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Abstract – An attempt of finding an appropriate number of 
convolutional layers in convolutional neural networks is made. 
The benchmark datasets are CIFAR-10, NORB and EEACL26, 
whose diversity and heterogeneousness must serve for a general 
applicability of a rule presumed to yield that number. The rule is 
drawn from the best performances of convolutional neural 
networks built with 2 to 12 convolutional layers. It is not an exact 
best number of convolutional layers but the result of a short 
process of trying a few versions of such numbers. For small images 
(like those in CIFAR-10), the initial number is 4. For datasets that 
have a few tens of image categories and more, initially setting five 
to eight convolutional layers is recommended depending on the 
complexity of the dataset. The fuzziness in the rule is not 
removable because of the required diversity and heterogeneousness. 
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I. THE PROBLEM OF AN APPROPRIATE NUMBER  
OF CONVOLUTIONAL LAYERS 

In machine learning for image recognition, the convolutional 
layer (ConvL) is the core building block of a convolutional 
neural network (CNN). A ConvL is a set of learnable filters 
which actually are three-dimensional matrices, to which a bias 
vector is attached [1], [2]. The parameters of a ConvL, called 
hyperparameters, are as follows [2], [3]: 

1. Height heightF  of the filter (size along the vertical axis). 

Integer heightF  must be positive. 

2. Width widthF  of the filter (the horizontal axis). Integer 

widthF must be positive, and commonly width heightF F [4], [5]. 

3. Depth ConvLK  of the filter. The depth of the filter of the 

first ConvL is equal to the number of colour channels in 
the input image. The depth of the filter of a subsequent 
ConvL is equal to the number of filters of the antecedent 
ConvL [6]. 

4. Stride ConvLs . Integer ConvLs  must be positive for controlling 
how depth columns are allocated around the spatial 
dimensions (width and height). Often ConvL 1s  , so then a 

new depth column of neurons is allocated to spatial 
positions only one spatial unit apart [7]. 

5. Zero-padding pConvL. Integer pConvL must be non-negative for 
preserving exactly the spatial size of the output volumes 
[2], [5], [8]. 
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All these hyperparameters are set by rules of thumb [2], [7]. 
Moreover, when CNN architecture is built, the number of 
ConvLs NConvL (a positive integer) is set just by experience. 
Thus, setting the integer NConvL appropriately is an open issue. 
Answering this question can significantly improve performance. 

II. BACKGROUND AND MOTIVATION 

It is believed that complexity of an image recognition 
problem (IRP) is associated with the number of ConvLs. The 
complexity of IRPs issues from the number of image categories, 
the number of features (dimensionality), the influence of colour, 
the influence of chrominance, diversities in images labelled as 
belonging to the same category [9], [10]. The more complex 
IRPs may naïvely need a greater NConvL. This has, however, not 
been proved yet. Moreover, it is unknown whether this is 
provable or not [11]. 

Unlike its hyperparameters, the number of ConvLs is not 
limited from above [1], [2], [6], [7]. If the hyperparameters are 
selected appropriately, NConvL should be varied starting from 2 

up to some integer max
ConvLN , at which the effectiveness of CNNs 

is less than at max
ConvL 1N  . The effectiveness means performance 

and operation speed (computational rate) [1], [2], [5], [10], [12], 
[13]. Obviously, the computational rate slightly (at least) 
decreases as NConvL increases, so this is a constraint preventing 
the assigning of a great NConvL [6], [7], [9]. For instance, the 
position of the runner-up in ILSVRC 2014 was taken by the 
CNN that became known as VGGNet [11], [14] containing  
16 ConvLs. A downside of VGGNet is that it is very expensive 
to evaluate and uses much more memory and parameters  
(a MATLAB .mat file of VGGNet has the size of about 1 GB). 
But if some ConvLs nearest to the VGGNet output layer are 
removed, the performance is still the same and the number of 
necessary parameters is significantly reduced [11], [15], [16]. 

III. A GOAL FOR FINDING A RULE OF APPROPRIATELY  
SETTING THE NUMBER OF CONVLS 

The goal is to find a rule for appropriately setting the integer 
NConvL regarding the number of image categories and the 
dimensionality of an IRP. In other words, once an IRP is given 
with its number of image categories and image size, the rule 
must yield a certain integer NConvL or a few versions of this 
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number. In the worst case, an integer interval for an appropriate 
number of ConvLs should be formed. 

For stating the rule, four tasks need to be accomplished. 
1. To form a variety of IRPs for benchmarking. 
2. To test the IRPs on an admissible interval of integers NConvL. 
3. To establish the correspondence of the best performance 

to NConvL. 
4. To formalise the correspondence as a rule. 
The rule will allow rationally constructing a pivot of CNNs 

which is a sequence of ConvLs. Having the pivot, the remaining 
parts of the CNNs (pooling layers, ReLUs, DropOut layers, 
normalisation layers) are allocated easier. This would be a 
profound contribution to the theory of CNNs for making image 
recognition more effective. 

IV. IRPS FOR BENCHMARKING 

The rule is expected to be generally acceptable for a wide 
range of IRPs. That is, it must be generalisable. To prevent an 
IRP from overfitting (this is a meta-overfitting to a group of 
IRPs – an extension of the common overfitting to training sets), 
the benchmark IRPs should be dissimilar. Thus, the IRP 
datasets with their entries should satisfy a requirement of 
dissimilarity in the following: 

1) the number of image categories; 
2) the number of colour channels; 
3) the initial image size; 
4) the origination of the image content; 
5) the types of objects to be recognised. 
These five dissimilarities ensure diversity and heterogeneousness 

to IRPs. However, this is not sufficient for benchmarking, since, 
for instance, the ImageNet dataset is too huge for statistical 
research. Therefore, an additional requirement is that the size of 
the benchmark IRP should be moderate. This implies a medium 
image size (not larger than 128 pixels) as well as a fairly small 
number of image categories (a few tens at the most). 

There are three datasets that completely satisfy these 
requirements: CIFAR-10 (Fig. 1), NORB (Fig. 2), EEACL26 
(Fig. 3). Although CIFAR-10 has only 10 image categories, the 
diversity of its entries is the highest. The CIFAR-10 image 
categories labelled as “airplane”, “automobile”, “bird”, “cat”, 
“deer”, “dog”, “frog”, “horse”, “ship”, “truck” are diverse 
themselves. CIFAR-10 consists of 60 000 images, where each 
category is represented with 6000 entries. 

 

Fig. 1. A subset of the CIFAR-10 dataset consisting of colour images whose 
original size is 32 32  in each of the three colour channels [6], [9], [10]. The 
diversity of its entries is highest as the CIFAR-10 dataset is heterogeneous itself. 

The NORB dataset consists of 349 920 images (with a total of 
291 600 images served for training) representing fifty toys 
belonging to five generic categories (four-legged animals, 
human figures, airplanes, trucks and cars). Although NORB has 
only six image categories included one image background 

category, the diversity of its entries is rather high. The NORB 
objects were originally imaged by two cameras at six sets of 
lighting conditions, nine elevations, and eighteen azimuths. 
Then they were jittered and cluttered by random perturbation of 
position, scaling, varying brightness and contrast. The disparities 
were adjusted and randomly picked so that the objects appeared 
placed on highly textured horizontal surfaces at a small random 
distance from those surfaces. In addition, a randomly picked 
distracting object was placed at the periphery of the image. 

 

Fig. 2. A subset of the NORB dataset consisting of 108 108  8-bit greyscale 
images [6]. The diversity here is high but NORB has only six image categories. 

A far lighter and easier dataset is EEACL26, which 
represents images of enlarged capital letters of the English 
alphabet. It has 26 categories, and it is a completely artificial 
dataset, and hence it is scalable – as many EEACL26 images 
can be generated as needed, and their size is adjusted. There are 
three types of distortion – scaling, rotation, shifting. The 
intensity of these distortions is regulated with their magnitudes. 
Fig. 3 shows a moderate intensity of the distortions. At such 
intensity, 52 000 EEACL26 entries (2000 entries per letter) are 
enough for training and validating [13], [17], [18]. 

V. ADMISSIBILITY OF INTEGERS ConvLN  

Admissibility here implies rationality and reasonability, i.e. 
testing the IRPs on an admissible interval of integers NConvL must 
expose the best performance as well as a moderate one, while 
the worse performance is expected closer to the endpoints of the 
interval. Setting a single ConvL is obviously inappropriate (there 
would not have been any convolution), so let ConvL 2N   be the 

left endpoint of the interval for the worst-case reference. The 
maximum integer max

ConvLN  depends on the IRP and its image size. 

The entries of CIFAR-10 are recognised successfully by four to 
six ConvLs for any image size between 32 32  and 64 64 . 
The same goes for EEACL26. For successful training on the 
NORB dataset, some versions of CNNs have only three ConvLs 
[3]. Eventually, the number of ConvLs is also adjusted with the 
number of pooling layers which follow the ConvLs. Hence, let 

max
ConvL 8N   for 32 32  images by applying no resizing for 

CIFAR-10 and downsampling the NORB entries. Then let 
max

ConvL 9N   for 48 48  images and max
ConvL 10N   for 64 64  

images by upsampling the CIFAR-10 entries and downsampling 
the NORB entries. It is appropriate to set max

ConvL 11N   for 

96 96  images. Separately, max
ConvL 12N   for the original NORB 

108 108  images. All the versions of CNN architecture to be 
tested are shown as binary combinations in Table I, where the 
pooling (2 × 2 subsampling) is indicated with ones, and zeros 
indicate that a ConvL is not followed by a pooling layer [9], 
[19], [20]. 
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Fig. 3. A subset of the EEACL26 dataset consisting of 8-bit greyscale images created from originally monochrome 60 80  images [9]. Unlike CIFAR-10 or 
NORB, EEACL26 images are extremely simple; however, they fall into 26 classes. 

TABLE I 

VERSIONS OF CNN ARCHITECTURE TO BE TESTED ON THE DATASETS 

# CNN architecture (NConvL) 
Size of ConvLs’ filters (in order of 
ConvLs numbering from the CNN input) 

Image size  
(dimension) 

Datasets 

1  

11 (2) 

11, 10 32 

CIFAR-10, NORB, EEACL26 
2  17, 15 48 
3  21, 21 64 
4  33, 31 96 
5  37, 35 108 NORB 
6  

111 (3) 

5, 5, 4 32 

CIFAR-10, NORB, EEACL26 
7  9, 7, 6 48 
8  9, 9, 9 64 
9  15, 14, 13 96 

10  17, 15, 15 108 NORB 
11  

1100 (4) 
5, 5, 3, 3 32 

CIFAR-10, NORB, EEACL26 
12  7, 6, 5, 4 48 
13  

1110 (4) 
9, 7, 4, 4 64 

14  9, 9, 7, 6 96 
15  1111 (4) 9, 9, 8, 6 108 NORB 
16  

11010 (5) 
5, 3, 2, 2, 2 32 

CIFAR-10, NORB, EEACL26 
17  5, 3, 3, 3, 3 48 
18  11101 (5) 5, 3, 3, 3, 3 64 
19  

11111 (5) 
5, 5, 4, 4, 2 96 

20  5, 5, 5, 3, 3 108 NORB 
21  110010 (6) 3, 2, 2, 2, 2, 2 32 

CIFAR-10, NORB, EEACL26 
22  111000 (6) 5, 3, 3, 2, 2, 2 48 
23  111010 (6) 5, 5, 2, 2, 2, 2 64 
24  111101 (6) 5, 5, 4, 2, 2, 2 96 
25  111110 (6) 5, 5, 3, 2, 2, 2 108 NORB 
26  1100100 (7) 3, 2, 2, 2, 2, 2, 1 32 

CIFAR-10, NORB, EEACL26 
27  1101000 (7) 5, 3, 2, 2, 2, 2, 2 48 
28  1110010 (7) 5, 5, 4, 2, 2, 2, 1 64 
29  

1111010 (7) 
5, 5, 4, 2, 2, 2, 1 96 

30  7, 6, 4, 3, 2, 2, 1 108 NORB 
31  11000010 (8) 3, 2, 2, 2, 2, 2, 2, 1 32 

CIFAR-10, NORB, EEACL26 
32  11000100 (8) 5, 3, 2, 2, 2, 2, 2, 2 48 
33  11010010 (8) 5, 5, 3, 2, 2, 2, 2, 1 64 
34  11101000 (8) 5, 5, 2, 2, 2, 2, 2, 2 96 
35  11110010 (8) 5, 5, 3, 2, 2, 2, 2, 1 108 NORB 
36  110000010 (9) 5, 3, 2, 2, 2, 2, 2, 2, 2 48 

CIFAR-10, NORB, EEACL26 37  110100000 (9) 5, 3, 2, 2, 2, 2, 2, 2, 2 64 
38  110101000 (9) 5, 3, 2, 2, 2, 2, 2, 2, 2 96 
39  111010000 (9) 5, 3, 2, 2, 2, 2, 2, 2, 2 108 NORB 
40  1010100000 (10) 3, 3, 2, 2, 2, 2, 2, 2, 2, 2 64 

CIFAR-10, NORB, EEACL26 
41  1101010000 (10) 5, 3, 2, 2, 2, 2, 2, 2, 2, 1 96 
42  1110100000 (10) 5, 3, 2, 2, 2, 2, 2, 2, 2, 1 108 NORB 
43  11010001000 (11) 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1 96 CIFAR-10, NORB, EEACL26 
44  11100010000 (11) 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1 108 

NORB 
45  110010010000 (12) 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 108 
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The listed architectures are close to being quasi-optimal for 
the corresponding NConvL. For accelerating the training 
processes, a single ReLU before the last ConvL is inserted, 
without DropOut layers [21], [22]. Although it would impair 
generalisation, our task is to obtain consistent statistics on 
performance. The performance consistency implies a good 
enough differentiation of error rate over various versions of 
CNN architecture (see Table I), which must help in finding the 
most appropriate integer(s) NConvL. 

VI. EXTRACTION OF INTEGERS ConvLN  CORRESPONDING  

TO THE BEST PERFORMANCE 

It takes a few epochs to obtain a sufficiently discriminated 

performance. Let  IRP ,pv W u  be the error rate for the IRP with 

image size W × W  for the u -th CNN architecture version (the 
first column in Table 1) after the p -th epoch. Then the 

performance is normalised to either [9] 

    
 

 
 

IRP

8
IRP

IRP 1

8
IRP

1

,

,

max ,

p

p

p
q Q W

p

v W u

v W u

v W q










   by   IRPu Q W  (1) 

or 

    

 
 

IRP

IRP
IRP 8

8 IRP
8

,
,

max ,
q Q W

v W u
v W u

v W q


   by   IRPu Q W  (2) 

for comparing among IRPs, where  IRPQ W  is the set of the 

versions for the given IRP and the given image size. For 
instance, 

   CIFAR-10 32 1, 6, 11, 16, 21, 26, 31Q   

and 

   CIFAR-10 96 4, 9, 14, 19, 24, 29, 34, 38, 41, 43Q   

are the sets for researching the minimum and maximum size of 
CIFAR-10 images. The sets are the same for EEACL26. The 
NORB dataset is researched in a wider range, starting with 

   NORB 32 1, 6, 11, 16, 21, 26, 31Q   

to 

   NORB 108 5, 10, 15, 20, 25, 30, 35, 39, 42, 44, 45Q  . 

Figures 4–6 show the normalised error rates (1) polylined for 
fulfilling trend comparisons along the u  axis, where 

   CIFAR-10 CIFAR-10
ˆu Q W Q W  ,    NORB NORB

ˆu Q W Q W  , 

   EEACL26 EEACL26
ˆu Q W Q W  . The final-epoch normalised 

error rates (2) are polylined in Figures 7–9 by the same axes.  
A similarity between a dataset’s polylines holds. However, the 
polylines of final-epoch-performance (2) look more scattered. 

 

Fig. 4. The normalised error rates (1) for CIFAR-10. The best performance is 
observed at four ConvLs, except for the largest image size, for which the best 
performance corresponds to five ConvLs. 

 

Fig. 5. The normalised error rates (1) for NORB. The best performance is 
observed at five ConvLs, except for the smallest image size, where the best 
performance is provided by four ConvLs. 
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Fig. 6. The normalised error rates (1) for EEACL26. The best performance is 
observed at five ConvLs, except for the smallest images, where the best 
performance is provided by three or four ConvLs. 

 

Fig. 7. The final-epoch normalised error rates (2) for CIFAR-10. The best NConvL 
for W = 32 is 4, the best NConvL for W = 96 is 6, NConvL = 5 fits for the rest of the 
cases. 

 

Fig. 8. The final-epoch normalised error rates (2) for NORB. Unexpectedly, 
NConvL = 5 fits for  64, 96,108W  whereas the smaller images “prefer” 

NConvL = 5. 

 

Fig. 9. The final-epoch normalised error rates (2) for EEACL26. For W = 48, 
two minima exist, so the appropriateness of ConvLs is similar to that in Fig. 6. 
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An apparent tendency that can be seen in Fig. 4–9 lies  
in the risk of CNN training failure when we increase  
the number of ConvLs. Too primitive architectures (consisting 
of only two ConvLs) do not work either. However, making  
a distinct conclusion on these polylines is hardly possible. So,  

further averaging is needed. This will not concern the size 
W = 108. As sets  CIFAR-10Q̂ W ,  NORBQ̂ W ,  EEACL26Q̂ W  are 

pairwise different (but, perhaps fortunately, not disjointed), the 
average performance of the three IRPs is to be viewed in the 
form (Fig. 10) 

        CIFAR-10 NORB EEACL26, , ,
,

3

v W u v W u v W u
v W u

 

  

  (3) 

and 

        CIFAR-10 NORB EEACL26
8 8 8

8

, , ,
,

3

v W u v W u v W u
v W u

 

  

  (4) 

by 

       CIFAR-10 NORB EEACL26
ˆ ˆ ˆu Q W Q W Q W     for   32, 48, 64, 96W  . (5) 

For the NORB dataset of the largest image size, formally, 

    NORB108, 108,v u v u   (6) 

and 

    NORB
8 8108, 108,v u v u   (7) 

by  NORB
ˆ 108u Q . Data (6) and (7) being a segment “longer” 

than the rest, they are taken back from Figures 5 and 8, 
respectively. 

 

Fig. 10. The average performance of the three IRPs by (3) and (4), wherein only 
three common CNN architectures constitute an argument axis for each of the 
eight polylines. In the vertical direction, there are not more than two points 
above the same CNN architecture version. Except for the image size of 48, and 

108 (only by final-epoch performance), all of these polylines (there are two-
segmented lines, except for (6) consisting of three segments in Fig. 5) increase. 

Although Figure 10 only deals with the dimensionality of an 
IRP, it gives us a straight conclusion on that IRPs of a higher 
dimensionality require more ConvLs. Nevertheless, the 
appropriate number of ConvLs for such IRPs is not much 
greater than that for lower dimensionalities: with the image size 
increased three times (from 32 up to 96), the appropriate ConvLN  

does not change more than from 4 to 6 (if all the polylines are 
considered). Moreover, considering only the eight polylines in 
Figure 10, the appropriate ConvLN  is just 5 for any image size, 

except for 32 32  images, where the appropriate ConvLN  is 4 

(see e.g. [9]). 

VII. THE RULE FOR AN APPROPRIATE ConvLN  

Apparently, as the image size increases, we may need more 
ConvLs. Then, however, the appropriate ConvLN  should always 

be slightly increased to prevent the risk of CNN training failure. 
Setting seven ConvLs for the benchmarked datasets has adverse 
consequences. 

How does the number of image categories/classes influence 
the appropriateness of ConvLN ? Table II, which contains 

integers ConvLN  that correspond to the error rate minima (in 

Figures 4–10) helps us see this. As can be easily seen, the 
dependence of the appropriate integer ConvLN  on the number of 

classes is hardly perceptible. It rather depends on the 
complexity of the IRP. And the number of classes is one of the 
components of the complexity of IRPs. 

TABLE II 

THE APPROPRIATE NUMBER OF CONVLS THAT CORRESPONDS  
TO THE ERROR RATE MINIMA IN FIGURES 4–10 

 Datasets with the increasing numbers of classes 
 NORB CIFAR-10 EEACL26 

W  
Error rate 

(1) 
Error rate 

(2) 
Error rate 

(1) 
Error rate 

(2) 
Error rate 

(1) 
Error rate 

(2) 
32 4 6 4 4 4 4 
48 5 6 4 5 5 6 
64 5 5 4 5 5 5 
96 5 5 5 6 5 5 

108 5 5     

11 12 16 17 18 19 21 22 23 24 28 29
0.275

0.3

0.325

0.35

0.375

0.4

0.425

0.45

0.475

0.5

0.525

0.55

0.575

0.6

0.625

0.65

0.675

0.7

0.725

0.75

0.775

0.8

0.825

0.85

0.875

0.9

u

  32,v u

 48,v u
 8 32,v u

 8 48,v u

 96,v u

 64,v u

 8 64,v u

 8 96,v u
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Hence, the rule for appropriate ConvLN  in CNNs is to try 

fewer ConvLs (an initial number) and then increase the number 
of ConvLs until the CNN performance starts deteriorating. For 
small images (like those in CIFAR-10), that initial number is 4. 
For much complex IRPs (in particular, ones with a few tens of 
image categories and more), it is recommended to initially set 
NConvL = 5. Definitely, the initial number of ConvLs for IRPs 
with a few thousand image categories is recommended to be set 
at 6, 7 or 8. Starting with ConvL 10N   is not recommended. 

VIII. CONCLUSION 

The attempt of finding an appropriate number of ConvLs in 
CNNs has been based on benchmarks of heterogeneous 
datasets. The heterogeneousness is principally needed for 
ensuring applicability to the appropriateness rule. Generally, 
the rule cannot give an exact number of ConvLs or even a few 
versions for this number outright. The rule is rather a short 
process of trying a few versions of NConvL, starting from 

ConvL 4N   for datasets whose image size is less than 100 and 

whose number of image categories is a few tens. In other cases, 

 ConvL 5, 6, 7, 8N   at the beginning, where the greater NConvL 

corresponds to IRPs with a higher degree of complexity [23]. It 
seems that such fuzziness in the rule is not removable because 
of the required diversity and heterogeneousness of IRPs. 
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