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Abstract – Digitalization of the industrial sector and Industry 

4.0 have opened new horizons in many technical fields, including 

electrical machine diagnostics and operation, as well as machine 

condition monitoring. This paper addresses a selection of 

electrical machine diagnostics methods that are applicable for the 

use in the perspective of Industry 4.0, to be used in hand with 

cloud environments and the possibilities granted by the Internet 

of Things. The need for further research and development in the 

field is pointed out. Some potentially applicable future approaches 

are presented. 
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I. INTRODUCTION 

It is claimed that with preventive maintenance programs 

total motor rewinds reduced from 85 % to 20 % of the total 

motor repairs [1]. Moreover, the proper, reliable, accurate and 

efficient fault diagnostic techniques are becoming more and 

more essential as the world is moving towards Industry 4.0 

standard. Industry 4.0 is the next industrial revolution, which is 

taking place. This industrial revolution has been preceded by 

three other industrial revolutions in the history of mankind [2]. 

The first revolution was the era of mechanical engineering, 

it started in the middle of the 18th century and intensified 

throughout the 19th century. During the second revolution, 

electrification and scientific management, known as 

Taylorism, evolved. The invention and implementation of 

advanced electronics and information technology initiated the 

third revolution at around the 1970s, which is now called the 

Digital Revolution. The term “Industry 4.0” was proposed by 

the German government in 2011 at the Hannover Fair. The 

architecture first recommended by the Industry 4.0 Working 

Group is based on three components: The internet of things 

(IoT), cyber physical systems (CPS) and smart factories [2]. 

The detailed description of different industrial revolutions is 

presented in Fig. 1. 

Industry 4.0 standards are promising due to their advantages, 

which include the increase in industrial efficiency because of 

the decrease in labor and increase in automation of the 

processes. It will accelerate industrial processes; deeper 

understanding of both product and process design will bring 

more innovation in the industry, and the costumers will get 

better services due to availability of deep information. After the 

initial investment, Industry 4.0 will lead to lowering the costs 

because of fewer human related manufacturing problems and 

lower operating costs. All these advantages will lead the 

manufacturer towards increasing revenues.  

It goes without saying that with such massive change of the 

paradigm in the industrial sector, different technical fields also 

have to change and adapt in order to be applicable within the 

new concept of industry. The diagnostics and condition 

monitoring of electrical machines is one of these fields. 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 1. Trends of industrial revolutions. 
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II. CONVENTIONAL TECHNIQUES 

The key role played by the induction motors in the industry 

has made its condition monitoring very important. A variety of 

fault diagnostic techniques can be found in the relevant 

literature, such as the intelligent techniques, chemical analysis, 

acoustic measurements, infrared recognition, radio frequency 

emission, motor current signature analysis (MCSA), 

mechanical vibration signal analysis, etc. [3] Out of all main 

diagnostic areas, the MCSA is gaining more and more 

popularity, because most of its variants require only a clamp 

meter to detect the stator’s current. In addition, almost all 

MCSA based diagnostic techniques are non-invasive in nature, 

making them suitable for online fault diagnostics without any 

disturbance in the process, also requiring less computational 

cost [4]. However, with the development of Industry 4.0 

standards and cloud computing, the benefits of inverse problem 

theory, parameter estimation and artificial intelligent 

techniques can be exploited. In the following sections, an 

overview of some well-known conventional and advanced 

techniques is presented in the perspective of their pros and cons 

for fault diagnostics of induction motors. 

A. Notch Filter 

The notch filter is a band stop filter and can be used to 

attenuate fundamental component having high energy 

spectrum as compared to sideband harmonics due to the broken 

rotor bar. A general second order band pass filter (BPS) can be 

represented by the following transfer function [5], 

 

 𝐵𝑃𝐹(𝑠) =  
𝑘ω0𝑠

𝑠2+ 𝑘ω0𝑠+ω0
2  (1) 

and 

 𝑁𝐹(𝑠) = 1 − 𝐵𝑃𝐹(𝑠). (2) 

 

The authors of [5] proposed a modified adaptive notch filter, 

named the second order generalized integrator adoptive notch 

filter (SOGI-ANF), which is capable of rejecting DC offset 

from the quadrature signal. This DC offset can result in the 

errors in drives and phase lock loop used for synchronization 

purposes, etc. The proposed filter can be represented by the 

following equations: 

 

 �̇�0 =  𝑘0ω𝑒,  (3) 

   �̇�1 = −ω𝑥2 + 𝑘ω𝑒, (4) 

  �̇�2 = ω𝑥1, (5) 

 ω̇ = −γ𝑒𝑥2, (6) 

      
where e is the error between actual and estimated signal, x0 is 

the DC offset signal, k and γ are the positive valued constants 

controlling different performance parameters, such as accuracy 

and convergence speed. A complete analysis of the improved 

second order generalized integrator-based quadrature signal 

generator (SOGI-QSG) can be found in [6].  

 

 

 

Fig. 2. Schematic diagram of the notch filter. 

 

 The authors of [7] used the second order generalized 

integrator-adaptive notch filter (SOGI-ANF) for envelope 

detection of stator currents both in the steady state and transient 

intervals. The author claimed the SOGI-ANF to be more 

accurate than Hilbert transform because of its adaptive nature. 

In [8] it is proposed that the sampling rate can be reduced by 

using digital notch filter with discrete time Fourier transform 

(DTFT) along with auto regressive spectrum analysis method.   

B. ESPIRIT and MUSIC  

Estimation of signal parameters via rotational invariant 

technique (ESPRIT) was first proposed by R. Roy et al. [9]–

[12]. It is a technique to estimate the parameters of cisoids 

(complex sinusoids) observed in noise. As opposed to 

Pisarenko’s algorithm, which was designed to deal with 

uniformly sampled data [13], ESPRIT is equally applicable to 

non-uniformly sampled data. Later on, the multiple signal 

classification (MUSIC) [14] algorithm generalized Pisarenko’s 

method by relaxing the uniform sampling restriction.  

The authors of [15] used ESPIRIT for the analysis of the 

modulus of the analytical signal (envelope signal). The authors 

claimed that the frequency domain and frequency-time domain 

analysis techniques, such as FFT, subdivision FFT, zoom FFT 

and discrete wavelet approach (DWT), are inefficient for fault 

diagnosis because of limitations like spectral leakage of 

fundamental component. Moreover, to get high resolution, 

measurement time needs to be increased, which means that the 

steady state condition required for FFT analysis will not exist 

in reality. This spectral leakage problem can be removed by 

using Hilbert transform as in [16], but the conflict between 

measurement time and resolution becomes a problem. For high 

resolution, a long measurement time (100 s in [16]) is required, 

which may lead to speed and slip variations. To eliminate the 

above-mentioned problems, [15] used Hilbert transform in 

conjunction with estimation of signal parameters via rotational 

invariance technique (ESPRIT) rather than FFT. 

The main objective of many signal processing techniques is 

to find out the set of parameters upon which the signal depends, 

such as the maximum likelihood (ML) [17] proposed by Capon, 

and maximum entropy [18] proposed by Burg. Pisarenko 

extended these techniques to get further benefits by removing 

some limitations, such as sensitivity. Later, Schmidt developed 

a complete model to obtain a reasonable solution in the 
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presence of noise. The resulting algorithm is known as MUSIC 

and is used in literature extensively for signal processing. More 

precisely, MUSIC is an extension of Pisarenko’s algorithm and 

it can estimate frequency contents of a signal using the 

eigenspace method. 

 The authors in [19] used the MUSIC algorithm along with 

the discrete resampling method to compute the time frequency 

response of motor’s stator current having one broken rotor bar 

(BRB) at different load conditions. They claimed that this 

approach can give a better resolution and is feasible to detect 

BRB at a very low slip, under transient conditions and in 

inverter fed machines.  

The authors of [20] used high resolution spectral analysis 

techniques, also known as subspace techniques, i.e. MUSIC 

and ESPRIT, for detection of bearing and BRB related faults of 

the induction motor. The proposed method was accomplished 

in four steps: model order selection, frequency estimation, 

amplitude estimation and fault severity criterion. In [1], the 

authors proposed Spectral-MUSIC or Root-Music for 

frequency estimation of a faulty machine. In [21] spectral 

MUSIC and finite impulse response filter bank were used to 

separate the original current and vibration signals into different 

fault related bandwidths. This technique can be used for BRB 

and bearing fault detection of the induction motor. The author 

of [22] used the short time MUSIC algorithm to get high 

resolution time-frequency pseudo representation for BRB 

detection. A modified version of MUSIC algorithm, based on 

fault characteristic frequencies, has been proposed in [23], as 

well as amplitude estimator and fault indicator has been derived 

for fault severity measurement. 

C. Speed Sensorless Methods (Magnetic Field Space Vector 

Orientation)  

In the majority of MCSA based fault diagnosis schemes of 

induction motors, speed or slip estimation is a fundamental 

element of diagnostics, because the fault harmonic frequencies 

are directly related to the slip. The accurate measurement of 

slip or speed may produce errors whether it is sensors-based 

measurement or mathematical equations-based estimation. 

The authors of [8] proposed a method to diagnose rotor 

broken bars based on rotor magnetic field space vector 

orientation. The authors used the stator current and voltage to 

compute and observe the rotor magnetic field orientation and 

showed that with BRB, the rotor’s magnetic field orientation 

shifts at some angle from its actual position at any particular 

time. The magnitude of this angle depends on the number of 

broken rotor bars. Moreover, they proved that as time t 

progresses, the rotor’s MMF will be continuously changing and 

its magnetic field orientation vector will start swinging around 

the actual magnetic axis of the healthy machine. The authors 

claimed that it is a good method to detect BRB faults even at 

very low slip conditions. 

In [24], the authors have investigated the effect of load 

changes on pendulous oscillations of the rotor magnetic field 

orientation. In [25] slip independent BRB fault diagnostic 

technique using discrete wavelet approach was proposed and 

the authors claimed that the squared stator current magnitude 

and the squared stator current space vector magnitude are good 

indicators of fault in low frequency bandwidth. The authors of 

[26] proposed a novel differential magnetic field measurement 

(DMFM) method by placing two measurement coils in the 

stator of a motor and calculating the potential difference 

between both. In a healthy machine, the potential difference 

was found to be zero, because the same voltage is generated in 

both coils, but under faulty conditions, the induced voltages are 

different, which gives a value of some potential difference. 

Stator transient current was used in [27] and the authors studied 

its homogeneity as the classification index. The author used the 

field programmable gate array (FPGA) for online homogeneity 

estimation, because of its suitability for rapid prototyping, high 

performance and low cost as claimed. 

D. Wavelet Approach 

Fourier transform converts a signal form time domain to the 

frequency domain, or, in other words, it decomposes the signal 

into sine and cosine functions having different frequencies and 

extending till infinity. This leads to a problem of resolution just 

like Heisenberg’s uncertainty principle, that is, when one tries 

to be sure about time, s/he will increase uncertainty in the 

frequency and vice versa. Unlike the Fourier transform, 

wavelet transform decomposes a signal into wavelets of the 

same shape but different in scale being added together and 

gives the time frequency analysis of the signal. The wavelets 

are short waves, which quickly die after appearance unlike sine 

and cosines of the Fourier transform. There are many types of 

wavelets used for the signal decomposition but most common 

are Haar, Shannon, Gaussian, Biothogonal and Mexican Hat, 

etc. Due to the problems of poor resolution and spectral leakage 

in the Fourier transform, wavelet approach is used extensively 

in literature for fault diagnostics of the induction motors. A 

continuous wavelet transform can be represented by the 

following formula; 

 𝑥w(α, β) =
1

√𝑎
 ∫ 𝑥(𝑡) φ (

𝑡−𝑏

𝑎
) d𝑡

∞

−∞
, (7) 

where b is the shift of the mother wavelet in time, a is the 

scaling factor, 
1

√𝑎
 ensures energy normalization and φ(𝑡)  is 

called the mother wavelet, its purpose is to generate daughter 

wavelets, which are simply translated and shifted versions of 

the mother wavelet.  

Discrete wavelet transform can be represented as, 

 𝑖[𝑛] =  𝐴𝑘[𝑛] + ∑ 𝐷𝑗[𝑛] =  ∑ 𝑎𝑖
𝑘  φ𝑖

𝑘𝑁/2𝑘
𝑖=1

𝑘
𝑗=1 [𝑛] +

∑ ∑ 𝑑𝑖
𝑗
 ψ𝑖

𝑗
[𝑛]

𝑁/2𝑗
𝑖=1

𝑘
𝑗=1 ,    (8) 

where φ𝑘 and ψ𝑘 are the scaling factor and the mother wavelet 

at level k and j, respectively. 

Paper [28] proposed a method to detect BRB by doing 

transient analysis of the motor startup currents using the 

wavelet approach. In [29], BRB diagnostics using wavelet 

under varying load conditions is proposed in a specific 

frequency band. The authors of [30] applied the discrete 

wavelet transform on instantaneous reactive power of BRB 

fault baring induction motor, operating under the time varying 

load conditions. In [31], stationary wavelet transform (SWT) 

was used and the authors claimed that the drawback of the 

invariant translation as mentioned in [32] can be avoided using 

SWT, rather than the discrete wavelet transform (DWT). The 

authors further used three modular neural networks (MNN) for 

fault classifications. The first MNN is used to detect the supply 

unbalances, sudden load changes, under voltage and stator 



Electrical, Control and Communication Engineering 

________________________________________________________________________________________2018, vol. 14, no. 2 

111 

phase faults, etc. The second one is used to identify the stator 

winding phase faults and the third one is used to classify stator 

inter-turn faults.  

In [33], a 2-D wavelet transformation based on Shannon 

mother wavelet is used and it is claimed that this approach is 

more efficient for analysis of non-stationary and non-

deterministic vibration signals. The created 2-D gray level 

images are used to generate global neighborhood structure 

maps to extract global image features. The authors compared 

the proposed approach with five conventional algorithms, 

proposed by [34]–[38], and proved that the proposed technique 

is better in terms of accuracy. The authors claimed that the 

proposed technique is equally accurate in noiseless and noisy 

environment.  

The authors in [39] proposed a model based fault diagnostic 

system, in which the measured stator current is compared with 

the estimated current using actual speed and voltage. The 

model uses recurrent dynamic neural networks for transient 

response prediction. The estimated and actual current signals 

are then analyzed using the wavelet transform to segregate 

different harmonic frequencies. The accuracy of the model is 

very much dependent on the accuracy of the healthy machine 

model.  

In [28], DWT was used for transient analysis of motor 

startup current to get the characteristic component. This 

continuous valued signal is then converted into discrete signal 

and an intelligent icon-like approach is applied to condense the 

relative information into a representation that can be easily 

manipulated by the nearest neighbor classifier. The tests are 

carried out for perfectly broken bar case only where there is no 

contribution of other faults or some external factors. [40] 

proposed a technique called the discrete harmonic wavelet 

transform (DHWT) to perform analysis of stator current in the 

transient regime with the cost of a single FFT. The author 

claimed that this technique is capable to eliminate the inherent 

drawbacks of DWT, such as dependency of sampling rate and 

frequency bands, spectral leakage due to non-ideal nature of 

filters, and computation cost. 

III. ADVANCED TECHNIQUES 

As the computational power of computers is increasing day 

by day, the researchers are focusing on the implementation of 

advanced fault diagnostic techniques. These techniques may 

contain some artificial intelligence-based algorithms, such as 

neural networks [41], [42] and Fuzzy Logic [43], etc., or some 

analytical algorithms, such as the finite element analysis [44]–

[47] and the inverse problem theory [48]. Unlike conventional 

forward model-based fault diagnostic techniques, these 

advances algorithms can lead to more precise and accurate 

results, but at the same time they require more sophisticated 

hardware for implementation. 

The authors of [46] used the time-stepping coupled finite 

element state space (TSCFF-SS) model for predictive non-

invasive BRB fault diagnosis of the induction motor. The 

authors used the model to predict characteristic frequency 

component, which can be used to diagnose rotor bar and 

connector breakages. [44] used TSCFE-SS model and time 

series data mining technique for detection and categorization of 

dynamic/static eccentricities and bar/end-ring connector 

breakages in squirrel-cage induction motors. In [49], the author 

used a commercial finite element package to simulate the BRB 

faults. The simulation results were then compared with the 

experimental results to validate the model. In [50], the author 

used time-stepping coupled finite-element approach for BRB 

fault diagnostics. [51] presented a study on the feature 

signatures for the induction motor internal faults by utilizing 

coupled circuit-FEM and DWT. The motor behavior was 

investigated under both sinusoidal and non-sinusoidal voltage 

supplies. 

Artificial neural networks (ANN) are computing systems 

mimicking the brain to analyze and learn a specific task without 

a priori knowledge and task specific programming. In the field 

of machine fault diagnostics, the researchers are trying to 

implement ANN as artificial intelligent technique to get better 

and more precise results. In [52] the authors use ANN to prove 

the possibility of fault detection through smartphone recorded 

sound files. [41] proposed ANN along with wavelet packet 

decomposition (WPD) for detection of BRB and claimed that 

this method is better in accuracy, exact measurement of slip is 

not required, and diagnostics can be performed with reduced 

load conditions.  

In [42] the authors claimed that multiple discriminant 

analysis (MDA) and artificial neural networks (ANNs) provide 

appropriate environments to develop BRB fault-detection 

schemes because of their multi-input processing capabilities. 

The authors have proposed that multiple signature processing 

is more efficient than single signature processing. In [53], the 

authors proposed a novel approach to detect and classify the 

comprehensive fault conditions of induction motors using a 

hybrid fuzzy min–max (FMM) neural network and 

classification and regression tree (CART) and claimed that the 

hybrid model, known as FMM–CART, exploits the advantages 

of both FMM and CART for data classification and rule 

extraction problems. Successful implementation of these 

advanced schemes can offer a promising solution for fault 

diagnostics but at the cost of the required high computational 

power and storage memory.  

IV. INVERSE PROBLEM THEORY 

In almost all fault diagnostics techniques mentioned above, 

the forward problem is used. In the forward problem theory, 

one usually moves from the input towards the output as shown 

in Fig. 3. In conventional techniques of fault diagnostics, the 

current signature of machine is compared with the current 

signature of the healthy machine using some signal processing 

techniques or algorithms, as discussed earlier. Since there are 

many types of faults and every fault can change the pattern of 

the current signature, the conventional techniques are not good 

enough to get to the root cause of the fault. 
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Fig. 3. Schematic diagram of the conventional forward model for fault diagnostics. 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Schematic diagram of the proposed inverse model for fault diagnostics.  
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The process of parameter estimation using the system model 

and data from a set of observations (output in case of forward 

model) is called the inverse problem theory [48]. Successful 

implementation of this approach can lead us to the 

approximation of the faulty parameter of motor, as shown in 

Fig. 4. 

Inverse problem theory has been implemented in various 

fields like medical sciences [54], geosciences [55], disaster 

preparedness of infrastructure, signal processing [56] and 

electrical machine design. [57]–[62] used the inverse problem 

theory to determine the magnetic induction in the air gap of a 

machine by measuring the external magnetic field. In [63], 

inverse problem theory is used to determine the magnetic 

material characteristics of a wound field synchronous machine. 

It was shown that the magnetization characteristic can be 

constructed using core loss and no-load curve measurements. 

The author claimed that this method is applicable even 

without any prior knowledge of magnetization curves, if 

parameter ranges can be defined by some other means. In [64] 

the inverse problem theory is used in conjunction with neural 

networks for optimal design of the switched reluctance motor. 

The authors of [65] used the inverse problem approach to 

evaluate the homogenized electromagnetic and thermal 

characteristics of stator winding of asynchronous motor. 

In Table I, a comparison of some advanced fault diagnostic 

techniques is presented and the main attributes are highlighted.  

V. CONCLUSIONS 

Below, the authors of the given paper propose some 

solutions for electrical machine diagnostics in the context of 

Industry 4.0. In the light of above-presented discussion, the 

following key points can be highlighted. 

• The main objective of almost all fault diagnostic 

techniques available in literature is the reduction of 

computational cost in terms of hardware. 

• This leads to a trade-off between simplicity of the 

algorithm and the accuracy of results. 

• The conventional, so-called harmonic analysis 

techniques fail to give a complete picture of the faults 

in the presence of some other harmonics due to some 

secondary internal or external factors. 

• The picture becomes even more blurred when there 

are more than one kind of faults or there are some 

external noise factors, i.e. the segregation of faults is 

almost impossible. 

• Most of techniques are always vulnerable to wrong 

fault alarms. 

• The coming trends of cloud computing and IoT in 

Industry 4.0 have considerably contributed to solving 

the problems related to hardware. 

• The algorithms are no longer needed to be 

implemented in DSP kits or just in drives besides the 

motor. 

• The diagnostic algorithms can be placed and solved in 

some powerful hardware anywhere in the world using 

cloud computing. 

• Unlike forward diagnostic techniques, inverse 

problem theory can give a very good picture of faults 

in terms of parametric values rather than harmonics, 

etc. 

• Almost every kind of complicated diagnostic 

algorithms can be implemented without any need for 

simplification.  

 
 

TABLE I 

SOME ADVANCED FAULT DIAGNOSTIC TECHNIQUES 

Technique Group and Assisting 

Techniques 

Speed 

Estimation 

Mathematical 

Calculations 

Memory 

Required 

References Attributes 

Sliding mode 
observer 

MCSA + 
analytical 

FFT No High High [66]–[68] Noninvasive. Can be used for faults 

segregation. Difficult to implement under 
varying load conditions 

Datamining MCSA Wavelet No High High [69], [70] Noninvasive. Can be used for faults segregation 

Fuzzy Logic, 

Neuro-Fuzzy 

MCSA FFT + 

ANFIS 

Yes High High [71], [72] Noninvasive. Can be used for faults 

segregation. Sophisticated hardware required 

Neural 
Network 

MCSA WPD Yes High High [41], [42] Noninvasive. No need for exact measurement 

of slip, high accuracy, can be problematic 

under increasing fault situations and 
segregation of various faults.  

Kalman Filter MCSA + 
analytical 

State 
estimation 

Yes High High [68] Noninvasive, dependent on accuracy of the 

system model, the complexity of states 

estimation increases with the increase in 
different types of faults. 

 

 

 

 

 

 

 



Electrical, Control and Communication Engineering 

________________________________________________________________________________________2018, vol. 14, no. 2 

114 

 

REFERENCES  

[1] M. E. H. Benbouzid, M. Vieira, and C. Theys, “Induction Motors’ Faults 

Detection and Localization Using Stator Current Advanced Signal 
Processing Techniques,” IEEE Trans. Power Electron., vol. 14, no. 1,  

pp. 14–22, 1999. https://doi.org/10.1109/63.737588  

[2] M. Hermann, T. Pentek, and B. Otto, “Design Principles for Industrie 4.0 
Scenarios,” in 2016 49th Hawaii International Conference on System 

Sciences (HICSS), 2016, pp. 3928–3937.  

 https://doi.org/10.1109/hicss.2016.488  
[3] S. Nandi, H. A. Toliyat, and X. Li, “Condition Monitoring and Fault 

Diagnosis of Electrical Motors—A Review,” IEEE Trans. Energy 

Convers., vol. 20, no. 4, pp. 719–729, Dec. 2005.  
 https://doi.org/10.1109/tec.2005.847955  

[4] B. Asad, T. Vaimann, A. Belahcen, and A. Kallaste, “Broken Rotor Bar 

Fault Diagnostic of Inverter Fed Induction Motor Using FFT, Hilbert and 
Park’s Vector Approach,” in 2018 XIII International Conference on 

Electrical Machines (ICEM), 2018, pp. 2352–2358. 

[5] M. Karimi-Ghartemani, S. A. Khajehoddin, P. K. Jain, A. Bakhshai, and 
M. Mojiri, “Addressing DC Component in PLL and Notch Filter 

Algorithms,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 78–86, Jan. 

2012. https://doi.org/10.1109/tpel.2011.2158238  
[6] Z. Xin, X. Wang, Z. Qin, M. Lu, P. C. Loh, and F. Blaabjerg, “An 

Improved Second-Order Generalized Integrator Based Quadrature Signal 
Generator,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8068–8073, 

Dec. 2016. https://doi.org/10.1109/tpel.2016.2576644  

[7] M. Malekpour, B. T. Phung, and E. Ambikairajah, “Stator Current 
Envelope Extraction for Analysis of Broken Rotor Bar in Induction 

Motors,” in 2017 IEEE 11th International Symposium on Diagnostics for 

Electrical Machines, Power Electronics and Drives (SDEMPED), 2017, 
pp. 240–246. https://doi.org/10.1109/demped.2017.8062393  

[8] B. Mirafzal and N. A. O. Demerdash, “Induction Machine Broken-Bar 

Fault Diagnosis Using the Rotor Magnetic Field Space-Vector 
Orientation,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 534–542, Mar. 

2004. https://doi.org/10.1109/tia.2004.824433  

[9] R. Roy, A. Paulraj, and T. Kailath, “ESPRIT--A Subspace Rotation 
Approach to Estimation of Parameters of Cisoids in Noise,” IEEE Trans. 

Acoust., vol. 34, no. 5, pp. 1340–1342, Oct. 1986. 

 https://doi.org/10.1109/tassp.1986.1164935  
[10] R. Roy and T. Kailath, “ESPRIT-Estimation of Signal Parameters via 

Rotational Invariance Techniques,” IEEE Trans. Acoust., vol. 37, no. 7, 

pp. 984–995, Jul. 1989. https://doi.org/10.1109/29.32276  
[11] B. Ottersten, M. Viberg, and T. Kailath, “Performance Analysis of the 

Total Least Squares ESPRIT Algorithm,” IEEE Trans. Signal Process., 

vol. 39, no. 5, pp. 1122–1135, May 1991.  
 https://doi.org/10.1109/78.80967  

[12] X.-D. Zhang and Y.-C. Liang, “Prefiltering-Based ESPRIT for Estimating 

Sinusoidal Parameters in Non-Gaussian ARMA Noise,” IEEE Trans. 
Signal Process., vol. 43, no. 1, pp. 349–353, 1995. 

 https://doi.org/10.1109/78.365327  

[13] V. F. Pisarenko, “The Retrieval of Harmonics from a Covariance 
Function,” Geophys. J. Int., vol. 33, no. 3, pp. 347–366, Sep. 1973. 

https://doi.org/10.1111/j.1365-246X.1973.tb03424.x  

[14] R. Schmidt, “Multiple Emitter Location and Signal Parameter 
Estimation,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, 

Mar. 1986. https://doi.org/10.1109/TAP.1986.1143830  

[15] B. Xu, L. Sun, L. Xu, and G. Xu, “Improvement of the Hilbert Method 
via ESPRIT for Detecting Rotor Fault in Induction Motors at Low Slip,” 

IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 225–233, Mar. 2013. 

https://doi.org/10.1109/TEC.2012.2236557  
[16] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, 

E. Hurtado-Perez, and J. Perez-Cruz, “Improved Resolution of the MCSA 

Method via Hilbert Transform, Enabling the Diagnosis of Rotor 
Asymmetries at Very Low Slip,” IEEE Trans. Energy Convers., vol. 24, 

no. 1, pp. 52–59, Mar. 2009. https://doi.org/10.1109/TEC.2008.2003207  

[17] E. Elbouchikhi, V. Choqueuse, and M. Benbouzid, “Induction Machine 
Bearing Faults Detection Based on a Multi-Dimensional MUSIC 

Algorithm and Maximum Likelihood Estimation,” ISA Trans., vol. 63, pp. 

413–424, 2016. https://doi.org/10.1016/j.isatra.2016.03.007  
[18] S. Pan, T. Han, A. C. C. Tan, and T. R. Lin, “Fault Diagnosis System of 

Induction Motors Based on Multiscale Entropy and Support Vector 

Machine with Mutual Information Algorithm,” Shock Vib., vol. 2016, no. 
January, 2016. https://doi.org/10.1155/2016/5836717  

[19] T. A. Garcia-Calva, D. Morinigo-Sotelo, and R. De Jesus Romero-
Troncoso, “Non-Uniform Time Resampling for Diagnosing Broken Rotor 

Bars in Inverter-Fed Induction Motors,” IEEE Trans. Ind. Electron., vol. 

64, no. 3, pp. 2306–2315, 2017.  
 https://doi.org/10.1109/TIE.2016.2619318  

[20] Y. Trachi, E. Elbouchikhi, V. Choqueuse, and M. E. H. Benbouzid, 

“Induction Machines Fault Detection Based on Subspace Spectral 
Estimation,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5641–5651, 

Sep. 2016. https://doi.org/10.1109/TIE.2016.2570741  

[21] A. Garcia-Perez, R. de J. Romero-Troncoso, E. Cabal-Yepez, and R. A. 
Osornio-Rios, “The Application of High-Resolution Spectral Analysis for 

Identifying Multiple Combined Faults in Induction Motors,” IEEE Trans. 

Ind. Electron., vol. 58, no. 5, pp. 2002–2010, May 2011. 
https://doi.org/10.1109/TIE.2010.2051398  

[22] A. Garcia-Perez, R. J. Romero-Troncoso, E. Cabal-Yepez, R. A. Osornio-

Rios, J. de J. Rangel-Magdaleno, and H. Miranda, “Startup Current 
Analysis of Incipient Broken Rotor Bar in Induction Motors Using High-

Resolution Spectral Analysis,” in 8th IEEE Symposium on Diagnostics for 

Electrical Machines, Power Electronics & Drives, 2011, pp. 657–663. 
https://doi.org/10.1109/DEMPED.2011.6063694  

[23] E. H. El Bouchikhi, V. Choqueuse, M. Benbouzid, and J. F. Charpentier, 

“Induction Machine Fault Detection Enhancement Using a Stator Current 
High Resolution Spectrum,” in 38th Annual Conference on IEEE 

Industrial Electronics Society (IECON 2012), 2012, pp. 3913–3918. 

https://doi.org/10.1109/IECON.2012.6389267  
[24] B. Mirafzal and N. A. O. Demerdash, “Effects of Load Magnitude on 

Diagnosing Broken Bar Faults in Induction Motors Using the Pendulous 

Oscillation of the Rotor Magnetic Field Orientation,” IEEE Trans. Ind. 
Appl., vol. 41, no. 3, pp. 771–783, 2005.  

 https://doi.org/10.1109/TIA.2005.847315  

[25] S. H. Kia, H. Henao, and G.-A. Capolino, “Diagnosis of Broken-Bar Fault 
in Induction Machines Using Discrete Wavelet Transform Without Slip 

Estimation,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1395–1404, Jul. 

2009. https://doi.org/10.1109/TIA.2009.2018975  
[26] A. Elez, S. Car, S. Tvoric, and B. Vaseghi, “Rotor Cage and Winding 

Fault Detection Based on Machine Differential Magnetic Field 

Measurement (DMFM),” IEEE Trans. Ind. Appl., vol. 53, no. 3,  
pp. 3156–3163, May 2017. https://doi.org/10.1109/TIA.2016.2636800  

[27] R. A. Lizarraga-Morales, C. Rodriguez-Donate, E. Cabal-Yepez, M. 

Lopez-Ramirez, L. M. Ledesma-Carrillo, and E. R. Ferrucho-Alvarez, 
“Novel FPGA-Based Methodology for Early Broken Rotor Bar Detection 

and Classification Through Homogeneity Estimation,” IEEE Trans. 

Instrum. Meas., vol. 66, no. 7, pp. 1760–1769, Jul. 2017.  
 https://doi.org/10.1109/TIM.2017.2664520  

[28] P. Karvelis, G. Georgoulas, I. P. Tsoumas, J. A. Antonino-Daviu, 

V. Climente-Alarcon, and C. D. Stylios, “A Symbolic Representation 
Approach for the Diagnosis of Broken Rotor Bars in Induction Motors,” 

IEEE Trans. Ind. Informatics, vol. 11, no. 5, pp. 1028–1037, Oct. 2015. 

https://doi.org/10.1109/TII.2015.2463680  
[29] P. Shi, Z. Chen, Y. Vagapov, and Z. Zouaoui, “A New Diagnosis of 

Broken Rotor Bar Fault Extent in Three Phase Squirrel Cage Induction 
Motor,” Mech. Syst. Signal Process., vol. 42, no. 1–2, pp. 388–403, Jan. 

2014. https://doi.org/10.1016/j.ymssp.2013.09.002  

[30] K. Yahia, A. J. Marques Cardoso, A. Ghoggal, and S.-E. Zouzou, 
“Induction Motors Broken Rotor Bars Diagnosis Through the Discrete 

Wavelet Transform of the Instantaneous Reactive Power Signal under 

Time-Varying Load Conditions,” Electr. Power Components Syst., 
vol. 42, no. 7, pp. 682–692, May 2014.  

 https://doi.org/10.1080/15325008.2014.890966  

[31] N. R. Devi, D. V. S. S. Siva Sarma, and P. V. Ramana Rao, “Diagnosis 
and Classification of Stator Winding Insulation Faults on a Three-Phase 

Induction Motor Using Wavelet and MNN,” IEEE Trans. Dielectr. Electr. 

Insul., vol. 23, no. 5, pp. 2543–2555, Oct. 2016.  
 https://doi.org/10.1109/TDEI.2016.7736811  

[32] T. Hong, M. T. C. Fang, and D. Hilder, “PD Classification by a Modular 

Neural Network Based on Task Decomposition,” IEEE Trans. Dielectr. 
Electr. Insul., vol. 3, no. 2, pp. 207–212, Apr. 1996.  

 https://doi.org/10.1109/94.486772  

[33] M. Kang and J.-M. Kim, “Reliable Fault Diagnosis of Multiple Induction 
Motor Defects Using a 2-D Representation of Shannon Wavelets,” IEEE 

Trans. Magn., vol. 50, no. 10, pp. 1–13, Oct. 2014.  

 https://doi.org/10.1109/TMAG.2014.2316474  

https://doi.org/10.1109/63.737588
https://doi.org/10.1109/hicss.2016.488
https://doi.org/10.1109/tec.2005.847955
https://doi.org/10.1109/tpel.2011.2158238
https://doi.org/10.1109/tpel.2016.2576644
https://doi.org/10.1109/demped.2017.8062393
https://doi.org/10.1109/tia.2004.824433
https://doi.org/10.1109/tassp.1986.1164935
https://doi.org/10.1109/29.32276
https://doi.org/10.1109/78.80967
https://doi.org/10.1109/78.365327
https://doi.org/10.1111/j.1365-246X.1973.tb03424.x
https://doi.org/10.1109/TAP.1986.1143830
https://doi.org/10.1109/TEC.2012.2236557
https://doi.org/10.1109/TEC.2008.2003207
https://doi.org/10.1016/j.isatra.2016.03.007
https://doi.org/10.1155/2016/5836717
https://doi.org/10.1109/TIE.2016.2619318
https://doi.org/10.1109/TIE.2016.2570741
https://doi.org/10.1109/TIE.2010.2051398
https://doi.org/10.1109/DEMPED.2011.6063694
https://doi.org/10.1109/IECON.2012.6389267
https://doi.org/10.1109/TIA.2005.847315
https://doi.org/10.1109/TIA.2009.2018975
https://doi.org/10.1109/TIA.2016.2636800
https://doi.org/10.1109/TIM.2017.2664520
https://doi.org/10.1109/TII.2015.2463680
https://doi.org/10.1016/j.ymssp.2013.09.002
https://doi.org/10.1080/15325008.2014.890966
https://doi.org/10.1109/TDEI.2016.7736811
https://doi.org/10.1109/94.486772
https://doi.org/10.1109/TMAG.2014.2316474


Electrical, Control and Communication Engineering 

________________________________________________________________________________________2018, vol. 14, no. 2 

115 

[34] J. Zarei, “Induction Motors Bearing Fault Detection Using Pattern 

Recognition Techniques,” Expert Syst. Appl., vol. 39, no. 1, pp. 68–73, 
Jan. 2012. https://doi.org/10.1016/j.eswa.2011.06.042  

[35] C. Rodriguez-Donate, R. Romero-Troncoso, E. Cabal-Yepez, A. Garcia-

Perez, and R. Osornio-Rios, “Wavelet-Based General Methodology for 
Multiple Fault Detection on Induction Motors at the Startup Vibration 

Transient,” J. Vib. Control, vol. 17, no. 9, pp. 1299–1309, Aug. 2011. 

https://doi.org/10.1177/1077546310379141  
[36] Y. Lei, Z. He, and Y. Zi, “Application of an Intelligent Classification 

Method to Mechanical Fault Diagnosis,” Expert Syst. Appl., vol. 36, no. 

6, pp. 9941–9948, Aug. 2009. https://doi.org/10.1016/j.eswa.2009.01.065  
[37] V. T. Do and U.-P. Chong, “Signal Model-Based Fault Detection and 

Diagnosis for Induction Motors Using Features of Vibration Signal in 

Two-Dimension Domain,” Strojniški Vestn. – J. Mech. Eng., vol. 57, 
no. 09, pp. 655–666, Sep. 2011. https://doi.org/10.5545/sv-jme.2010.162  

[38] P. E. William and M. W. Hoffman, “Identification of Bearing Faults 

Using Time Domain Zero-Crossings,” Mech. Syst. Signal Process.,  
vol. 25, no. 8, pp. 3078–3088, Nov. 2011.  

 https://doi.org/10.1016/j.ymssp.2011.06.001  

[39] Kyusung Kim and A. G. Parlos, “Induction Motor Fault Diagnosis Based 
on Neuropredictors and Wavelet Signal Processing,” IEEE/ASME Trans. 

Mechatronics, vol. 7, no. 2, pp. 201–219, Jun. 2002.  

 https://doi.org/10.1109/TMECH.2002.1011258  
[40] A. Sapena-Bano, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-

Roman, and D. Matic, “Fault Diagnosis of Rotating Electrical Machines 
in Transient Regime Using a Single Stator Current’s FFT,” IEEE Trans. 

Instrum. Meas., vol. 64, no. 11, pp. 3137–3146, Nov. 2015. 

https://doi.org/10.1109/TIM.2015.2444240  
[41] A. Sadeghian, Zhongming Ye, and Bin Wu, “Online Detection of Broken 

Rotor Bars in Induction Motors by Wavelet Packet Decomposition and 

Artificial Neural Networks,” IEEE Trans. Instrum. Meas., vol. 58, no. 7, 
pp. 2253–2263, Jul. 2009. https://doi.org/10.1109/TIM.2009.2013743  

[42] B. Ayhan, M.-Y. Chow, and M.-H. Song, “Multiple Discriminant 

Analysis and Neural-Network-Based Monolith and Partition Fault-
Detection Schemes for Broken Rotor Bar in Induction Motors,” IEEE 

Trans. Ind. Electron., vol. 53, no. 4, pp. 1298–1308, Jun. 2006. 

https://doi.org/10.1109/TIE.2006.878301  
[43] V. P. Mini, S. Setty, and S. Ushakumari, “Fault Detection and Diagnosis 

of an Induction Motor Using Fuzzy Logic,” in 2010 IEEE Region 8 

International Conference on Computational Technologies in Electrical 
and Electronics Engineering (SIBIRCON), 2010, pp. 459–464. 

https://doi.org/10.1109/SIBIRCON.2010.5555123  

[44] J. F. Bangura, R. J. Povinelli, N. A. O. Demerdash, and R. H. Brown, 
“Diagnostics of Eccentricities and Bar/End-Ring Connector Breakages in 

Polyphase Induction Motors Through a Combination Of Time-Series Data 

Mining and Time-Stepping Coupled FE-State Space Techniques,” IEEE 
Trans. Ind. Appl., vol. 39, no. 4, pp. 1005–1013, Jul. 2003. 

https://doi.org/10.1109/TIA.2003.814582  

[45] S. Abdellatif, S. Tahar, and Z. Boubakeur, “Diagnostic of the 
simultaneous of Dynamic Eccentricity and Broken Rotor Bars Using the 

Magnetic Field Spectrum of the Air-Gap for an Induction Machine,” in 

2015 3rd International Conference on Control, Engineering & 
Information Technology (CEIT), 2015, pp. 1–6. 

 https://doi.org/10.1109/CEIT.2015.7233158  

[46] J. Subramanian, S. Nandi, and T. Ilamparithi, “Detection and Severity 
Estimation of Static and Dynamic Eccentricity in Induction Motors Using 

Finite Element Analysis,” in 2015 IEEE 10th International Symposium on 

Diagnostics for Electrical Machines, Power Electronics and Drives 
(SDEMPED), 2015, pp. 366–372.  

 https://doi.org/10.1109/DEMPED.2015.7303716  

[47] A. Bentounsi and A. Nicolas, “On Line Diagnosis of Defaults on Squirrel 
Cage Motors Using FEM,” IEEE Trans. Magn., vol. 34, no. 5, pp. 3511–

3514, 1998. https://doi.org/10.1109/20.717828  

[48] T. Vaimann, A. Belahcen, and A. Kallaste, “Necessity for Implementation 
of Inverse Problem Theory in Electric Machine Fault Diagnosis,” in 2015 

IEEE 10th International Symposium on Diagnostics for Electrical 

Machines, Power Electronics and Drives (SDEMPED), 2015, pp. 380–
385. https://doi.org/10.1109/DEMPED.2015.7303718  

[49] J. F. Watson and D. G. Dorrell, “The Use of Finite Element Methods to 

Improve Techniques for the Early Detection of Faults in 3-Phase 
Induction Motors,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 655–

660, 1999. https://doi.org/10.1109/60.790931  

[50] L. Weili, X. Ying, S. Jiafeng, and L. Yingli, “Finite-Element Analysis of 

Field Distribution and Characteristic Performance of Squirrel-Cage 
Induction Motor With Broken Bars,” IEEE Trans. Magn., vol. 43, no. 4, 

pp. 1537–1540, Apr. 2007. https://doi.org/10.1109/TMAG.2006.892086  

[51] O. A. Mohammed, N. Y. Abed, and S. Ganu, “Modeling and 
Characterization of Induction Motor Internal Faults Using Finite-Element 

and Discrete Wavelet Transforms,” IEEE Trans. Magn., vol. 42, no. 10, 

pp. 3434–3436, Oct. 2006. https://doi.org/10.1109/TMAG.2006.879091  
[52] T. Vaimann, J. Sobra, A. Belahcen, A. Rassõlkin, M. Rolak, and A. 

Kallaste, “Induction Machine Fault Detection Using Smartphone 

Recorded Audible Noise,” IET Sci. Meas. Technol., 2018. 
[53] M. Seera, Chee Peng Lim, D. Ishak, and H. Singh, “Fault Detection and 

Diagnosis of Induction Motors Using Motor Current Signature Analysis 

and a Hybrid FMM–CART Model,” IEEE Trans. Neural Networks Learn. 
Syst., vol. 23, no. 1, pp. 97–108, Jan. 2012.  

 https://doi.org/10.1109/TNNLS.2011.2178443  

[54] M. Mneimneh and R. Povinelli, “An Electrophysiological Cardiac Model 
With Applications to Ischemia Detection and Infarction Localization,” in 

2009 36th Annual Computers in Cardiology Conference (CinC), 2009. 

[55] J. Wang, Z. Zhao, Z. Nie, and Q.-H. Liu, “Electromagnetic Inverse 
Scattering Series Method for Positioning Three-Dimensional Targets in 

Near-Surface Two-Layer Medium With Unknown Dielectric Properties,” 

IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2, pp. 299–303, Feb. 2015. 
https://doi.org/10.1109/LGRS.2014.2336983  

[56] C. Gilavert, S. Moussaoui, and J. Idier, “Efficient Gaussian Sampling for 
Solving Large-Scale Inverse Problems Using MCMC,” IEEE Trans. 

Signal Process., vol. 63, no. 1, pp. 70–80, Jan. 2015. 

https://doi.org/10.1109/TSP.2014.2367457  
[57] A. Mohamed Abouelyazied Abdallh, “An Inverse Problem Based 

Methodology With Uncertainty Analysis for the Identification of 

Magnetic Material Characteristics of Electromagnetic Devices,” 
Dissertation, Ghent University, Department of Electrical energy, systems 

and automation, Ghent; Leuven, Belgium, 2012. 

[58] G. Crevecoeur, “Numerical Methods for Low Frequency Electromagnetic 
Optimization and Inverse Problems Using Multi-Level Techniques,” 

Ph. D. Dissertation, Ghent University, Ghent, Belgium, 2009. 

[59] A. Abou-Elyazied Abdallh, P. Sergeant, and L. Dupre, “A Non-
Destructive Methodology for Estimating the Magnetic Material Properties 

of an Asynchronous Motor,” IEEE Trans. Magn., vol. 48, no. 4,  

pp. 1621–1624, Apr. 2012. https://doi.org/10.1109/TMAG.2011.2173171  
[60] A. A.-E. Abdallh, P. Sergeant, G. Crevecoeur, and L. Dupre, “An Inverse 

Approach for Magnetic Material Characterization of an EI Core 

Electromagnetic Inductor,” IEEE Trans. Magn., vol. 46, no. 2,  
pp. 622–625, Feb. 2010. https://doi.org/10.1109/TMAG.2009.2033353  

[61] A. A.-E. Abdallh, G. Crevecoeur, and L. Dupre, “Selection of 

Measurement Modality for Magnetic Material Characterization of an 
Electromagnetic Device Using Stochastic Uncertainty Analysis,” IEEE 

Trans. Magn., vol. 47, no. 11, pp. 4564–4573, Nov. 2011. 

https://doi.org/10.1109/TMAG.2011.2151870  
[62] V. P. Bui, O. Chadebec, L.-L. Rouve, and J.-L. Coulomb, “Noninvasive 

Fault Monitoring of Electrical Machines by Solving the Steady-State 

Magnetic Inverse Problem,” IEEE Trans. Magn., vol. 44, no. 6, pp. 1050–
1053, Jun. 2008. https://doi.org/10.1109/TMAG.2007.916593  

[63] P. Rasilo, A. A.-E. Abdallh, A. Belahcen, A. Arkkio, and L. Dupre, 

“Identification of Synchronous Machine Magnetization Characteristics 
From Calorimetric Core-Loss and No-Load Curve Measurements,” IEEE 

Trans. Magn., vol. 51, no. 3, pp. 1–4, Mar. 2015. 

 https://doi.org/10.1109/TMAG.2014.2354055  
[64] A. Kechroud, J. J. H. Paulides, and E. A. Lomonova, “B-Spline Neural 

Network Approach to Inverse Problems in Switched Reluctance Motor 

Optimal Design,” IEEE Trans. Magn., vol. 47, no. 10, pp. 4179–4182, 
Oct. 2011. https://doi.org/10.1109/TMAG.2011.2151183  

[65] J. Fouladgar and E. Chauveau, “The Influence of the Harmonics on the 

Temperature of Electrical Machines,” IEEE Trans. Magn., vol. 41, no. 5, 
pp. 1644–1647, May 2005. https://doi.org/10.1109/TMAG.2005.846113  

[66] M. Saif and W. Chen, “Observer-Based Strategies for Actuator Fault 

Detection, Isolation and Estimation for Certain Class of Uncertain 
Nonlinear Systems,” IET Control Theory Appl., vol. 1, no. 6,  

pp. 1672–1680, Nov. 2007. https://doi.org/10.1049/iet-cta:20060408  

[67] Q. Shen, B. Jiang, and V. Cocquempot, “Fault-Tolerant Control for T–S 
Fuzzy Systems With Application to Near-Space Hypersonic Vehicle With 

Actuator Faults,” IEEE Trans. Fuzzy Syst., vol. 20, no. 4, pp. 652–665, 

Aug. 2012. https://doi.org/10.1109/TFUZZ.2011.2181181  

https://doi.org/10.1016/j.eswa.2011.06.042
https://doi.org/10.1177/1077546310379141
https://doi.org/10.1016/j.eswa.2009.01.065
https://doi.org/10.5545/sv-jme.2010.162
https://doi.org/10.1016/j.ymssp.2011.06.001
https://doi.org/10.1109/TMECH.2002.1011258
https://doi.org/10.1109/TIM.2015.2444240
https://doi.org/10.1109/TIM.2009.2013743
https://doi.org/10.1109/TIE.2006.878301
https://doi.org/10.1109/SIBIRCON.2010.5555123
https://doi.org/10.1109/TIA.2003.814582
https://doi.org/10.1109/CEIT.2015.7233158
https://doi.org/10.1109/DEMPED.2015.7303716
https://doi.org/10.1109/20.717828
https://doi.org/10.1109/DEMPED.2015.7303718
https://doi.org/10.1109/60.790931
https://doi.org/10.1109/TMAG.2006.892086
https://doi.org/10.1109/TMAG.2006.879091
https://doi.org/10.1109/TNNLS.2011.2178443
https://doi.org/10.1109/LGRS.2014.2336983
https://doi.org/10.1109/TSP.2014.2367457
https://doi.org/10.1109/TMAG.2011.2173171
https://doi.org/10.1109/TMAG.2009.2033353
https://doi.org/10.1109/TMAG.2011.2151870
https://doi.org/10.1109/TMAG.2007.916593
https://doi.org/10.1109/TMAG.2014.2354055
https://doi.org/10.1109/TMAG.2011.2151183
https://doi.org/10.1109/TMAG.2005.846113
https://doi.org/10.1049/iet-cta:20060408
https://doi.org/10.1109/TFUZZ.2011.2181181


Electrical, Control and Communication Engineering 

________________________________________________________________________________________2018, vol. 14, no. 2 

116 

[68] L. M. Capisani, A. Ferrara, A. Ferreira de Loza, and L. M. Fridman, 

“Manipulator Fault Diagnosis via Higher Order Sliding-Mode 
Observers,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3979–3986, 

Oct. 2012. https://doi.org/10.1109/TIE.2012.2189534  

[69] M. N. Nguyen, C. Bao, K. L. Tew, S. D. Teddy, and X.-L. Li, “Ensemble 
Based Real-Time Adaptive Classification System for Intelligent Sensing 

Machine Diagnostics,” IEEE Trans. Reliab., vol. 61, no. 2, pp. 303–313, 

Jun. 2012. https://doi.org/10.1109/TR.2012.2194352  
[70] D. He, R. Li, and J. Zhu, “Plastic Bearing Fault Diagnosis Based on a 

Two-Step Data Mining Approach,” IEEE Trans. Ind. Electron., pp. 1–1, 

2012. https://doi.org/10.1109/TIE.2012.2192894  
[71] M. N. Uddin, W. Wang, and Z. R. Huang, “Modeling and Minimization 

of Speed Ripple of a Faulty Induction Motor With Broken Rotor Bars,” 

IEEE Trans. Ind. Appl., vol. 46, no. 6, pp. 2243–2250, Nov. 2010. 
https://doi.org/10.1109/TIA.2010.2070476  

[72] W. W. Tan and H. Huo, “A Generic Neurofuzzy Model-Based Approach 

for Detecting Faults in Induction Motors,” IEEE Trans. Ind. Electron., 
vol. 52, no. 5, pp. 1420–1427, Oct. 2005.  

 https://doi.org/10.1109/TIE.2005.855654  

 

Bilal Asad was born in 1986 in Pakistan. He 

received his B. sc. in Electronics Engineering 

from The Islamia University of Bahawalpur and 
M. sc. in Electrical Engineering from the 

University of Engineering and Technology 

(UET), Lahore, Pakistan, in 2007 and 2011, 
respectively. Currently, he is a Ph. D. student at 

the Department of Electrical Power Engineering 
and Mechatronics, Tallinn University of 

Technology, Estonia. 

His areas of interest include design, modeling and 
fault diagnostics of electrical machines. 

E-mail: biasad@ttu.ee  
 

Toomas Vaimann received his B. sc., M. sc. and 
Ph. D. degrees in electrical engineering from 

Tallinn University of Technology, Estonia, in 

2007, 2009 and 2014, respectively. He is 
currently a senior researcher at Tallinn University 

of Technology, Department of Electrical Power 

Engineering and Mechatronics. He has been 
working in several companies as an electrical 

engineer. He is the member of IEEE, Estonian 

Society of Moritz Hermann Jacobi and Estonian 
Society for Electrical Power Engineering.  

His main research interest is the diagnostics of       

electrical machines. 
E-mail: Toomas.Vaimann@taltech.ee   

ORCID iD: https://orcid.org/0000-0003-0481-5066  
 

Anton Rassõlkin received the Ph. D. degree in 

electric drives and power electronics from Tallinn 
University of Technology in 2014. His main 

research interests are in the field of electric drives 

and their control systems, as well as in the fields 
of electrical machines and electric transportation. 

He works as a Research Scientist at the 

Department of Electrical Power Engineering and 
Mechatronics at Tallinn University of 

Technology. 

Department of Electrical Power Engineering and 
Mechatronics, Tallinn University of Technology, 

Ehitajate tee 5, 19086 Tallinn, Estonia. 

E-mail: Anton.Rassolkin@taltech.ee  
ORCID iD: https://orcid.org/0000-0001-8035-3970  

 

Ants Kallaste received his B. sc, M. sc. and 
Ph. D. degrees in electrical engineering from 

Tallinn University of Technology, Estonia, in 

2004, 2006 and 2013, respectively. He is currently 
a senior researcher at Tallinn University of 

Technology, Department of Electrical Power 

Engineering and Mechatronics. He is holding the 
position of Head of Electrical Machines Research 

Group. He is the member of IEEE and Estonian 
Society of Moritz Hermann Jacobi.  

His main research interest is the design of 

electrical machines. 
 

E-mail: Ants.Kallaste@taltech.ee   

ORCID iD: https://orcid.org/0000-0001-6126-1878  
 

Anouar Belahcen received the B. sc. degree in 

physics from the University Sidi Mohamed Ben 
Abdellah, Fes, Morocco, in 1988 and the M. sc. 

(Tech.) and Doctor (Tech.) degrees from Helsinki 

University of Technology, Finland, in 1998, and 
2004, respectively. 

He is the professor of Electrical Machines at 

Tallinn University of Technology, Estonia, and the 
professor of Energy and Power at Aalto 

University, Finland. His research interests include 

modeling of electrical machines, magnetic 
materials, coupled magnetic and mechanical 

problems and magnetostriction. 

E-mail: Anouar.Belahcen@taltech.ee  
ORCID iD: https://orcid.org/0000-0003-2154-8692  

 

 
 

 

https://doi.org/10.1109/TIE.2012.2189534
https://doi.org/10.1109/TR.2012.2194352
https://doi.org/10.1109/TIE.2012.2192894
https://doi.org/10.1109/TIA.2010.2070476
https://doi.org/10.1109/TIE.2005.855654

