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Abstract – An original Very High Speed Integrated Circuit 

Hardware Description Language (VHDL) code generation tool 

that can be used to automate Metabolic P (MP) system 

implementation in hardware such as Field Programmable Gate 

Arrays (FPGA) is described. Unlike P systems, MP systems use a 

single membrane in their computations. Nevertheless, there are 

many biological processes that have been successfully modeled by 

MP systems in software. This is the first attempt to analyze MP 

system hardware implementations. Two different MP systems are 

investigated with the purpose of verifying the developed software: 

the model of glucose–insulin interactions in the Intravenous 

Glucose Tolerance Test (IVGTT), and the Non-Photochemical 

Quenching process. The implemented systems’ calculation 

accuracy and hardware resource usage are examined. It is found 

that code generation tool works adequately; however, a final 

decision has to be done by the developer because sometimes several 

implementation architecture alternatives have to be considered. 

As an archetypical example serves the IVGTT MP systems’ 21–23 

bits FPGA implementation manifesting this in the Digital Signal 

Processor (DSP), slice, and 4-input LUT usage. 

 

 

Keywords – Biological system modeling; Chemical processes; 

Digital signal processors; Field programmable gate arrays; Fixed-

point arithmetic. 

I. INTRODUCTION 

Metabolic P (MP) systems evolved from and are based on 

membrane computing or P systems [1]. They were first 

proposed by Manca in 2005 [2]. Unlike P systems, MP systems 

use a single membrane in their computations. Any substances 

defined in a MP system are moved through this membrane or 

transform from one to another at a certain rate. These systems 

are inspired by a biological process known as metabolism that 

is crucial for the survival of living organisms. MP systems can 

model a variety of processes, periodic or not, and produce 

approximated substance amounts after each reaction step. 

MP system is a discrete dynamical system which can be 

described by a construct known as MP graph [3]. It is a set of 

reactions, fluxes which regulate these reactions and determine 

their speed and other parameters or constants. The reaction 

representation way is very similar to that of chemical reactions. 

Therefore, it is easy to interpret for the scientists of different 

fields such as chemistry and biology. Because of this, required 

MP system reactions can be more easily derived from the 

reactions of corresponding chemical or biological processes. 

Many processes have been modeled by MP systems, 

including Belousov-Zhabotinsky reaction [4], Lotka-Volterra 

dynamics, Susceptible-Infected-Recovered epidemic [5], the 

circadian rhythms, the mitotic cycles in early amphibian 

embryos [6], Pseudomonas quorum sensing model [7], the lac 

operon gene regulatory mechanism in glycolytic pathway [8]. 

Recently, Goldbeter’s mitotic oscillator was modeled by MP 

system [9]. Of course, application of MP systems is not 

exclusive only to biological and chemical processes but can be 

used to model almost any kind of dynamical processes, starting 

from a simple sine wave function [10]. 

Currently, there are two major implementation ways of MP 

systems. Both of them are based on implementation in software. 

The first one started as a Psim [11]. It is a simulation tool 

developed for MP system modeling that allows describing a 

system by means of graphs and simulating the system dynamics 

based on metabolic algorithm. Psim is developed using Java 

programming language and features an input GUI, which is 

used to construct MP graphs. An improved version of the 

software called MetaPlab was introduced in [12]. It features a 

new plug-in based architecture which makes the software more 

versatile and able to perform multiple tasks. 

Another implementation of MP systems is an open-source 

MpTheory Java Library. It was developed by V. Manca and 

L. Marchetti and is available for download [13]. The provided 

Java objects can be directly used to model selected MP systems, 

and the library can also be used within MATLAB, GNU 

Octave, Mathematica and R computing environments. 

Although MP systems can be implemented in software using 

specialized MetaPlab software or relatively simple 

implementation of MP formulae in MATLAB [14], it is also 

possible to directly implement them in hardware. P systems are 

known to have been implemented in hardware [15], [16], but so 

far there are no known similar implementations of MP systems. 

In this article, an original MP system Very High Speed 

Integrated Circuit Hardware Description Language (VHDL) 

code generation tool that can be used to automate MP system 

implementation in hardware such as Field Programmable Gate 

Arrays (FPGA) is described. Preliminary work was done in 

[17]. The developed tool not only generates the VHDL code but 

also selects the optimal word length for fixed-point arithmetic 

according to user-desired accuracy. Although the developed 

tool optimizes the binary word length with the assumption that 

the performance of FPGA scales linearly with the word length, 

it is shown that that is not always the case. This is demonstrated 

by two separate cases of automated MP system implementation 

using the developed tool. Results of the automated 

implementation are discussed in the experimental section of the 

article along with key hardware implementation parameters 

such as design frequency, the number of FPGA resources used, 

and the calculation accuracy of the implemented design. The 

Digital Signal Processor (DSP) cell is regarded as the main 

limited resource of FPGA chip. It is the main element that 

performs the calculations. DSPs are used in a variety of 

applications as either a part of FPGA or a standalone chip [18]. 
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II. AUTOMATION OF MP SYSTEM IMPLEMENTATION 

The MP system VHDL code generation tool written in 

Python interpreted programming language was developed to 

convert MP systems described by a text file in JavaScript Object 

Notation (JSON) format to VHDL architecture. The generated 

VHDL code can be implemented as a stand-alone component 

or incorporated into bigger VHDL programs that are 

implemented in FPGA. This enables easier implementation of 

MP systems in hardware and builds on key MP system aspect 

of accessibility and ease of description. The MP system VHDL 

code generation tool can be used not only by engineers who 

understand MP systems but also by people working in different 

fields who might find the functionality provided by MP systems 

useful but too time- and resource-consuming to develop 

independently. The developed tool allows achieving faster 

implementation and lowers the time needed to deploy a selected 

MP system or even a multitude or variation of them.  

MP system VHDL code generation tool is composed of four 

main parts, as shown in Fig. 1. 

 

Fig. 1. MP system VHDL code generation tool. 

The first part consists of an input file interpreter and a 

validator. The second part uses the input data and determines 

the binary word length needed to achieve the requested 

accuracy. The third part of the tool uses the determined word 

length and the input data to generate the key parts of VHDL 

code. Lastly, the fourth and final part merges the generated 

VHDL code fragments with a prepared template and produces 

a complete VHDL component. 

As an input a file in JSON format is used to describe MP 

systems. The file includes entries for initial substance amounts, 

constants, rule logic, and regulator logic. Also, the developed 

tool accepts an input of a number of iterations the software 

should generate and the desired accuracy of the resulting fixed 

point calculations. The accuracy is used to determine the word 

length used in VHDL-fixed point library [19]. 

The first part of MP system VHDL code generation tool 

parses the input JSON format file. As the input file format is 

very similar to the Python dictionary data structure, the 

conversion of input data is straightforward. When the MP 

system data is loaded, a new class instance object is initialized 

according to provided substances, constants, rules, and 

regulators. The validation of the MP system defined in the input 

file is also performed along the way. 

The second part of the MP system VHDL code generation 

tool determines the optimal word length that should be used to 

achieve the calculation accuracy requested by user. The word 

length is determined by an algorithm consisting of two parts, as 

shown in Fig. 2. 

 

Fig. 2. Pseudocode of algorithm to find the optimal word length. 

float_results = calculate_floating_point(...) 

integer_bits, frac_bits = initial_values 

# start integer part of the algorithm 

# calculate results with initial values 

fixed_results = calculate_fixed_point(...) 

error = max(float_results - fixed_results) 

# increment integer bits 

integer_bits = integer_bits + 1 

error_next = max(float_results - 

fixed_results_next) 

error_decreasing = True if error_next < error 

if error_decreasing 

    # increment until error is no longer decreasing 

    while error < previous_error 

        integer_bits = integer_bits + 1 

        ... calculate error ... 

else 

    # decrement until error starts increasing 

    while error == previous_error 

        integer_bits = integer_bits - 1 

        ... calculate error ... 

# start fractional part of the algorithm 

error = max(... with initial values ...) 

bit_step = initial_bits/2 

while bit_step != 1 

    if error >= target_error: 

        # increase until error is lower than target 

        frac_bits = frac_bits + bit_step 

    else 

        # error is below target, try to optimize 

        frac_bits = frac_bits - bit_step 

    bit_step = bit_step/2 

    all_results.append(error, fractional_bits) 

# select closest result to target as final 

final_frac_bits = closest_to_target(all_results) 
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Before starting the algorithm, MP system is modeled using 

floating-point arithmetic. The floating-point results are used as 

a reference point to calculate the error of fixed-point arithmetic. 

Then the first part of the algorithm tries to determine the 

required number of integer bits. As any decimal integer number 

can be represented in binary, there is a point where increasing 

the number of bits does not yield any improvement in the 

accuracy of the calculation. When the initial number of bits is 

selected, a system is modeled using that number of bits, and the 

error is calculated. Then the same operation is repeated using 

the integer word length greater by one. When the errors are 

compared, the algorithm determines whether the error is 

decreasing when the integer part of the word length is 

increasing. If it is true, this means that accuracy can still be 

improved by increasing the number of integer bits. If it is not 

true, the algorithm tries to lower the number of integer bits to 

optimize the system. When the optimal number of integer bits 

is found, the second part of the algorithm that tries to find the 

optimal number of fractional bits is started. Initially, a number 

of fractional bits that is a factor of two is selected, and then the 

binary search algorithm is used to get the number of fractional 

bits that yield the closest error value to the requested target. 

The third part of the MP system VHDL code generation tool 

is the main VHDL code generation logic. It uses the input MP 

system data as well as determined the integer and fractional 

word lengths to generate the specific sections of VHDL code. 

The generation part consists of nine steps, as shown in Fig. 1. 

Firstly, an output port must be defined for each substance 

participating in the provided MP system. The port direction is 

set to bidirectional (inout), and a signed fixed-point (sfixed) 

type is used. Then the constants used in this VHDL component 

are defined. They consist of substance initial amounts, taken 

from the substances part of JSON file, and other constants used 

in the MP system regulator expressions, defined separately in 

JSON file. Some variables must be defined for the behavioral 

process that calculates a step of MP system values on each clock 

cycle. Substance variables store the state of substance amounts 

after each calculation step (clock cycle). Rule variables store 

the calculation result for each MP system rule. When the VHDL 

process begins, firstly MP system substance signals are 

initialized by passing them the previously defined initial 

substance amount constants. Then the main calculation logic 

starts. For each MP system rule, a single line expression is 

generated that implements the regulator logic. Then, the 

calculated substance amounts for the current step are 

determined and assigned to substance variables. Finally, the 

calculated substances are passed to the signals that can be sent 

to the output. 

The fourth and last part of MP system VHDL code 

generation tool uses a prepared template containing the rest of 

VHDL code, such as library declarations, utility port (step 

number, clock, start signal, etc.) declarations, rising clock edge 

detection, and the start and end markers of various VHDL code 

blocks. These code fragments are static for every implemented 

MP system and do not have to be generated. In addition, the 

template contains replacement fields that are substituted with 

generated VHDL code fragments by using the Python string 

formatting tools. The result of merging the template with 

generated code fragments is a complete VHDL component of a 

particular MP system provided as an input. 

III. STUDY DESCRIPTION 

A. Preliminaries of Original MP Grammar Representation 

by Data Structure 

The input format of MP system VHDL code generation tool 

is a JSON data structure of original design. The JSON format 

was chosen because it is easy to read and convert in Python 

programming language, used by the generation tool. Also, it is 

a relatively simple format used by many applications, especially 

web pages that use JavaScript language. The structure of the 

JSON file closely mirrors the structure of MP systems 

represented by MP graphs. This feature makes it easier to 

convert MP systems from one format to another by automated 

tools or by manual human interaction.  

The JSON file used in MP system VHDL code generation 

tool contains all required information to describe an MP system. 

As an example, an imaginary MP system described by the 

following MP graph can be represented in a JSON format used 

by the tool: 

 1 1

2 2

: 2 3 , 5 8.5;

: , 1.

r A B A

r B A A B

   

    
 (1) 

The equation consists of two parts: left, and right. The left 

part of the equation represents the reactions r, and the left part 

represents regulators φ that determine the rate at which the 

reaction is happening. The MP system has two rule and 

regulator pairs (r1 and φ1, r2 and φ2), two substances (A and B), 

and three constants used in the regulators. This MP system 

represented by (1) can be rewritten in JSON format as is shown 

in Fig. 3. 

 

Fig. 3. An example MP system represented by JSON data structure. 

When implementing the MP system in a new JSON format, 

it is split into four parts: substances, rules, constants, and 

regulators. Next, we will analyze them more thoroughly. 

{ 

  “substances”: { 

    “A”: 1, 

    “B”: 2 

  }, 

  “rules”: [ 

    { 

      “add”: {“B”: 3}, 

      “sub”: {“A”: 2}, 

    }, { 

      “add”: {“A”: 1}, 

      “sub”: {“B”: 1}, 

    } 

  ] 

  “constants”: { 

    “c1”: 5, 

    “c2”: 8.5, 

    “c3”: 1 

  }, 

  “fluxes”: [ 

    [“c1”, “*”, “A”, “+”, “c2”], 

    [“A”, “+”, “B”, “-“, “c3”] 

  ] 

} 
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Substances are the main variables in MP systems. In this 

case, there are two substances: A, and B. These substances must 

have an initial amount that will be used at the start of MP system 

calculation. In JSON data structure, the keys of “substances” 

object represent the substances of MP system, and the objects’ 

values represent the initial amount of corresponding substance. 

Rules are the main MP system reactions that transform one 

or more substances into each other, introduce substances from 

the environment or expel them to the environment. In this case, 

there are two reactions. The first one transforms an amount of 

two of substance A into an amount of three of substance B. In 

other words, 2A is subtracted and 3B is added. This is 

represented in JSON data structure by a one-dimensional array 

that has a length of the number of rules in the MP system. It 

contains the two objects (each for one rule) with the numbers of 

the added and subtracted amount of each substance as key-value 

pairs. 

Constants are the numerical values that do not change during 

the MP system iterative calculation process. Constants 

participate in the addition, subtraction or multiplication 

operations of MP system regulators. In JSON data structure, the 

constants are represented in a “constants” object by key-value 

pairs where the key is an arbitrary constant name and the value 

is the constant itself. This enables the separation of values from 

mathematical operations. In this case, there are three constants 

represented by two integer numbers and one fractional number. 

These are the only allowed types of constants as the MP system 

must be implemented in hardware, which has its limitations. 

Regulators, sometimes also called fluxes, determine the rate 

at which the reactions are happening. Each MP system rule has 

its own regulator expression that contains mathematical 

operations using the previously defined constants and 

substances. In the JSON data structure, allowed mathematical 

operations are addition, subtraction, and multiplication. More 

complex operations could in principle be implemented, but 

hardware limitations must always be considered. For the 

purpose of this article, mentioned mathematical operations 

were sufficient. In JSON data structure, each regulator is 

represented by an array that contains each operand and 

mathematical operation of the regulator expression as a separate 

array element. The array must start and end with a substance or 

constant (valid mathematical operations cannot start or end with 

a sign), and elements must be separated by the addition (“+”), 

subtraction (“−”), or multiplication (“*”) signs. 

B. MP System Description – Case A 

Two different Metabolic P systems were chosen and 

implemented in FPGA. This demonstrates the usage of the 

developed MP system VHDL code generation tool. 

The first implemented system is a model of glucose–insulin 

interactions in the Intravenous Glucose Tolerance Test 

(IVGTT). It is an experimental medical procedure where a 

particular amount of glucose is injected intra-venously and the 

concentrations of glucose and insulin in blood are sampled at a 

frequent interval [20]. The IVGTT is used to better understand 

the interactions of glucose and insulin in human body. This test 

can help diagnose diabetes by observing the rate at which the 

glucose and insulin concentrations return to normal level. 

One type of MP grammar of IVGTT model is used: 

 

1 1
6 2

2 2
3

3 3

4 4

: , 0.6;

: , 0.12 1.6 10 ;

: , 49.9 0.1 ;

: , 0.84 .

r G

r G G G I

r I G

r I I



  

    

    

  

 (2) 

There are a total of four reactions in this model, each with its 

own flux regulator expression. Two substances participate in 

these reactions – glucose and insulin. Both of them are 

introduced to the system through a virtual membrane, which is 

represented in (2) by an empty set. The whole MP system 

structure must be considered and described when writing the 

JSON file for MP system VHDL code generation tool. JSON 

file for IVGTT system in (2) is shown in Fig. 4. 

 

Fig. 4. MP grammar of IVGTT encoded in JSON data structure. 

C. MP System Description – Case B 

The second implemented MP system is the Non-

Photochemical Quenching (NPQ) process. It is a photosynthetic 

phenomenon that determines how plants accommodate to 

various environmental light [21]. The NPQ process dissipates 

excess light, which can be absorbed by the plant in some 

environmental situations, using non-chemical ways (emitting 

heat). This process is very important for the survival of many 

plant species.  

NPQ MP system has been iteratively improved many times 

and has numerous variations of MP grammar that have been 

tested is different cases [22]. For the research of automated 

implementation in FPGA, a single type of NPQ MP system was 

selected. The rules and regulators of the particular NPQ MP 

system are as follows [23]: 

1

2

3

4

1 1 1 1 1 1 1

2 2 2 2 2 2
1

3 3 3 3

4 4 4 4 4 4 4

5 5 5 5 5 5 5

6 6 6 6 6 6 6

5

6

: c 12 ,

: ,

: ,

: ,

: ,

: ,

;

;

;

;

;

;

r o h p

r c c q

r c c f

r o

c h x r l

c h x l

x lr

o h x r l

c h x r l

c

r

c h x r l

h

r p

r



 

         

         

     

         

         

       

  

 

 





 





7 7 77

8 8 88

;: 100 100 ,

: . (3),

x v x z

r y h

v

x y

  

 

   

   

 

{ 

  “substances”: {“G”: 20, “I”: 220}, 

  “rules”: [ 

    {“add”: {“G”: 1}, “sub”: {}}, 

    {“add”: {}, “sub”: {“G”: 1}}, 

    {“add”: {“I”: 1}, “sub”: {}}, 

    {“add”: {}, “sub”: {“I”: 1}} 

  ], 

  “constants”: {“f1c1”: 0.6, “f2c1”: 0.12, “f2c2”: 

0.0000016, “f3c1”: 49.9, “f3c2”: 0.1, “f4c1”: 0.84}, 

  “fluxes”: [ 

    [“f1c1”], 

    [“f2c1”, “*”, “G”, “+”, “f2c2”, “*”, “G”, “*”, 

“G”, “*”, “I”], 

    [“f3c1”, “+”, “f3c2”, “*”, “G”, “*”, “G”, “*”, 

“G”], 

    [“f4c1”, “*”, “I”] 

 ] 

} 
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There are many constants used in the NPQ MP system. They 

are as follows: 

 

3
1 1 1 1

5 4
1 1 1

2 2 2 2
6

2 2
3 4

3 3 3 3

4 4

: 7.2389 10 , 0.238, 0.47722,

2.3954, 6.3515 10 , 1.1321 10 ;
: 0.59811, 2.5545, 32.921,

279.55, 1.7732 10 ;

: 1.8208 10 , 8.379 10 , 0.90737;
: 0.18



 



       

       
      

    

        
   4 4

5 4
4 4 4

2
5 5 5 5

4 3
5 5 5

3
6 6 6 6

11, 0.24184, 0.47722,

2.3954, 6.3515 10 , 1.1321 10 ;

: 8.6799 10 , 2.8558, 5.7365,

28.755, 7.6423 10 , 1.3585 10 ;

: 7.2389 10 , 0.238, 0.47722,

 



 



   

       

       

       

       

 5 4
6 6 6

4 5
7 7 7

7 3
8 8 8

2.3954, 6.3515 10 , 1.1321 10 ;

: 1.0734 10 , 3.3287 10 ;

: 5.2981 10 , 5.9746 10 .

 

 

 

      

      

      

  (3) 

The MP grammar shown in (3) is much more complex than 

in the previous IVGTT MP system. Ten different substances 

participate in the reactions of this system. Each reaction has also 

a regulator expression that uses a list of constants derived from 

experimental results. In total, there are more than 30 different 

constants in this MP system. As a result, the JSON structure of 

this MP system, shown in Fig. 5, has much more elements than 

the structure of the previous MP system in Case A. 

 

Fig. 5. MP grammar of NPQ encoded in JSON data structure (some parts 

omitted in order to save space). 

D. Parameters for the Evaluation of MP Implementations 

The MP systems described in Section IV are implemented 

automatically using the MP system VHDL code generation 

tool. Also, those MP systems were implemented in MATLAB 

software using a standard floating-point double-precision 

calculation. The implemented-in-hardware MP systems were 

evaluated using three main parameters: calculation accuracy 

(maximum error), execution speed (maximum frequency), and 

the amount of FPGA resources used. 

To investigate the calculation accuracy, a reference point was 

needed. MATLAB software was chosen because it was already 

used in previous experiments [14]. The implementation in 

software can be used as a reference point as it uses the more 

precise floating-point arithmetic than the fixed-point FPGA 

implementation. Also, calculations in software do not have 

limitations such as the space and timing constraints. Maximum 

error across all available data points is calculated first. This 

means that it is ensured that the error will never exceed the 

desired one when generating VHDL code with fixed-point 

arithmetic. Even if a selected MP system has multiple outputs 

of which only one produces much greater error percentages, the 

total accuracy of the whole system will be dependent on the 

most inaccurate point. To determine the accuracy, the 

maximum error percentage is subtracted from a total of one 

hundred percent. When generating VHDL code, the number of 

steps generated also impacts the calculation of accuracy. This 

happens because the calculation of error is also only performed 

on the steps that will be used by FPGA to generate the output. 

If the number of steps is increased, there is a potential to 

encounter a point where the error will be higher than before. 

For implementation in hardware, two different FPGA chips 

were chosen. Both FPGAs are from the Xilinx Virtex-4 family 

but have a different number of available resources. In Case A, 

for the smaller IVGTT MP system, a Xilinx Virtex-4 FPGA 

device with a model number of xc4vsx35 was used. This FPGA 

was sufficient for all investigated cases of the IVGTT MP 

system. For the second larger NPQ MP system in Case B, a 

bigger Xilinx FPGA device with a model number of xc4vsx55 

was used. Both models of FPGA chips are functionally 

identical, except that the xc4vsx55 FPGA has a higher number 

of the components available. A bigger FPGA was needed for 

the NPQ MP system because of its complexity it did not fit 

inside the smaller FPGA model. The different number of 

components in selected FPGA models is shown in Table I. 

TABLE I 

NUMBER OF COMPONENTS IN SELECTED FPGA MODELS 

FPGA component 
Total number of components in a chip 

xc4vsx35  xc4vsx55  

Slices 15 360 24 576 

4 input LUTs 30 720 49 152 

DSP48s 192 512 

 

For VHDL code implementation in FPGA, Xilinx ISE 

Design Suite software was used. The Xilinx software verifies 

the design and allows performing simulated VHDL design tests. 

The simulation is most of the time sufficient for obtaining the 

needed values of implementation performance such as used 

FPGA resources and design speed. Also, MP system calculation 

results can be obtained directly from the simulation. This speeds 

up the experimentation and allows easier result parsing. 

The number of used FPGA resources as well as the design 

frequency is provided by Xilinx ISE Design Suite Synthesis 

Report. Calculation speed can be determined from the Timing 

Summary section of the report. It is measured using maximum 

design frequency value in MHz or minimum period value in ns. 

The number of used FPGA resources is provided in the Device 

Utilization Summary section of the Synthesis Report and is 

measured by providing the total number of both used cells and 

free cells. 

{ 

  "substances": {"C": 0.00397706,"H": 

0.0006,"Q_cum": 0.01513153,"P": 3.74,"F_cum": 

40,"V": 6.10763699,"Z": 0.02898116,"Y": 

0.01170046493,"X": 0.00236685832,"O": 0.77989752}, 

  "rules": [ 

{"add": {"O": 1,"H": 12,"P": 1},"sub": {"C": 1}}, 

{"add": {"Q_cum": 1},"sub": {}}, 

               ...6 rules omitted... 

  ], 

  "constants": { 

    "f1c1": 7.2389e-003, f1c2": -2.3800e-001, 

             ...34 constants omitted... 

  }, 

  "fluxes": [ 

    ["f1c1", "+", "f1c2", "*", "C", "+", "f1c3", 

"*", "H", "+", "f1c4", "*", "X", "+", "f1c5", "+", 

"f1c6"], 

               ...7 fluxes omitted... 

  ] 

} 
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IV. EXPERIMENTAL RESULTS OF FPGA IMPLEMENTATION 

MP systems, described in Sections III.B and III.C, were 

implemented in FPGA using the VHDL code generated by the 

developed MP system VHDL code generation tool. The target 

error was set to be not more than 1 %. To achieve this accuracy, 

the optimal-word-length-finding algorithm was started. For the 

IVGTT MP system, 12 bits were needed for the integer part. 

After finding the optimal integer word length, a binary search 

algorithm was started to find the optimal number of bits for the 

fractional part. The process of finding the optimal number of 

bits is illustrated in Fig. 6. The algorithm selected 22 as the 

optimal number of bits for the fractional part. This means that 

in total, the word length of 34 bits plus the sign bit was used. 

 

Fig. 6. Process of finding the number of bits for the IVGTT (Case A) 

implementation with the maximum error of 1 %. The gray bar emphasizes the 
change of optimization target – from the integer to fractional parts. 

In the case of the NPQ MP system, which is more complex 

than the IVGTT, the word length required to achieve the same 

system accuracy was greater. When the target error was set to 

be not more than 1 %, the word-length-finding algorithm 

determined that the optimal number of bits for the integer part 

is 20 and for the fractional part is 25. This yields the total word 

length of 46 bits (one for the sign). 

For both MP systems, the required number of steps to find 

the optimal word length was similar: 12 steps for the IVGTT, 

and 13 steps for the NPQ MP systems. The number of steps for 

determination of the integer and fractional parts is almost equal. 

Although this depends on the “guess” of the initial values, they 

were not specifically tailored to suit the selected MP systems. 

A starting point of a total of 48 bits (15 for the integer part, 32 

for the fractional part, and 1 for the sign) was selected, which 

mirrors the capabilities of DSP48 cells of the selected FPGA. 

It should be noted that the developed algorithm only searches 

for the minimum number of bits that achieve the requested 

accuracy. It does not, however, check whether the selected 

binary word length is effective when MP system is 

implemented in FPGA. It assumes that the use of x bits is 

always better than the use of x + 1 bits in terms of system 

performance, and always worse – in terms of system accuracy. 

However, as shown in Fig. 7, it is not always the case. 

 

Fig. 7. Number of DSP cells needed to model IVGTT (a) and NPQ (b) MP 

systems with a particular number of bits for fractional part. The number of bits 
for the integer part of IVGTT system is always 12, while for NPQ system – 25. 

For the IVGTT MP system, the automatically selected 

number of bits for the fractional part was 22 at the 1 % 

maximum error input value. When implemented in FPGA, this 

system was using 22 DSP cells. However, the same number of 

DSP cells was also used when the IVGTT MP system was 

implemented in FPGA using 21 or 23 bits for the fractional 

word length. Although the maximum error of the 

implementation with 21 fractional bits exceeds the targeted 

1 %, the error of the implementation with 23 fractional bits is 

even better than the automatically selected one. The same 

phenomenon can be noticed at another place of Fig. 7. When 

the 19 or 20 bits fractional word length is used for the 

implementation of IVGTT MP system, the same number of 

18 DSP cells is utilized. 

As can be seen in Fig. 8a, when 19 bits are used for the 

fractional word length, the design speed is higher and less 

resources are used compared to the scenario when 20 bits are 

used. On the other hand, usage of 20 bits for the fractional part 

allows achieving a higher calculation accuracy. This outcome 

is very predictable and does not exhibit any special behavior: a 

longer word length in fixed-point arithmetic requires more 

FPGA resources but achieves a higher calculation accuracy. 

A more interesting scenario can be seen in Fig. 8b. In three 

different cases, when using 21, 22, or 23 bits for the fractional 

part, the resulting IVGTT MP system implementations use the 

same number of 22 DSP cells. However, other parameters are 

not equal. The implementation with the highest number of bits 

(23) for the fractional part surprisingly uses the least amount of 

FPGA resources (slices and LUTs). In a very close second place 

is the implementation with 21 bits, and the automatically 

selected (closest to the 1 % error) implementation with 22 bits 

uses the most of FPGA resources. The implementation with the 

highest number of bits for the fractional part is also expectedly 

the most accurate. This leaves a single parameter where this 

implementation does not achieve the best results – execution 

speed. The implementation with 22 bits for the fractional part 

runs faster, even if not by a significant amount, than both the 

others. When 21 bits are used for the fractional part, there is no 

advantage in any implementation evaluation parameter. 
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Fig. 8. Comparison of FPGA resources used and calculation accuracy when implementations of IVGTT MP system with different number of bits for the fractional 

part of binary word result in the same number of 18 (a) or 22 (b) DSP cells used. 

This situation demonstrates that it is not always obvious how 

to choose the most appropriate parameters when implementing 

the MP systems in FPGA. Even though using a bigger word 

length for the fixed-point arithmetic can be expected to 

consume more FPGA resources, sometimes it can have a 

reverse effect. This may be influenced by the way the 

optimization is implemented in the VHDL code synthesizer 

provided with Xilinx ISE Design Suite software. 

The case of NPQ MP system implementation confirms our 

findings – there also is a situation when the same number of 

DSP cells is utilized when using different word lengths, as 

shown in Fig. 7b. When using 27 or 28 bits for the fractional 

part, 85 DSP cells of the FPGA were used. Fig. 9 shows that, 

like in the case of Fig. 8a, using a higher number of bits 

achieves a greater accuracy but uses more resources. 

In both cases, shown in Fig. 8a and Fig. 9, the difference in 

accuracy is not very large, maybe even insignificant, 

considering the fact that in principle MP systems are only 

approximations of real processes and, even if implemented with 

perfect accuracy, do not provide identical results to real data. 

 

Fig. 9. Comparison of FPGA resources used and calculation accuracy when 
implementations of NPQ MP system with different number of bits for the 

fractional part of binary word result in the same number of 85 DSP cells used. 

Considering this, in most cases it can be beneficial to select 

an implementation with slightly worse accuracy (0.001 % in 

Fig. 8b, and 0.15 % in Fig. 9) but more efficient resource usage. 

This can be especially important when hardware resources are 

limited or when implementing multiple systems. 

According to the investigated automated MP system 

implementation cases, often it can be beneficial to not only 

determine a single optimal binary word length for use in fixed 

point calculations, but to further investigate the closest group of 

other options. The algorithm of MP system VHDL code 

generation tool is modified to take this into account. Firstly, it 

tries to select the word length that yields the results closest to 

the requested accuracy. Then the MP system is automatically 

implemented (synthesized) using Xilinx ISE Design Suite 

software. After that, FPGA performance parameters are 

obtained from the Design Report. 

If DSP cells are considered to be the most valuable resource 

of an FPGA, the number of used DSP cells should be considered 

by the MP system VHDL code generation tool as the primary 

parameter. After implementing the MP system using the 

selected optimal word length and checking the number of DSP 

cells used, the algorithm can then select other closest possible 

word lengths and also implement them. For example, let’s say 

that the optimal word length consists of x integer bits and y 

fractional bits. Then the closest other word lengths will use the 

same number of x integer bits, but two different numbers of 

fractional bits: y − 1 and y + 1. 

If the MP systems using fixed-point arithmetic with the other 

selected closest word lengths are implemented and found to 

have utilized the same number of DSP cells, the MP system 

VHDL code generation tool can proceed to the comparison of 

other parameters. If the number of DSP cells used is not the 

same, the algorithm can keep using the previously selected 

optimal word length, considering the logic that DSP cells are 

the most important FPGA resource. Although the MP system 

VHDL code generation tool can find the word lengths with the 

same DSP cell usage, the selection of the best choice depends 

on the purpose of the system and the developers’ choice. 
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V. CONCLUSION 

1. A first valid automated MP system VHDL code generation 

tool for implementation in FPGA was developed: 

 the performance of the tool was demonstrated by 

automatically implementing the IVGTT and NPQ MP 

systems that reached an optimal word length in 12 and 

13 steps correspondingly; 

 the automation of the tool is grounded on the use of Python 

programming language, and performs the search of the 

optimal binary word length (both the integer and fractional 

parts independently) for the fixed-point implementation; 

 a final decision to be done by the developer is supported 

by the tool that features the possibility of simulating the 

alternative implementations by VHDL synthesis software. 

2.  The experimental investigation of system implementations 

on FPGA revealed cases when bigger word lengths do not 

expectedly lead to a higher FPGA resource usage: 

 the cases with word length of fractional parts of IVGTT 

MP system (19 or 20 and 21 to 23 bits) and NPQ MP 

system (27 or 28 bits) manifest this in DSP cell usage; 

 the case of IVGTT system (word length of fractional part: 

21 to 23 bits) manifests this in slice and LUT usage. 

Future work includes investigation of different approaches to 

hardware implementation and further optimization. 
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