to rotor. Afterward, some other 

transformations were also proposed, such as H. C. Stanely 

transformed rotor variables to a fictitious stationary winding,  

G. Krone transformed both rotor and stator windings to a 

fictitious winding rotating with rotating magnetic field. 

Since then these transformed models have made a very 

significant contribution towards modeling [27], analysis [28], 

drives [29], fault diagnostics [30], [31] and design of various 

kinds of electrical machines. 

Park’s vector is a plot between d and q components of 

machine’s rotor or stator currents, voltages or fluxes. For 

healthy machine, this plot is a perfect circle distributed 

uniformly across the center, but for faulty machines this pattern 

changes depending upon the severity of the fault. The modulus 

of Park’s vector is known as extended Park’s vector (EPV) in 

literature, it can be in continuous time [21] or discrete domain 

[32]. The analysis of this pattern opened new ways in fault 

diagnostics of induction and some other machines. This 

technique can be used for fault diagnostics of rotor faults [33], 

stator winding faults [21]–[34], winding faults in transformers 

[35], faults in motor drives [36], wind turbines [37], and power 

converters [38], etc.

 
TABLE II  

DIFFERENT METHODS TO DETECT BROKEN ROTOR BARS IN INDUCTION MOTORS 

Technique 
Group and assisting 

techniques 

Speed 

estimation 

Mathematical 

calculations 

Memory 

required 
References Attributes 

Active and reactive 
currents 

MCSA FFT No Medium Medium [39] 
Noninvasive, can segregate load vibration 
effects 

Ant clustering MCSA Park’s vector, FFT No Large Large [40] 
Noninvasive, difficult to segregate different 

faults 

Autoregressive 

method 
MCSA DTFT + Notch No Low Low [2] Noninvasive, steady state current 

Information entropy 

and fuzzy inference 
MCSA Fuzzy logic No Medium Large [41] Noninvasive, requires steady state current 

Homogeneity 
estimation 

MCSA FPGA No Low Medium [42] 
Noninvasive, transient current, segregation of 
faults is difficult 

Slot harmonics MCSA FFT yes Large Large [43] 

Noninvasive, unbalanced power supply, speed 

ripples, segregation of different faults is 
difficult 

Harmonic order 

tracking 
MCSA Gabor transform yes Low Medium [26] 

Noninvasive, capable to segregate faults and 

nonstationary conditions 

Envelope detection 

using Hilbert 
transform 

MCSA Hilbert transform Yes Low Low [16] 

Noninvasive, steady state analysis, segregation 

of different faults is difficult, problem of 
varying load conditions 

Reduced envelope MCSA Hilbert transform Yes Low Low [24] 
Noninvasive, suitable for diagnostic on low 

slip, suitable to implement on DSP and FPGA 
kits, Segregation of different faults is difficult 

Adoptive notch 
filter 

MCSA FFT Yes Low Low [17] 

Noninvasive, suitable for diagnostic on low 

slip, difficult under varying load conditions, 
Segregation of different faults is difficult 

Parameters 
estimation 

MCSA Analytical Yes High High [44], [45] 
Noninvasive, can be more accurate, under 

steady state conditions, can be used to 
segregate faults 

Pendulous 

oscillation 
MCSA  Analytical No Medium Low [22], [23] 

Noninvasive, suitable to implement under low 

slip conditions, under steady state conditions, 
can be used to segregate faults 

Power spectral 
density 

MCSA STFT, wavelet No Medium Medium [46] 

Noninvasive, suitable to implement under low 

slip conditions, cab be applied under varying 
load conditions, can be used to segregate faults, 

accurate sampling rate and selection of mother 

wavelet required 
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Technique 
Group and assisting 

techniques 

Speed 

estimation 

Mathematical 

calculations 

Memory 

required 
References Attributes 

Spectrum synch 

technique 
MCSA 

Local band synch, 

central kurtosis 
analysis 

Yes Medium Medium [47] 

Noninvasive, suitable to implement under low 

slip conditions, difficult to implement under 
varying load conditions, can be used to 
segregate faults 

Zero sequence 
voltage 

MCSA Analytical No High High [3] 
Noninvasive, suitable for constant load 

conditions, segregation of different faults is 
complicated 

Wavelet transform MCSA 
Time frequency 
analysis 

  Medium Medium [48] 

Noninvasive, sampling rate and selection of 

mother wavelet is important, can be used to 

segregate faults, can be used for varying load 
conditions 

 

TABLE III 

SOME VARIANTS OF PARK’S VECTOR APPROACH 

 

The drawback of conventional extended Park’s vector 

analysis (EPVA) is that all three phase currents are required for 

its pattern development and FFT analysis. First, samples of all 

three phase currents are taken with high sampling rate to avoid 

aliasing and, second, a long acquisition time is required to 

improve resolution. This may lead to a huge amount of data for 

processing and analysis, hence making memory and 

computational power of hardware questionable [32]. 

In [21], a technique is proposed to reduce the data required 

for fault diagnosis. It is claimed and sounds good that if samples 

are taken of one phase only at points where other phases are 

zero, the results can be as good as for conventional techniques. 

The authors called this technique reduced Park’s vector analysis 

(RPVA) and claimed that due to less data required for spectrum 

analysis it can be easily implemented on simple DSP and FPGA 

kits. 

III. CONCLUSION  

Conventional MCSA and Park’s vector analysis techniques 

are suitable for fault diagnosis of induction machines operating 

under steady state conditions, because these techniques are 

mainly dependent on slip and require exact measurement of 

speed. [49] proposed a speed sensorless method for BRB fault 

diagnostic of wound rotor induction motor (WRIM). The 

authors used Park’s vector of modulus of WRIM’s rotor current 

[52] for time frequency (t-f) analysis and proposed a technique 

of rescaling frequency axis which makes its free from speed 

measurement, plots the same frequency spectrum and requires 

less memory and computational power. Based on above 

analysis and discussion the following conclusions can be made. 

• MCSA is the biggest group of most common 

diagnostic techniques. 

• It is easy to understand and implement. 

• It requires less computational power. 

• All techniques are directly or indirectly dependent on 

each other providing ample opportunities to exploit the 

benefits of each other. 

• Mainly they rely on the presence of some specific 

faulty frequencies in the spectrum. 

• These faulty frequencies can be misleading if there are 

some external factors such as bad power source; 

• MCSA usually ensures a trade-off between simplicity 

of algorithm and accuracy of results. 

• It becomes problematic if there is more than one fault 

in the same machine. 

• The complexity level increases in case of inverter fed 

machines. 

• It provides a very good platform for the 

implementation of more advanced techniques such as 

inverse problem theory, parameter estimation and 

intelligent techniques. 
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