
Electrical, Control and Communication Engineering

5

ISSN 2255-9159 (online)

ISSN 2255-9140 (print)
July 2016, vol. 10, pp. 5–12

doi: 10.1515/ecce-2016-0001

https://www.degruyter.com/view/j/ecce

©2016 Darius Kulakovskis, Dalius Navakauskas.

This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Automated Metabolic P System Placement in FPGA

Darius Kulakovskis (Ph.D. student, Vilnius Gediminas Technical University),

Dalius Navakauskas (Professor, Vilnius Gediminas Technical University)

Abstract – An original Very High Speed Integrated Circuit

Hardware Description Language (VHDL) code generation tool

that can be used to automate Metabolic P (MP) system

implementation in hardware such as Field Programmable Gate

Arrays (FPGA) is described. Unlike P systems, MP systems use a

single membrane in their computations. Nevertheless, there are

many biological processes that have been successfully modeled by

MP systems in software. This is the first attempt to analyze MP

system hardware implementations. Two different MP systems are

investigated with the purpose of verifying the developed software:

the model of glucose–insulin interactions in the Intravenous

Glucose Tolerance Test (IVGTT), and the Non-Photochemical

Quenching process. The implemented systems’ calculation

accuracy and hardware resource usage are examined. It is found

that code generation tool works adequately; however, a final

decision has to be done by the developer because sometimes several

implementation architecture alternatives have to be considered.

As an archetypical example serves the IVGTT MP systems’ 21–23

bits FPGA implementation manifesting this in the Digital Signal

Processor (DSP), slice, and 4-input LUT usage.

Keywords – Biological system modeling; Chemical processes;

Digital signal processors; Field programmable gate arrays; Fixed-

point arithmetic.

I. INTRODUCTION

Metabolic P (MP) systems evolved from and are based on

membrane computing or P systems [1]. They were first

proposed by Manca in 2005 [2]. Unlike P systems, MP systems

use a single membrane in their computations. Any substances

defined in a MP system are moved through this membrane or

transform from one to another at a certain rate. These systems

are inspired by a biological process known as metabolism that

is crucial for the survival of living organisms. MP systems can

model a variety of processes, periodic or not, and produce

approximated substance amounts after each reaction step.

MP system is a discrete dynamical system which can be

described by a construct known as MP graph [3]. It is a set of

reactions, fluxes which regulate these reactions and determine

their speed and other parameters or constants. The reaction

representation way is very similar to that of chemical reactions.

Therefore, it is easy to interpret for the scientists of different

fields such as chemistry and biology. Because of this, required

MP system reactions can be more easily derived from the

reactions of corresponding chemical or biological processes.

Many processes have been modeled by MP systems,

including Belousov-Zhabotinsky reaction [4], Lotka-Volterra

dynamics, Susceptible-Infected-Recovered epidemic [5], the

circadian rhythms, the mitotic cycles in early amphibian

embryos [6], Pseudomonas quorum sensing model [7], the lac

operon gene regulatory mechanism in glycolytic pathway [8].

Recently, Goldbeter’s mitotic oscillator was modeled by MP

system [9]. Of course, application of MP systems is not

exclusive only to biological and chemical processes but can be

used to model almost any kind of dynamical processes, starting

from a simple sine wave function [10].

Currently, there are two major implementation ways of MP

systems. Both of them are based on implementation in software.

The first one started as a Psim [11]. It is a simulation tool

developed for MP system modeling that allows describing a

system by means of graphs and simulating the system dynamics

based on metabolic algorithm. Psim is developed using Java

programming language and features an input GUI, which is

used to construct MP graphs. An improved version of the

software called MetaPlab was introduced in [12]. It features a

new plug-in based architecture which makes the software more

versatile and able to perform multiple tasks.

Another implementation of MP systems is an open-source

MpTheory Java Library. It was developed by V. Manca and

L. Marchetti and is available for download [13]. The provided

Java objects can be directly used to model selected MP systems,

and the library can also be used within MATLAB, GNU

Octave, Mathematica and R computing environments.

Although MP systems can be implemented in software using

specialized MetaPlab software or relatively simple

implementation of MP formulae in MATLAB [14], it is also

possible to directly implement them in hardware. P systems are

known to have been implemented in hardware [15], [16], but so

far there are no known similar implementations of MP systems.

In this article, an original MP system Very High Speed

Integrated Circuit Hardware Description Language (VHDL)

code generation tool that can be used to automate MP system

implementation in hardware such as Field Programmable Gate

Arrays (FPGA) is described. Preliminary work was done in

[17]. The developed tool not only generates the VHDL code but

also selects the optimal word length for fixed-point arithmetic

according to user-desired accuracy. Although the developed

tool optimizes the binary word length with the assumption that

the performance of FPGA scales linearly with the word length,

it is shown that that is not always the case. This is demonstrated

by two separate cases of automated MP system implementation

using the developed tool. Results of the automated

implementation are discussed in the experimental section of the

article along with key hardware implementation parameters

such as design frequency, the number of FPGA resources used,

and the calculation accuracy of the implemented design. The

Digital Signal Processor (DSP) cell is regarded as the main

limited resource of FPGA chip. It is the main element that

performs the calculations. DSPs are used in a variety of

applications as either a part of FPGA or a standalone chip [18].

Electrical, Control and Communication Engineering

__ 2016/10

6

II. AUTOMATION OF MP SYSTEM IMPLEMENTATION

The MP system VHDL code generation tool written in

Python interpreted programming language was developed to

convert MP systems described by a text file in JavaScript Object

Notation (JSON) format to VHDL architecture. The generated

VHDL code can be implemented as a stand-alone component

or incorporated into bigger VHDL programs that are

implemented in FPGA. This enables easier implementation of

MP systems in hardware and builds on key MP system aspect

of accessibility and ease of description. The MP system VHDL

code generation tool can be used not only by engineers who

understand MP systems but also by people working in different

fields who might find the functionality provided by MP systems

useful but too time- and resource-consuming to develop

independently. The developed tool allows achieving faster

implementation and lowers the time needed to deploy a selected

MP system or even a multitude or variation of them.

MP system VHDL code generation tool is composed of four

main parts, as shown in Fig. 1.

Fig. 1. MP system VHDL code generation tool.

The first part consists of an input file interpreter and a

validator. The second part uses the input data and determines

the binary word length needed to achieve the requested

accuracy. The third part of the tool uses the determined word

length and the input data to generate the key parts of VHDL

code. Lastly, the fourth and final part merges the generated

VHDL code fragments with a prepared template and produces

a complete VHDL component.

As an input a file in JSON format is used to describe MP

systems. The file includes entries for initial substance amounts,

constants, rule logic, and regulator logic. Also, the developed

tool accepts an input of a number of iterations the software

should generate and the desired accuracy of the resulting fixed

point calculations. The accuracy is used to determine the word

length used in VHDL-fixed point library [19].

The first part of MP system VHDL code generation tool

parses the input JSON format file. As the input file format is

very similar to the Python dictionary data structure, the

conversion of input data is straightforward. When the MP

system data is loaded, a new class instance object is initialized

according to provided substances, constants, rules, and

regulators. The validation of the MP system defined in the input

file is also performed along the way.

The second part of the MP system VHDL code generation

tool determines the optimal word length that should be used to

achieve the calculation accuracy requested by user. The word

length is determined by an algorithm consisting of two parts, as

shown in Fig. 2.

Fig. 2. Pseudocode of algorithm to find the optimal word length.

float_results = calculate_floating_point(...)

integer_bits, frac_bits = initial_values

start integer part of the algorithm

calculate results with initial values

fixed_results = calculate_fixed_point(...)

error = max(float_results - fixed_results)

increment integer bits

integer_bits = integer_bits + 1

error_next = max(float_results -

fixed_results_next)

error_decreasing = True if error_next < error

if error_decreasing

 # increment until error is no longer decreasing

 while error < previous_error

 integer_bits = integer_bits + 1

 ... calculate error ...

else

 # decrement until error starts increasing

 while error == previous_error

 integer_bits = integer_bits - 1

 ... calculate error ...

start fractional part of the algorithm

error = max(... with initial values ...)

bit_step = initial_bits/2

while bit_step != 1

 if error >= target_error:

 # increase until error is lower than target

 frac_bits = frac_bits + bit_step

 else

 # error is below target, try to optimize

 frac_bits = frac_bits - bit_step

 bit_step = bit_step/2

 all_results.append(error, fractional_bits)

select closest result to target as final

final_frac_bits = closest_to_target(all_results)

Electrical, Control and Communication Engineering

__ 2016/10

7

Before starting the algorithm, MP system is modeled using

floating-point arithmetic. The floating-point results are used as

a reference point to calculate the error of fixed-point arithmetic.

Then the first part of the algorithm tries to determine the

required number of integer bits. As any decimal integer number

can be represented in binary, there is a point where increasing

the number of bits does not yield any improvement in the

accuracy of the calculation. When the initial number of bits is

selected, a system is modeled using that number of bits, and the

error is calculated. Then the same operation is repeated using

the integer word length greater by one. When the errors are

compared, the algorithm determines whether the error is

decreasing when the integer part of the word length is

increasing. If it is true, this means that accuracy can still be

improved by increasing the number of integer bits. If it is not

true, the algorithm tries to lower the number of integer bits to

optimize the system. When the optimal number of integer bits

is found, the second part of the algorithm that tries to find the

optimal number of fractional bits is started. Initially, a number

of fractional bits that is a factor of two is selected, and then the

binary search algorithm is used to get the number of fractional

bits that yield the closest error value to the requested target.

The third part of the MP system VHDL code generation tool

is the main VHDL code generation logic. It uses the input MP

system data as well as determined the integer and fractional

word lengths to generate the specific sections of VHDL code.

The generation part consists of nine steps, as shown in Fig. 1.

Firstly, an output port must be defined for each substance

participating in the provided MP system. The port direction is

set to bidirectional (inout), and a signed fixed-point (sfixed)

type is used. Then the constants used in this VHDL component

are defined. They consist of substance initial amounts, taken

from the substances part of JSON file, and other constants used

in the MP system regulator expressions, defined separately in

JSON file. Some variables must be defined for the behavioral

process that calculates a step of MP system values on each clock

cycle. Substance variables store the state of substance amounts

after each calculation step (clock cycle). Rule variables store

the calculation result for each MP system rule. When the VHDL

process begins, firstly MP system substance signals are

initialized by passing them the previously defined initial

substance amount constants. Then the main calculation logic

starts. For each MP system rule, a single line expression is

generated that implements the regulator logic. Then, the

calculated substance amounts for the current step are

determined and assigned to substance variables. Finally, the

calculated substances are passed to the signals that can be sent

to the output.

The fourth and last part of MP system VHDL code

generation tool uses a prepared template containing the rest of

VHDL code, such as library declarations, utility port (step

number, clock, start signal, etc.) declarations, rising clock edge

detection, and the start and end markers of various VHDL code

blocks. These code fragments are static for every implemented

MP system and do not have to be generated. In addition, the

template contains replacement fields that are substituted with

generated VHDL code fragments by using the Python string

formatting tools. The result of merging the template with

generated code fragments is a complete VHDL component of a

particular MP system provided as an input.

III. STUDY DESCRIPTION

A. Preliminaries of Original MP Grammar Representation

by Data Structure

The input format of MP system VHDL code generation tool

is a JSON data structure of original design. The JSON format

was chosen because it is easy to read and convert in Python

programming language, used by the generation tool. Also, it is

a relatively simple format used by many applications, especially

web pages that use JavaScript language. The structure of the

JSON file closely mirrors the structure of MP systems

represented by MP graphs. This feature makes it easier to

convert MP systems from one format to another by automated

tools or by manual human interaction.

The JSON file used in MP system VHDL code generation

tool contains all required information to describe an MP system.

As an example, an imaginary MP system described by the

following MP graph can be represented in a JSON format used

by the tool:

 1 1

2 2

: 2 3 , 5 8.5;

: , 1.

r A B A

r B A A B

 (1)

The equation consists of two parts: left, and right. The left

part of the equation represents the reactions r, and the left part

represents regulators φ that determine the rate at which the

reaction is happening. The MP system has two rule and

regulator pairs (r1 and φ1, r2 and φ2), two substances (A and B),

and three constants used in the regulators. This MP system

represented by (1) can be rewritten in JSON format as is shown

in Fig. 3.

Fig. 3. An example MP system represented by JSON data structure.

When implementing the MP system in a new JSON format,

it is split into four parts: substances, rules, constants, and

regulators. Next, we will analyze them more thoroughly.

{

 “substances”: {

 “A”: 1,

 “B”: 2

 },

 “rules”: [

 {

 “add”: {“B”: 3},

 “sub”: {“A”: 2},

 }, {

 “add”: {“A”: 1},

 “sub”: {“B”: 1},

 }

]

 “constants”: {

 “c1”: 5,

 “c2”: 8.5,

 “c3”: 1

 },

 “fluxes”: [

 [“c1”, “*”, “A”, “+”, “c2”],

 [“A”, “+”, “B”, “-“, “c3”]

]

}

Electrical, Control and Communication Engineering

__ 2016/10

8

Substances are the main variables in MP systems. In this

case, there are two substances: A, and B. These substances must

have an initial amount that will be used at the start of MP system

calculation. In JSON data structure, the keys of “substances”

object represent the substances of MP system, and the objects’

values represent the initial amount of corresponding substance.

Rules are the main MP system reactions that transform one

or more substances into each other, introduce substances from

the environment or expel them to the environment. In this case,

there are two reactions. The first one transforms an amount of

two of substance A into an amount of three of substance B. In

other words, 2A is subtracted and 3B is added. This is

represented in JSON data structure by a one-dimensional array

that has a length of the number of rules in the MP system. It

contains the two objects (each for one rule) with the numbers of

the added and subtracted amount of each substance as key-value

pairs.

Constants are the numerical values that do not change during

the MP system iterative calculation process. Constants

participate in the addition, subtraction or multiplication

operations of MP system regulators. In JSON data structure, the

constants are represented in a “constants” object by key-value

pairs where the key is an arbitrary constant name and the value

is the constant itself. This enables the separation of values from

mathematical operations. In this case, there are three constants

represented by two integer numbers and one fractional number.

These are the only allowed types of constants as the MP system

must be implemented in hardware, which has its limitations.

Regulators, sometimes also called fluxes, determine the rate

at which the reactions are happening. Each MP system rule has

its own regulator expression that contains mathematical

operations using the previously defined constants and

substances. In the JSON data structure, allowed mathematical

operations are addition, subtraction, and multiplication. More

complex operations could in principle be implemented, but

hardware limitations must always be considered. For the

purpose of this article, mentioned mathematical operations

were sufficient. In JSON data structure, each regulator is

represented by an array that contains each operand and

mathematical operation of the regulator expression as a separate

array element. The array must start and end with a substance or

constant (valid mathematical operations cannot start or end with

a sign), and elements must be separated by the addition (“+”),

subtraction (“−”), or multiplication (“*”) signs.

B. MP System Description – Case A

Two different Metabolic P systems were chosen and

implemented in FPGA. This demonstrates the usage of the

developed MP system VHDL code generation tool.

The first implemented system is a model of glucose–insulin

interactions in the Intravenous Glucose Tolerance Test

(IVGTT). It is an experimental medical procedure where a

particular amount of glucose is injected intra-venously and the

concentrations of glucose and insulin in blood are sampled at a

frequent interval [20]. The IVGTT is used to better understand

the interactions of glucose and insulin in human body. This test

can help diagnose diabetes by observing the rate at which the

glucose and insulin concentrations return to normal level.

One type of MP grammar of IVGTT model is used:

1 1
6 2

2 2
3

3 3

4 4

: , 0.6;

: , 0.12 1.6 10 ;

: , 49.9 0.1 ;

: , 0.84 .

r G

r G G G I

r I G

r I I

 (2)

There are a total of four reactions in this model, each with its

own flux regulator expression. Two substances participate in

these reactions – glucose and insulin. Both of them are

introduced to the system through a virtual membrane, which is

represented in (2) by an empty set. The whole MP system

structure must be considered and described when writing the

JSON file for MP system VHDL code generation tool. JSON

file for IVGTT system in (2) is shown in Fig. 4.

Fig. 4. MP grammar of IVGTT encoded in JSON data structure.

C. MP System Description – Case B

The second implemented MP system is the Non-

Photochemical Quenching (NPQ) process. It is a photosynthetic

phenomenon that determines how plants accommodate to

various environmental light [21]. The NPQ process dissipates

excess light, which can be absorbed by the plant in some

environmental situations, using non-chemical ways (emitting

heat). This process is very important for the survival of many

plant species.

NPQ MP system has been iteratively improved many times

and has numerous variations of MP grammar that have been

tested is different cases [22]. For the research of automated

implementation in FPGA, a single type of NPQ MP system was

selected. The rules and regulators of the particular NPQ MP

system are as follows [23]:

1

2

3

4

1 1 1 1 1 1 1

2 2 2 2 2 2
1

3 3 3 3

4 4 4 4 4 4 4

5 5 5 5 5 5 5

6 6 6 6 6 6 6

5

6

: c 12 ,

: ,

: ,

: ,

: ,

: ,

;

;

;

;

;

;

r o h p

r c c q

r c c f

r o

c h x r l

c h x l

x lr

o h x r l

c h x r l

c

r

c h x r l

h

r p

r

7 7 77

8 8 88

;: 100 100 ,

: . (3),

x v x z

r y h

v

x y

{

 “substances”: {“G”: 20, “I”: 220},

 “rules”: [

 {“add”: {“G”: 1}, “sub”: {}},

 {“add”: {}, “sub”: {“G”: 1}},

 {“add”: {“I”: 1}, “sub”: {}},

 {“add”: {}, “sub”: {“I”: 1}}

],

 “constants”: {“f1c1”: 0.6, “f2c1”: 0.12, “f2c2”:

0.0000016, “f3c1”: 49.9, “f3c2”: 0.1, “f4c1”: 0.84},

 “fluxes”: [

 [“f1c1”],

 [“f2c1”, “*”, “G”, “+”, “f2c2”, “*”, “G”, “*”,

“G”, “*”, “I”],

 [“f3c1”, “+”, “f3c2”, “*”, “G”, “*”, “G”, “*”,

“G”],

 [“f4c1”, “*”, “I”]

]

}

Electrical, Control and Communication Engineering

__ 2016/10

9

There are many constants used in the NPQ MP system. They

are as follows:

3
1 1 1 1

5 4
1 1 1

2 2 2 2
6

2 2
3 4

3 3 3 3

4 4

: 7.2389 10 , 0.238, 0.47722,

2.3954, 6.3515 10 , 1.1321 10 ;
: 0.59811, 2.5545, 32.921,

279.55, 1.7732 10 ;

: 1.8208 10 , 8.379 10 , 0.90737;
: 0.18

 4 4

5 4
4 4 4

2
5 5 5 5

4 3
5 5 5

3
6 6 6 6

11, 0.24184, 0.47722,

2.3954, 6.3515 10 , 1.1321 10 ;

: 8.6799 10 , 2.8558, 5.7365,

28.755, 7.6423 10 , 1.3585 10 ;

: 7.2389 10 , 0.238, 0.47722,

 5 4
6 6 6

4 5
7 7 7

7 3
8 8 8

2.3954, 6.3515 10 , 1.1321 10 ;

: 1.0734 10 , 3.3287 10 ;

: 5.2981 10 , 5.9746 10 .

 (3)

The MP grammar shown in (3) is much more complex than

in the previous IVGTT MP system. Ten different substances

participate in the reactions of this system. Each reaction has also

a regulator expression that uses a list of constants derived from

experimental results. In total, there are more than 30 different

constants in this MP system. As a result, the JSON structure of

this MP system, shown in Fig. 5, has much more elements than

the structure of the previous MP system in Case A.

Fig. 5. MP grammar of NPQ encoded in JSON data structure (some parts

omitted in order to save space).

D. Parameters for the Evaluation of MP Implementations

The MP systems described in Section IV are implemented

automatically using the MP system VHDL code generation

tool. Also, those MP systems were implemented in MATLAB

software using a standard floating-point double-precision

calculation. The implemented-in-hardware MP systems were

evaluated using three main parameters: calculation accuracy

(maximum error), execution speed (maximum frequency), and

the amount of FPGA resources used.

To investigate the calculation accuracy, a reference point was

needed. MATLAB software was chosen because it was already

used in previous experiments [14]. The implementation in

software can be used as a reference point as it uses the more

precise floating-point arithmetic than the fixed-point FPGA

implementation. Also, calculations in software do not have

limitations such as the space and timing constraints. Maximum

error across all available data points is calculated first. This

means that it is ensured that the error will never exceed the

desired one when generating VHDL code with fixed-point

arithmetic. Even if a selected MP system has multiple outputs

of which only one produces much greater error percentages, the

total accuracy of the whole system will be dependent on the

most inaccurate point. To determine the accuracy, the

maximum error percentage is subtracted from a total of one

hundred percent. When generating VHDL code, the number of

steps generated also impacts the calculation of accuracy. This

happens because the calculation of error is also only performed

on the steps that will be used by FPGA to generate the output.

If the number of steps is increased, there is a potential to

encounter a point where the error will be higher than before.

For implementation in hardware, two different FPGA chips

were chosen. Both FPGAs are from the Xilinx Virtex-4 family

but have a different number of available resources. In Case A,

for the smaller IVGTT MP system, a Xilinx Virtex-4 FPGA

device with a model number of xc4vsx35 was used. This FPGA

was sufficient for all investigated cases of the IVGTT MP

system. For the second larger NPQ MP system in Case B, a

bigger Xilinx FPGA device with a model number of xc4vsx55

was used. Both models of FPGA chips are functionally

identical, except that the xc4vsx55 FPGA has a higher number

of the components available. A bigger FPGA was needed for

the NPQ MP system because of its complexity it did not fit

inside the smaller FPGA model. The different number of

components in selected FPGA models is shown in Table I.

TABLE I

NUMBER OF COMPONENTS IN SELECTED FPGA MODELS

FPGA component
Total number of components in a chip

xc4vsx35 xc4vsx55

Slices 15 360 24 576

4 input LUTs 30 720 49 152

DSP48s 192 512

For VHDL code implementation in FPGA, Xilinx ISE

Design Suite software was used. The Xilinx software verifies

the design and allows performing simulated VHDL design tests.

The simulation is most of the time sufficient for obtaining the

needed values of implementation performance such as used

FPGA resources and design speed. Also, MP system calculation

results can be obtained directly from the simulation. This speeds

up the experimentation and allows easier result parsing.

The number of used FPGA resources as well as the design

frequency is provided by Xilinx ISE Design Suite Synthesis

Report. Calculation speed can be determined from the Timing

Summary section of the report. It is measured using maximum

design frequency value in MHz or minimum period value in ns.

The number of used FPGA resources is provided in the Device

Utilization Summary section of the Synthesis Report and is

measured by providing the total number of both used cells and

free cells.

{

 "substances": {"C": 0.00397706,"H":

0.0006,"Q_cum": 0.01513153,"P": 3.74,"F_cum":

40,"V": 6.10763699,"Z": 0.02898116,"Y":

0.01170046493,"X": 0.00236685832,"O": 0.77989752},

 "rules": [

{"add": {"O": 1,"H": 12,"P": 1},"sub": {"C": 1}},

{"add": {"Q_cum": 1},"sub": {}},

 ...6 rules omitted...

],

 "constants": {

 "f1c1": 7.2389e-003, f1c2": -2.3800e-001,

 ...34 constants omitted...

 },

 "fluxes": [

 ["f1c1", "+", "f1c2", "*", "C", "+", "f1c3",

"*", "H", "+", "f1c4", "*", "X", "+", "f1c5", "+",

"f1c6"],

 ...7 fluxes omitted...

]

}

Electrical, Control and Communication Engineering

__ 2016/10

10

IV. EXPERIMENTAL RESULTS OF FPGA IMPLEMENTATION

MP systems, described in Sections III.B and III.C, were

implemented in FPGA using the VHDL code generated by the

developed MP system VHDL code generation tool. The target

error was set to be not more than 1 %. To achieve this accuracy,

the optimal-word-length-finding algorithm was started. For the

IVGTT MP system, 12 bits were needed for the integer part.

After finding the optimal integer word length, a binary search

algorithm was started to find the optimal number of bits for the

fractional part. The process of finding the optimal number of

bits is illustrated in Fig. 6. The algorithm selected 22 as the

optimal number of bits for the fractional part. This means that

in total, the word length of 34 bits plus the sign bit was used.

Fig. 6. Process of finding the number of bits for the IVGTT (Case A)

implementation with the maximum error of 1 %. The gray bar emphasizes the
change of optimization target – from the integer to fractional parts.

In the case of the NPQ MP system, which is more complex

than the IVGTT, the word length required to achieve the same

system accuracy was greater. When the target error was set to

be not more than 1 %, the word-length-finding algorithm

determined that the optimal number of bits for the integer part

is 20 and for the fractional part is 25. This yields the total word

length of 46 bits (one for the sign).

For both MP systems, the required number of steps to find

the optimal word length was similar: 12 steps for the IVGTT,

and 13 steps for the NPQ MP systems. The number of steps for

determination of the integer and fractional parts is almost equal.

Although this depends on the “guess” of the initial values, they

were not specifically tailored to suit the selected MP systems.

A starting point of a total of 48 bits (15 for the integer part, 32

for the fractional part, and 1 for the sign) was selected, which

mirrors the capabilities of DSP48 cells of the selected FPGA.

It should be noted that the developed algorithm only searches

for the minimum number of bits that achieve the requested

accuracy. It does not, however, check whether the selected

binary word length is effective when MP system is

implemented in FPGA. It assumes that the use of x bits is

always better than the use of x + 1 bits in terms of system

performance, and always worse – in terms of system accuracy.

However, as shown in Fig. 7, it is not always the case.

Fig. 7. Number of DSP cells needed to model IVGTT (a) and NPQ (b) MP

systems with a particular number of bits for fractional part. The number of bits
for the integer part of IVGTT system is always 12, while for NPQ system – 25.

For the IVGTT MP system, the automatically selected

number of bits for the fractional part was 22 at the 1 %

maximum error input value. When implemented in FPGA, this

system was using 22 DSP cells. However, the same number of

DSP cells was also used when the IVGTT MP system was

implemented in FPGA using 21 or 23 bits for the fractional

word length. Although the maximum error of the

implementation with 21 fractional bits exceeds the targeted

1 %, the error of the implementation with 23 fractional bits is

even better than the automatically selected one. The same

phenomenon can be noticed at another place of Fig. 7. When

the 19 or 20 bits fractional word length is used for the

implementation of IVGTT MP system, the same number of

18 DSP cells is utilized.

As can be seen in Fig. 8a, when 19 bits are used for the

fractional word length, the design speed is higher and less

resources are used compared to the scenario when 20 bits are

used. On the other hand, usage of 20 bits for the fractional part

allows achieving a higher calculation accuracy. This outcome

is very predictable and does not exhibit any special behavior: a

longer word length in fixed-point arithmetic requires more

FPGA resources but achieves a higher calculation accuracy.

A more interesting scenario can be seen in Fig. 8b. In three

different cases, when using 21, 22, or 23 bits for the fractional

part, the resulting IVGTT MP system implementations use the

same number of 22 DSP cells. However, other parameters are

not equal. The implementation with the highest number of bits

(23) for the fractional part surprisingly uses the least amount of

FPGA resources (slices and LUTs). In a very close second place

is the implementation with 21 bits, and the automatically

selected (closest to the 1 % error) implementation with 22 bits

uses the most of FPGA resources. The implementation with the

highest number of bits for the fractional part is also expectedly

the most accurate. This leaves a single parameter where this

implementation does not achieve the best results – execution

speed. The implementation with 22 bits for the fractional part

runs faster, even if not by a significant amount, than both the

others. When 21 bits are used for the fractional part, there is no

advantage in any implementation evaluation parameter.

Electrical, Control and Communication Engineering

__ 2016/10

11

Fig. 8. Comparison of FPGA resources used and calculation accuracy when implementations of IVGTT MP system with different number of bits for the fractional

part of binary word result in the same number of 18 (a) or 22 (b) DSP cells used.

This situation demonstrates that it is not always obvious how

to choose the most appropriate parameters when implementing

the MP systems in FPGA. Even though using a bigger word

length for the fixed-point arithmetic can be expected to

consume more FPGA resources, sometimes it can have a

reverse effect. This may be influenced by the way the

optimization is implemented in the VHDL code synthesizer

provided with Xilinx ISE Design Suite software.

The case of NPQ MP system implementation confirms our

findings – there also is a situation when the same number of

DSP cells is utilized when using different word lengths, as

shown in Fig. 7b. When using 27 or 28 bits for the fractional

part, 85 DSP cells of the FPGA were used. Fig. 9 shows that,

like in the case of Fig. 8a, using a higher number of bits

achieves a greater accuracy but uses more resources.

In both cases, shown in Fig. 8a and Fig. 9, the difference in

accuracy is not very large, maybe even insignificant,

considering the fact that in principle MP systems are only

approximations of real processes and, even if implemented with

perfect accuracy, do not provide identical results to real data.

Fig. 9. Comparison of FPGA resources used and calculation accuracy when
implementations of NPQ MP system with different number of bits for the

fractional part of binary word result in the same number of 85 DSP cells used.

Considering this, in most cases it can be beneficial to select

an implementation with slightly worse accuracy (0.001 % in

Fig. 8b, and 0.15 % in Fig. 9) but more efficient resource usage.

This can be especially important when hardware resources are

limited or when implementing multiple systems.

According to the investigated automated MP system

implementation cases, often it can be beneficial to not only

determine a single optimal binary word length for use in fixed

point calculations, but to further investigate the closest group of

other options. The algorithm of MP system VHDL code

generation tool is modified to take this into account. Firstly, it

tries to select the word length that yields the results closest to

the requested accuracy. Then the MP system is automatically

implemented (synthesized) using Xilinx ISE Design Suite

software. After that, FPGA performance parameters are

obtained from the Design Report.

If DSP cells are considered to be the most valuable resource

of an FPGA, the number of used DSP cells should be considered

by the MP system VHDL code generation tool as the primary

parameter. After implementing the MP system using the

selected optimal word length and checking the number of DSP

cells used, the algorithm can then select other closest possible

word lengths and also implement them. For example, let’s say

that the optimal word length consists of x integer bits and y

fractional bits. Then the closest other word lengths will use the

same number of x integer bits, but two different numbers of

fractional bits: y − 1 and y + 1.

If the MP systems using fixed-point arithmetic with the other

selected closest word lengths are implemented and found to

have utilized the same number of DSP cells, the MP system

VHDL code generation tool can proceed to the comparison of

other parameters. If the number of DSP cells used is not the

same, the algorithm can keep using the previously selected

optimal word length, considering the logic that DSP cells are

the most important FPGA resource. Although the MP system

VHDL code generation tool can find the word lengths with the

same DSP cell usage, the selection of the best choice depends

on the purpose of the system and the developers’ choice.

Electrical, Control and Communication Engineering

__ 2016/10

12

V. CONCLUSION

1. A first valid automated MP system VHDL code generation

tool for implementation in FPGA was developed:

 the performance of the tool was demonstrated by

automatically implementing the IVGTT and NPQ MP

systems that reached an optimal word length in 12 and

13 steps correspondingly;

 the automation of the tool is grounded on the use of Python

programming language, and performs the search of the

optimal binary word length (both the integer and fractional

parts independently) for the fixed-point implementation;

 a final decision to be done by the developer is supported

by the tool that features the possibility of simulating the

alternative implementations by VHDL synthesis software.

2. The experimental investigation of system implementations

on FPGA revealed cases when bigger word lengths do not

expectedly lead to a higher FPGA resource usage:

 the cases with word length of fractional parts of IVGTT

MP system (19 or 20 and 21 to 23 bits) and NPQ MP

system (27 or 28 bits) manifest this in DSP cell usage;

 the case of IVGTT system (word length of fractional part:

21 to 23 bits) manifests this in slice and LUT usage.

Future work includes investigation of different approaches to

hardware implementation and further optimization.

ACKNOWLEDGMENT

This research was funded by a grant (No. MIP-083/2015)

from the Research Council of Lithuania.

REFERENCES

[1] G. Păun, “Computing with membranes,” J. of Computer and System
Sciences, vol. 61, no. 1, pp. 108–143, 2000.

https://doi.org/10.1006/jcss.1999.1693

[2] V. Manca, L. Bianco and F. Fontana, “Evolution and oscillation in
P systems: applications to biological phenomena,” Membrane Computing,

pp. 63–84, 2005.

[3] V. Manca, “Fundamentals of Metabolic P Systems,” Handbook of
Membrane Computing, vol. 19, pp. 489–498, 2009.

[4] L. Bianco, F. Fontana and V. Manca, “P systems with reaction maps,” Int.

J. of Found. of Comput. Sci., vol. 17, no. 1, pp. 27–48, 2006.
https://doi.org/10.1142/S0129054106003681

[5] L. Bianco, F. Fontana, G. Franco and V. Manca, “P systems for biological

dynamics,” Applicat. of Membrane Computing, pp. 83–128, 2006.
[6] V. Manca and L. Bianco, “Biological networks in metabolic P systems,”

Biosystems, vol. 91, no. 3, pp. 489–498, 2008.

https://doi.org/10.1016/j.biosystems.2006.11.009
[7] L. Bianco, D. Pescini, P. Siepmann, N. Krasnogor, F. J. Romero-

Campero and M. Gheorghe, “Towards a P systems Pseudomonas quorum

sensing model,” Memebrane Computing, pp. 197–214, 2006.

https://doi.org/10.1007/11963516_13

[8] A. Castellini, G. Franco and V. Manca, “Toward a representation of

hybrid functional Petri nets by MP systems,” Natural Computing, pp. 28–
37, 2009. https://doi.org/10.1007/978-4-431-88981-6_3

[9] V. Manca and L. Marchetti, “Goldbeter's Mitotic Oscillator Entirely

Modeled by MP Systems,” Membrane Computing, pp. 273–284, 2010.
https://doi.org/10.1007/978-3-642-18123-8_22

[10] V. Manca, and L. Marchetti, “Metabolic approximation of real periodical

functions,” The J. of Logic and Algebraic Programming, vol. 79, pp. 363–
373, Aug. 2010. https://doi.org/10.1016/j.jlap.2010.03.005

[11] L. Bianco, V. Manca, L. Marchetti and M. Petterlini, “Psim: a simulator

for biomolecular dynamics based on P systems,” in 2007 IEEE Congr. on
Evolutionary Computation, CEC 2007, Singapore, 2007, pp. 883–887.

https://doi.org/10.1109/cec.2007.4424563

[12] A. Castellini and V. Manca, “MetaPlab: a computational framework for

metabolic P systems”, Membrane Computing, pp. 157–168, 2009.

https://doi.org/10.1007/978-3-540-95885-7_12
[13] L. Marchetti, MpTheory Java Library [Online]. Available:

http://mptheory.scienze.univr.it/index.html. [Accessed: Feb. 23, 2016].

[14] D. Kulakovskis, “Application prospects of metabolic P systems,”
Science – Future of Lithuania / Mokslas – Lietuvos Ateitis, vol. 7, no. 3,

pp. 285–290, 2015. https://doi.org/10.3846/mla.2015.784

[15] V. Nguyen, D. Kearney and G. Gioiosa, “An implementation of
membrane computing using reconfigurable hardware,” Computing and

Informatics, vol. 27, no. 3, pp. 551–569, 2008.

[16] V. Nguyen, D. Kearney and G. Gioiosa, “A Region-Oriented Hardware
Implementation for Membrane Computing Applications”, Membrane

Computing, pp. 385–409, 2010.

https://doi.org/10.1007/978-3-642-11467-0_27
[17] D. Kulakovskis and D. Navakauskas, “Automation of metabolic P system

implementation in FPGA: A case study”, in 2015 IEEE 3rd Workshop on

Advances in Information, Electronic and Electrical Engineering (AIEEE),
Riga, 2015, pp. 1–4. https://doi.org/10.1109/aieee.2015.7367289

[18] V. Skopis and I. Uteshevs, “Research in Adaptronic Automatic Control

System and Biosensor System Modelling,” Elect., Control and Commun.

Eng., vol. 8, no. 1, pp. 20–29, 2015.

https://doi.org/10.1515/ecce-2015-0003

[19] D. W. Bishop. VHDL-2008 Support Library [Online].
Available: http://www.eda.org/fphdl/. [Accessed: Oct. 17, 2015].

[20] V. Manca, L. Marchetti and R. Pagliarini, “MP modeling of glucose-
insulin interactions in the intravenous glucose tolerance test,” Int. J. of

Natural Computing Research, vol. 2, no. 3, pp. 13–24, 2011.

https://doi.org/10.4018/jncr.2011070102
[21] V. Manca, R. Pagliarini and S. Zorzan, “A photosynthetic process

modelled by a metabolic P system,” Natural Computing, vol. 8, pp. 847–

864, 2009. https://doi.org/10.1007/s11047-008-9104-x
[22] A. Castellini, G. Franco and R. Pagliarini, “Data analysis pipeline from

laboratory to MP models,” Natural Computing, vol. 10, pp. 55–76, 2011.

https://doi.org/10.1007/s11047-010-9200-6
[23] A. Castellini, G. Franco and R. Pagliarini. NPQ phenomenon [Online].

Available: http://mplab.scienze.univr.it/external/natcomp/NPQ_stepwise

_tab4.html [Accessed Oct. 28, 2015].

Darius Kulakovskis received the B.Sc. and M.Sc.

degree in telecommunications engineering from

Vilnius Gediminas Technical University in 2012 and
2014, respectively.

He is a Ph.D. student at the Department of Electronic

Systems of Vilnius Gediminas Technical University,
Lithuania. His main research interests are metabolic P

systems and field programmable gate arrays.

Address: Vilnius Gediminas Technical University,
Faculty of Electronics, Naugarduko str. 41–413,

Vilnius, LT-03227, Lithuania.

E-mail: darius.kulakovskis@vgtu.lt

Dalius Navakauskas received the honour diploma of
a Radio-Electronics Engineer (in 1992) and the

following scientific degrees from Vilnius Gediminas

Technical University: the M.Sc. degree in electronics
in 1994, the Ph.D. degree in electrical and electronic

engineering in 1999, the habilitation degree in

informatics engineering in 2005, after which he
received the title of a professor in 2008.

He is a Professor and the Chair of the Department of

Electronic Systems of Vilnius Gediminas Technical
University, Lithuania. His main research interests

include computational intelligence, signal and image processing, and

bioinformatics.
D. Navakauskas is a senior member of the IEEE, an active member of The IEEE

Computational Intelligence and Signal Processing Societies, and currently

serves as the Chair of the IEEE Lithuania Section.
Address: Vilnius Gediminas Technical University, Faculty of Electronics,

Naugarduko str. 41–426, Vilnius, LT-03227, Lithuania.

E-mail: dalius.navakauskas@vgtu.lt

https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1142/S0129054106003681
https://doi.org/10.1016/j.biosystems.2006.11.009
https://doi.org/10.1007/11963516_13
https://doi.org/10.1007/978-4-431-88981-6_3
https://doi.org/10.1007/978-3-642-18123-8_22
https://doi.org/10.1016/j.jlap.2010.03.005
https://doi.org/10.1109/cec.2007.4424563
https://doi.org/10.1007/978-3-540-95885-7_12
https://doi.org/10.3846/mla.2015.784
https://doi.org/10.1007/978-3-642-11467-0_27
https://doi.org/10.1109/aieee.2015.7367289
https://doi.org/10.1515/ecce-2015-0003
https://doi.org/10.4018/jncr.2011070102
https://doi.org/10.1007/s11047-008-9104-x
https://doi.org/10.1007/s11047-010-9200-6

