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Abstract – This study presents a well-developed optimization 
methodology based on the dynamic inertia weight Artificial Bee 
Colony algorithm (ABC) to design an optimal PID controller for a 
robotic arm manipulator. The dynamical analysis of robotic arm 
manipulators investigates a coupling relation between the joint 
torques applied by the actuators and the position and acceleration 
of the robot arm. An optimal PID control law is obtained from the 
proposed (ABC) algorithm and applied to the robotic system. The 
designed controller optimizes the trajectory of the robot’s end 
effector for a time-variant input and makes the robot robust in the 
presence of external disturbance.   
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I. INTRODUCTION 
A robot manipulator is a mobile robot base that includes at 

least one mounted arm to carry out its functions in an integrated 
way. The use of mobile manipulators is exponentially 
increasing in different fields due to factors related to human 
security. Real-life application environments may be dangerous 
to human beings or cannot be reached, such as high-temperature 
sites or ones where harmful gasses are present. The main 
objective of the manipulator is to reach a certain location and 
pick up objects. There are two scenarios of using mobile 
manipulators in industrial fields. The first scenario entails using 
robot manipulators in transporting and moving objects and tools 
in known environments. The second one entails using the robots 
in unstructured environments, especially in dangerous sites that 
are unsuitable for human beings. Moreover, home assistant 
robots form another category of autonomous robots that can 
help mothers at home to perform their daily activities. In all 
applications, robots are required to move in their environments 
in order to perform their jobs with a high level of accuracy to 
achieve reliability. 

Control of robot manipulators is a very interesting field due 
to its complex dynamical model. The dynamical analysis of the 
robotic model investigates a coupling relation between the joint 
torques applied by the actuators and the positions of the robotic 
arm. The non-linear dynamics and the coupling relations make 
accurate and robust control difficult. So that, designing a 
controller by the traditional control methods that depend on the 
robotic system dynamics is a very difficult task. Different 
control schemes have been provided for the two link 
manipulator robotic system such as Joel Perez et al. [1]. Perez 
has introduced a PID control law that depends on neural 
networks. Also, fuzzy PID controllers have been used in 
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trajectory-tracking robotic systems [2]. Recently, evolutionary 
algorithms (EAs) have appeared as an alternative design 
methodology for robotic system applications [3] and [4]. 

EAs have become an important optimization track for many 
researchers. These EAs are stochastic optimization methods 
that imitate natural systems or biologic processes [5]. Being 
population-based, robustness, and the collective learning 
process are some of the key features of EAs. The capability to 
find a global optimum and the possibility to well face nonlinear 
problems with high numbers of variables are some of the 
advantages of these algorithms [6]. A bee colony model has 
been proposed by Karaboga to meet the above requirements.  
A bee colony is based on the foraging behaviour of honeybee 
swarms and is employed to solve various optimization 
problems. A virtual bee algorithm has been presented by Yang 
[7] to solve the numerical optimization problems. Karaboga [8] 
has described a bee swarm algorithm called the artificial bee 
colony (ABC) algorithm.  

In the ABC algorithm, solutions are modelled as food sources 
and their corresponding fitness functions as the quality of the 
food sources. The ABC algorithm sends artificial bees called 
employed or onlooker bees to measure the fitness of the food 
sources (solution candidates). The employed bees are scattered 
in the problem search domain, producing initial solutions. The 
numbers of employed and onlooker bees are considered equal 
until the end of the optimization process.  Moreover, like most 
evolutionary algorithms, the ABC algorithm has some hidden 
weak points. One of the most important points is the effect of 
the initial population. The initial population has a negative 
effect on the overall performance of the algorithm (i.e. the 
convergence rate and the explorations for the global solution). 
As pointed out in [9] and [10], the ABC structure supports 
global exploration more than exploitation. However, the 
exploration and the exploitation have an essential effect on the 
performance of the optimization algorithm. More recently, new 
modifications have been applied to the classical algorithm [11] 
and [12]. 

This paper is organized as follows. In Section II, the basic 
model of the robotic manipulator arm is explained. Also, the 
main idea in designing the PID control law for the robotic 
manipulator system and an overview of evolutionary PID 
controllers are presented. The basic variants of the artificial bee 
colony are introduced in Section III. The simulation and the 
results are provided in Section IV. Finally, concluding remarks 
appear in Section V. 
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II. A DYNAMIC MODEL OF THE ROBOTIC SYSTEM 
A robot manipulator is the part of a robot system that is 

controlled by a human operator and is used to perform 
specialized tasks in moving and transporting components, tools, 
etc. The tasks may be specified per a written program to 
perform different motions [13]. The robot manipulator consists 
of several links that are connected by joints and move in linear 
motion. The motion is controlled through several actuators and 
sensors, which measure the positions of the robot’s links.  

 
Fig. 1. A robotic model. 

Here, 𝑀𝑀1 and 𝑀𝑀2 are link masses in kg, 𝐿𝐿1 and 𝐿𝐿2 are the link 
lengths, g is the gravity acceleration, θ, θ̇, and θ̈ are the joint 
positions, velocities, and accelerations, respectively. 

The purpose of the control system is to place the end effector 
and the furthest link at predefined coordinates to perform the 
task. The actuators move the angles of the joints of the 
manipulator by applying specific torque.  

A. Robotic Arm Dynamics 
A simple transformation exists between the Cartesian and 

polar coordinates of the robot arm segments. For the 2DOF 
robot manipulator arm, the following direct transformation is 
used to transform between the XY plane and the angles of the 
joints.          

                   𝑥𝑥1 = 𝐿𝐿1  sin(θ1) ;                            (1) 

                 𝑦𝑦1 = 𝐿𝐿1  cos(θ1) ;                            (2) 

   𝑥𝑥2 = 𝐿𝐿1 sin(θ1) + 𝐿𝐿2 sin(θ1 + θ2) ;              (3) 

  𝑦𝑦2 = 𝐿𝐿1 cos(θ1) + 𝐿𝐿2 cos(θ1 + θ2).              (4) 

The equation that computes the kinetic energy of the above 
robotic system is described as follows: 

𝐾𝐾𝐾𝐾 =
1
2

(𝑀𝑀1 + 𝑀𝑀2)𝐿𝐿12θ̇12 +
1
2
𝑀𝑀2𝐿𝐿22θ̇12 +

1
2
𝑀𝑀2𝐿𝐿22θ̇1θ̇2 

+ 1
2
𝑀𝑀2𝐿𝐿22θ̇22 + 𝑀𝑀2𝐿𝐿1𝐿𝐿2 cos�θ̇1θ̇2 + θ̇12�.            (5) 

The potential energy is as follows: 

𝑃𝑃𝑃𝑃 = 𝑀𝑀1𝑔𝑔 𝐿𝐿1 cosθ1 + 𝑀𝑀2𝑔𝑔(𝐿𝐿1 cosθ1 + 𝐿𝐿2 cos(θ1 + θ2). (6)  

After simplification and transition from Cartesian to polar 
equations in the kinetic energy equation, the equation that 
describes the motion of the robot arm manipulator is as follows: 

                𝐵𝐵(𝑞𝑞)𝑞̈𝑞 + 𝐶𝐶(𝑞̇𝑞, 𝑞𝑞) + 𝑔𝑔(𝑞𝑞) = 𝐹𝐹,                   (7) 

where  

                                  𝑞𝑞 = �θ1θ2
�.                                   (8) 

For a robotic manipulator system with  𝑛𝑛 serial links, where 
𝐵𝐵(𝑞𝑞) ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 is a positive definite inertia matrix, 𝐶𝐶(𝑞̇𝑞, 𝑞𝑞) ∈ 𝑅𝑅𝑛𝑛 
is the vector of centripetal forces, 𝑔𝑔(𝑞𝑞) is the gravity matrix, 
and 𝐹𝐹 ∈ 𝑅𝑅𝑛𝑛 denotes the torque applied at the joints. Those 
matrices describe the dynamic motion of the robotic system: 

𝐵𝐵(𝑞𝑞) = �𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22

�,                          (9) 

where 

𝐵𝐵11 = (𝑀𝑀1 + 𝑀𝑀2)𝐿𝐿12 + 𝑀𝑀2𝐿𝐿22 + 2𝑀𝑀2𝐿𝐿1𝐿𝐿2 cos(θ2) ;   (10) 

𝐵𝐵12 = 𝐵𝐵21 = 𝑀𝑀2𝐿𝐿22 + 2𝑀𝑀2𝐿𝐿1𝐿𝐿2 cos(θ2) ;         (11) 

𝐵𝐵22 = 𝑀𝑀2𝐿𝐿22 ;                            (12) 

and the inertia and the gravity matrices are 

𝐶𝐶(𝑞̇𝑞, 𝑞𝑞) = �−𝑀𝑀2𝐿𝐿1𝐿𝐿2sin (θ2)(2θ1̇θ2̇ + θ̇22

−𝑀𝑀2𝐿𝐿1𝐿𝐿2sin (θ2)(θ1̇θ2̇)
�,        (13) 

 

𝑔𝑔(𝑞𝑞) = �−
(𝑀𝑀1 + 𝑀𝑀2)𝑔𝑔𝐿𝐿1 sin θ1 −𝑀𝑀2𝑔𝑔𝐿𝐿2 sin(θ1 + θ2)

−𝑀𝑀2𝑔𝑔𝐿𝐿2 sin(θ1 + θ2) �.(14) 

The applied torque is 

𝐹𝐹 = �
𝑓𝑓θ1
𝑓𝑓θ2

�.                               (15) 

B. Control Implementation 
The general structure of the PID controller for any system 

model is known to consist in the proportional, integral, and 
derivative actions of the error signal [14]. A mathematical 
description of the PID controller is as follows: 

𝑢𝑢(𝑡𝑡) = 𝐾𝐾P 𝑒𝑒(𝑡𝑡) + 𝐾𝐾I ∫ 𝑒𝑒(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐾𝐾D
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

.       (16) 

For the robot manipulator model, the controller output is the 
torque applied to the robot dynamic system as follows: 

𝑞̈𝑞 = 𝐵𝐵(𝑞𝑞)−1[−𝐶𝐶(𝑞̇𝑞, 𝑞𝑞) − 𝑔𝑔(𝑞𝑞)] + 𝐹𝐹,            (17) 

where 𝐹𝐹� is the non-physical  torque and related to the actual 
input torque through inertia matrix 𝐵𝐵(𝑞𝑞) as follows: 

𝐹𝐹� = 𝐵𝐵(𝑞𝑞)−1𝐹𝐹 ↔   𝐹𝐹 = 𝐵𝐵(𝑞𝑞)𝐹𝐹� .  

By decoupling the above system to have the non-physical 
input torque, the following is obtained: 

𝐹𝐹� = �𝑓𝑓1𝑓𝑓2
�.                                    (18) 

The physical input torque of the dynamic system is as 
follows: 

�
𝑓𝑓θ1
𝑓𝑓θ2

� = 𝐵𝐵(𝑞𝑞) �𝑓𝑓1𝑓𝑓2
� ;                           (19) 

𝑓𝑓1 = 𝐾𝐾P1�θ1𝑓𝑓 − θ1� + 𝐾𝐾I1 ∫ 𝑒𝑒(θ1)𝑑𝑑𝑑𝑑 − 𝐾𝐾I1θ̇1;     (20) 

𝑓𝑓2 = 𝐾𝐾P2�θ2𝑓𝑓 − θ2� + 𝐾𝐾I2 ∫ 𝑒𝑒(θ2)𝑑𝑑𝑑𝑑 − 𝐾𝐾I2θ̇2.     (21) 
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So, the complete system equations are as follows: 

𝑞̈𝑞 = 𝐵𝐵(𝑞𝑞)−1[−𝐶𝐶(𝑞̇𝑞, 𝑞𝑞) − 𝑔𝑔(𝑞𝑞)] + 

     �
𝐾𝐾P1�θ1𝑓𝑓 − θ1� + 𝐾𝐾I1 ∫ 𝑒𝑒(θ1)𝑑𝑑𝑑𝑑 − 𝐾𝐾I1θ̇1
𝐾𝐾P2�θ2𝑓𝑓 − θ2� + 𝐾𝐾I2 ∫ 𝑒𝑒(θ2)𝑑𝑑𝑑𝑑 − 𝐾𝐾I2θ̇2

�.            (22) 

The goal now is to find the proper coefficients 𝐾𝐾P,𝐾𝐾I, and 𝐾𝐾D 
for each joint in order to minimize the trajectory errors of the 
joints (22). 

C.  Cost Function 
The most vital point in achieving a high-fitness optimization 

process is to select an objective function which is used in 
evaluating the fitness of the candidate solution. Good 
formulation of the fitness function leads to optimal solutions 
during the optimization process. In this robotic system, three 
different objective functions are chosen in the control parameter 
optimization process (23)–(25).  

Mean of Root of Squared Error (MRSE) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ �𝑒𝑒θ1(𝑖𝑖)2 + 𝑒𝑒θ2(𝑖𝑖)2𝑁𝑁
𝑖𝑖=0 .                   (23) 

Mean Absolute Error (MAE) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ �𝑒𝑒θ1(𝑖𝑖)� + �𝑒𝑒θ2(𝑖𝑖))�𝑁𝑁
𝑖𝑖=0 .                     (24) 

Reference Based Error with Control Effort (RBECE) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1
𝑁𝑁
∑ �𝑒𝑒θ1(𝑖𝑖)� + �𝑒𝑒θ2(𝑖𝑖)�𝑁𝑁
𝑖𝑖=0 + �𝑢𝑢θ1(𝑖𝑖)� + �𝑢𝑢θ2(𝑖𝑖)�. 

(25) 

These objective functions are calculated based on the 
dynamically  response of the robotic system [16]. 

III. ARTIFICIAL BEE COLONY (ABC) 
The artificial bee colony (ABC) algorithm is an evolutionary 

algorithm derived from the foraging behaviour of the honeybee. 
Honeybee swarms consist of three essential components: 
employed foragers, unemployed foragers, and food sources. It 
defines two leading modes of the honeybee colony behaviour: 
recruitment to a food source and abandonment of a source [8]. 
In an ABC algorithm, the artificial colony consists of three 
types of bees: employed, onlookers, and scout bees. At the same 
time, half of the artificial colony consists of employed bees, and 
the other half includes the onlooker bees. To guarantee the 
diversity of the solution space and prevent the algorithm from 
being trapped in local optimum, scout bees are added in each 
generation.  Each food source has only one employed bee. So, 
the number of food sources is equal to the number of employed 
bees inside the colony. In every round, food sources are 
scattered with their neighbours to produce new solutions and 
then evaluated based on the fitness function. A solution 
candidate that does not produce improvement in solutions is 
assumed to be an abandoned source and is replaced with a new 
solution [15].  

A. Employed Bee Phase 
In this phase, ABC sends employed bees onto the food 

sources and then measures the source quality (i.e. quantity, 

richness, proximity, etc.). The employed bees carry this 
information to the hive and then on the dancing area (area of 
information exchange) share it with the onlookers. The employed 
bee memorizes its food source and then either continues at the 
same food source or selects a new one. An artificial bee 
produces a new solution with the following formula. 

  𝑋𝑋𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖,𝑗𝑗 + Φ𝑖𝑖𝑖𝑖 �𝑥𝑥𝑘𝑘,𝑗𝑗(𝑡𝑡) − 𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡)�.            (26)     

 𝑋𝑋𝑖𝑖,𝑗𝑗 is a new solution that comes from food source 𝑥𝑥𝑖𝑖,𝑗𝑗 and 
its neighbour 𝑥𝑥𝑘𝑘,𝑗𝑗, where 𝑗𝑗 and 𝑘𝑘 are two random indices, Φ is 
a randomly produced number in the  range  [–1; 1], and 𝑡𝑡 is the 
generation time.  

Moreover, the performance of the bee colony can be 
improved by controlling the impact of the initial population on 
the new produced food sources. It was shown in [7] that the 
introduction of a dynamic inertia weight parameter in the basic 
(ABC) equation (26) can play a positive role in controlling the 
impact of the previous solution on the new expected one as 
follows:             

   𝑋𝑋𝑖𝑖,𝑗𝑗(𝑡𝑡 + 1) = ω𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡) + Φ𝑖𝑖𝑖𝑖 �𝑥𝑥𝑘𝑘,𝑗𝑗(𝑡𝑡) − 𝑥𝑥𝑖𝑖,𝑗𝑗(𝑡𝑡)�.     (27) 

The inertia weight ω𝑖𝑖 ∈ [0;  1] is employed to manipulate the 
impact of the previous history of velocities on the current 
velocity. Therefore, ω𝑖𝑖 resolves the tradeoffs between the 
global (wide-ranging) and local (nearby) exploration ability of 
the swarm [17].   

ω𝑖𝑖 = (ωinit − ωfin) �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑖𝑖
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

� + ωfin,              (28)                           

where ωinit is the initial inertia weight, ωfin is the final inertia 
weight, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the maximum iteration value and 𝑖𝑖 is the 
variable iteration index. Note here that the inertia weight ω𝑖𝑖 
plays an important role in the convergence of the ABC 
algorithm to the global optimal solution and hence has an 
influence on the time taken for a simulation run. 

A large inertia weight encourages global exploration (moving 
to previously encountered areas of the search space), while a 
small one promotes local exploration, i.e. fine-tuning the 
current search area. A suitable value for ω𝑖𝑖 provides the desired 
balance between the global and local exploration ability of the 
swarm and, consequently, improves the effectiveness of the 
algorithm [17].  

B. Onlooker Bee Phase 
The onlookers decide and select the food source depending 

on the nectar information (i.e. quality, amount, distance 
between the food source and the hive, etc.). The probability of 
a certain food source being selected increases as the information 
received from the dancing area means that a large amount of 
high-quality nectar exists there. The onlookers choose a food 
source with a probability calculated by using various schemes. 
In this study, an artificial onlooker bee chooses a food source 
with probability 𝑝𝑝𝑖𝑖 expressed as follows: 

                 𝑝𝑝𝑖𝑖 = 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖
∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑘𝑘
𝑖𝑖

+ 𝑏𝑏,                                          (29) 

where 𝑎𝑎 and 𝑏𝑏 are two arbitrary numbers in range [0; 1], 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 is 
the fitness value of solution 𝑖𝑖, and 𝑘𝑘 is the number of employed 
bees. Basturk [15] has expressed the fitness function as 
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   𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 = �
1

1+𝐹𝐹𝑖𝑖
                if  𝐹𝐹𝑖𝑖 ≥ 0

1 + abs(𝐹𝐹𝑖𝑖)     if 𝐹𝐹𝑖𝑖 < 0
�, ,                     (30) 

where 𝐹𝐹𝑖𝑖 is the objective function to be optimized.  

C. Scout Phase 
When an employed bee decides to leave its food source, it 

becomes a scout. In ABC, if the position of a food source cannot 
be improved further through a predetermined number of cycles, 
then that food source is discarded. The value of the 
predetermined number of cycles is an important control 
parameter of the ABC algorithm, which is called the limit for 
abandonment. The scout phase plays a positive role in adding 
newcomers to the solution space (i.e. by generating new random 
solutions instead of abandoned food sources); however, the 
number of scouts is limited by the colony size and the 
dimensions of the problem. 

IV. SIMULATIONS AND RESULTS 

Numerical results of computer simulations have been 
obtained to assess the capabilities of the proposed tuning 
procedure. 

 
Fig. 2. Robotic system PID tuning schematic diagram. 

For the robotic system, the masses of the two links are 𝑀𝑀1 =
1 kg and 𝑀𝑀1 = 1 kg, the lengths are 𝐿𝐿1 = 1 m and 𝐿𝐿2 = 1 m. 
The gravity acceleration 𝑔𝑔 = 9.81 m/s2 and the simulation 
period is taken to be 20 s.  

The proposed robotic arm trajectory is considered as a 
sinusoidal signal [16]:  

θ1𝑓𝑓(𝑡𝑡) = 0.1524 + 0.24384 cos �2𝜋𝜋𝜋𝜋
5
− 𝜋𝜋

2
� ;         (31) 

θ2𝑓𝑓(𝑡𝑡) = 0.39624 + 0.24384 cos �2𝜋𝜋𝜋𝜋
5
− 𝜋𝜋

2
�.         (32) 

For the ABC algorithm, the size of the colony is 20 
(employed bees + onlooker bees), the number of scouts is equal 
to one, the number of food sources is equal to half the colony 
size, i.e. 10. The bounds for the PID parameters are [0; 100]. 
The constants of (29) are chosen to be 𝑎𝑎 = 0.9, and 𝑏𝑏 = 0.1. 
The dynamic range of the inertia weight is [0.6; 1], 
where ωinit = 0.6 , and ωfin = 1. Finally, the maximum 
number of cycles is equal to 100.  

Several simulation experiments have been carried out to 
design an optimal PID controller for a 2DOF Robotic 
manipulator using the proposed dynamic inertia weight 
artificial bee colony algorithm. The internal structure of the 
robotic system is built by using Simulink MATLAB Software 
Tool (Fig. 3). The optimization process is carried out to 
minimize the error in the trajectory of the robotic manipulator’s 
end effector. 

 
Fig. 3. The Simulink model for the robotic system. 

TABLE I 
JOINT-1/2 PARAMETERS FOR THE THREE COST FUNCTIONS 

Index MRSE MAE RBECE 

𝐾𝐾P1 200.0000 200.0000 20.4133 

𝐾𝐾I1 22.3749 50.0000 2.0000 

𝐾𝐾D1 23.7962 6.9577 28.0853 

𝐾𝐾P1 184.0705 189.496 41.7381 

𝐾𝐾I1 50.0000 47.2071 4.9652 

𝐾𝐾D1 7.9692 7.2797 3.8269 

Cost Function 0.0011452 0.04636 12.1983 

Table I provides the optimal controller parameters and the 
corresponding values of objective functions with three different 
objective functions. 

The simulation results and the performance of the robotic 
system during the optimization of the MRSE function are given. 
The actual positions of the joints and the desired set point are 
shown in Fig. 4, the resultant errors in Fig. 5 and the actual 
torques in Fig. 6. Fig. 7 shows the trajectory of the robotic 
manipulator’s end-effector in the XY plane. 

 
Fig. 4. Convergence history of MRSE function. 
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Fig. 5. MRSE joints trajectories. 

 
Fig. 6. MRSE tracking errors. 

Fig. 7. MRSE optimal applied torque. 

 
Fig. 8. MRSE robotic arm trajectory in XY plane. 

Figures 9–13 give the results of the robotic system during the 
optimization of the MAR function. The actual positions of the 
joints and the desired set point are given in Fig. 10, the resultant 
errors in Fig. 11 and the actual torques in Fig. 12.  

 
Fig. 9. Convergence history of MAE function. 

 
Fig. 10. MAE joints trajectories. 
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Fig. 11. MAE tracking errors. 

 
Fig. 12. MAE optimal applied torque. 

 
Fig. 13. MAE robotic arm trajectory in XY plane. 

The simulation results for the robotic system during the 
optimization of the RBECE function are given in Fig. 14–
Fig. 17. The actual joints positions and desired set point are 
given in Fig. 15, the resultant errors in Fig. 16 and the actual 
torques are shown in Fig. 17. 

 
Fig. 14. Convergence history of RBECE function. 

 
Fig. 15. RBECE joints trajectories. 

 
Fig. 16. RBECE tracking errors. 
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Fig. 17. RBECE optimal applied torque. 

The convergence history of the three objective functions 
MRSE, MAE, and RBECE is shown in Fig. 4, Fig. 9 and 
Fig. 14, respectively. As can be seen, the objective functions 
converge to the optimal solution within a shorter generation 
time. For the RBECE function, the optimization process 
reaches the optimal solution in one quarter of the generation 
cycles. 

A. Robustness Analysis 

The objective of this section is to test the robustness of the 
optimization algorithm results when the robotic system is 
subjected to external noise power. To check the robustness of 
the obtained controller, an external disturbance is added to the 
output interface between the applied controller torque and the 
robotic system, as can be seen in Fig. 18. The external 
disturbance is implemented with a white noise with different 
variances. 

 
Fig. 18. Schematic of robotic system tuning in the presence of noise. 

The objective functions MRSE, MAE and their 
corresponding PID parameters are shown in Tables II and III at 
different values of the noise power. 

 

 

 

 

 

 

TABLE II 
MRSE COST FUNCTION VALUES IN THE PRESENCE  

OF NOISE POWER 

𝝈𝝈 𝑲𝑲𝐏𝐏𝟏𝟏 𝑲𝑲𝐈𝐈𝟏𝟏 𝑲𝑲𝐃𝐃𝟏𝟏 𝑲𝑲𝐏𝐏𝟐𝟐 𝑲𝑲𝐈𝐈𝟐𝟐 𝑲𝑲𝐃𝐃𝟐𝟐 MRSE 

0.0 1000 11.9 21 1000 724.9 263 0.001801 

0.1 879.3 705.1 14.6 1000 1000 202.2 0.001117 

0.2 700.4 57.16 20 809 1000 185.1 0.001068 

0.5 772.1 88.7 14.4 678.8 1000 140.8 0.000972 

0.7 818.6 169 21 954.1 1000 156.9 0.000893 

0.8 923.2 153.6 18.6 1000 1000 184.8 0.000852 

TABLE III 
MAE COST FUNCTION VALUES IN THE PRESENCE  

OF NOISE POWER 

𝛔𝛔 𝑲𝑲𝐏𝐏𝟏𝟏 𝑲𝑲𝐈𝐈𝟏𝟏 𝑲𝑲𝐃𝐃𝟏𝟏 𝑲𝑲𝐏𝐏𝟐𝟐 𝑲𝑲𝐈𝐈𝟐𝟐 𝑲𝑲𝐃𝐃𝟐𝟐 MAE 

0.0 801.3 1000 21 397.7 1000 51.2 0.0499688 

0.1 937.3 597.9 19.3 463.2 1000 50.2 0.0363772 

0.2 1000 696.1 19.8 687.9 850.9 52.4 0.0347977 

0.5 893.7 1000 36.4 1000 1000 18.9 0.0322880 

0.7 1000 804.6 22.7 627.1 1000 40.2 0.0302509 

0.8 1000 701.9 17.1 496.8 938.4 36.8 0.0306091 

As can be seen from the robustness results in Tables II–III, 
the disturbance has an effect on the PID parameters and the 
corresponding cost functions. When the noise power increases, 
a small deviation from the desired set point trajectory occurs 
but the overall arm performance is acceptable. 

B. Remark 

From the observations of the simulations and the results, the 
following can be concluded: 

i. The proportional gain 𝐾𝐾P is directly related to the error 
and speed of the joints. 

ii. The differential gain 𝐾𝐾D is directly related to the speed 
of interaction with state changes' 

iii. The integral gain 𝐾𝐾I is directly related to the overall 
joint error cancellations 
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The above arguments are rough due to the high order of 
nonlinearity and the coupling equations of the robotic system. 
The dynamic system produces interactions between different 
controller components, which lead to small changes in 
controller parameters and unexpected performance.  Moreover, 
the controller parameters are highly coupled with the initial and 
final conditions of the link joints. On-line tuning of the 
controller parameters is highly necessary to cover global system 
operation. 

V. CONCLUSION 

A novel tuning methodology based on the artificial bee 
colony algorithm has been presented for trajectory tracking in 
robotic arm manipulator systems. The proposed PID control 
law is obtained and the optimal gains are tuned by using a 
dynamic inertia weight artificial bee colony optimization 
algorithm. The obtained results are satisfactory and 
competitive; where the robotic system is highly nonlinear, 
serious system difficulties have to be tuned by traditional 
methods. To ensure the robustness of the obtained control law, 
a robustness test is carried out for the robotic system in the 
presence of external disturbance input. Furthermore, the tuning 
of the PID parameters with the ABC algorithm is easier than 
traditional methods that require derivatives and complex 
mathematical solutions. 
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