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Abstract
Hepatitis is a global disease that is on the rise and is currently the cause of more deaths than the human immunodeficiency 
virus each year. As a result, there is an increasing need for antivirals. Previously, effective antivirals have been found in the 
form of substrate-mimetic antiviral protease inhibitors. The application of machine learning has been used to predict cleavage 
patterns of viral proteases to provide information for future drug design. This study has successfully applied and compared 
several machine learning algorithms to hepatitis C viral NS3 serine protease cleavage data. Results have found that differences 
in sequence-extraction methods can outweigh differences in algorithm choice. Models produced from pseudo-coded datasets 
all performed with high accuracy and outperformed models created with orthogonal-coded datasets. However, no single pseu-
do-model performed significantly better than any other. Evaluation of performance measures also show that the correct choice 
of model scoring system is essential for unbiased model assessment.
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Introduction
Hepatitis C virus (HCV) is a member of the Flaviviridae family, alongside yellow fever 
virus and West Nile virus (1). Hepatitis is a global disease that caused 1.34 million deaths 
in 2015, higher than the number of deaths caused by HIV. It is estimated that each year 
1.75 million people newly acquire HCV infection (2). 

Chronic infection of HCV is the main reason for liver transplantation worldwide. In-
fection can lead to severe liver disease and primary liver cancer (2). Since 2014, several 
direct acting antivirals (DAAs) have been approved that target specific HCV proteins or 
RNA elements (3). Prior to this, treatment consisted of general use antivirals, such as rib-
avirin and pegylated interferon-α. These treatments were often lengthy and caused many 
adverse side effects (4). Detailed information about HCV replication components enabled 
the development of DAAs. 

The HCV RNA genome encodes a long polyprotein precursor which is processed pro-
teolytically. The release of non-structural (NS) proteins is vital for the virus’ maturation. 
Cleavage of NS proteins is catalysed by the viral encoded NS3 serine protease (NS3P) (1). 
Because of the protease’s importance in the life-cycle of the virus it has become an attrac-
tive antiviral target. Inhibition of the protease is effective and can lead to the production 
of non-infectious viral particles (5) . Therefore, the design of NS3P inhibitors has received 
much attention and several of these DAAs have now been discovered. 

Potent inhibitors have been found with peptide-bond mimetic (6–8) or substrate 
mimetic properties (9–12). As a result, a number of inhibitor-NS3P complex crystal 
structures have been obtained (13–16). These provide insightful structural information 
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increasing the understanding of the protease’s cleavage mech-
anisms, aiding the development of therapeutics. This informa-
tion is of importance when analysing peptide-bond mimetics 
as they may interact differently with the protease than standard 
substrate mimetics. Although crystal structures provide high 
quality spatial information, they are generally low-throughput 
and high cost (17). 

The design of effective substrate mimetic NS3P inhibitors 
can be aided by the prediction of HCV cleavage as cleavable 
substrates can form the template for inhibitor molecules. Pre-
diction and characterisation of viral protease cleavage sites 
have been determined by several in silico studies on different 
viruses. The main tools used for these studies incorporated ma-
chine learning algorithms to analyse viral datasets. Supervised 
learning is a class of machine learning algorithms which builds 
predictive models based on datasets with known classifications. 
These models can then be used to classify new unknown data-
sets (18). 

There have been many successful studies in which machine 
learning algorithms have been used to identify substrate spec-
ificity of the human immunodeficiency virus (HIV-1) prote-
ase. A wide range of supervised algorithms exist and several 
of them have been applied to predict the substrate specificity 
of proteases. The most recent studies tackling the HIV-1 pro-
tease cleavage problem commonly use four types of classifiers: 
artificial neural networks (ANNs), support vector machines 
(SVMs), decision trees and linear models. Within these studies 
ANNs have outperformed many other models, with most stud-
ies able to obtain an accuracy of ~92% (19–21). Although the 
predictive accuracies of ANNs are high, they have come under 
criticism for their longer run times and limited interpretabili-
ty when compared to other models (22). A number of studies 
have compared a handful of classifiers against one another to 
see which performs best using HIV-1 data (19,20,22). In return 
this information has helped development of HIV-1 protease in-
hibitors. Currently, almost half of all anti-HIV compounds are 
protease inhibitors (23). 

As mentioned, there is a large number of machine learning 
algorithms available in the bioinformatic toolbox to predict 
cleavage sites of viral proteases. Choosing the correct method 
is essential for accurate predictions. Previously, this informa-
tion has been useful for the design of antivirals. This study aims 
to apply and compare several machine learning algorithms to 
an HCV NS3P dataset and to see whether differences in se-
quence-data transformation and model selection improves 
prediction accuracies based on three performance metrics. 

Methods
Datasets
The dataset obtained by Narayanan et al. (21) was removed of 
all peptides containing non-standard amino acids and the re-
sulting modified dataset was used for this study. The dataset 
contained a collection of decapeptides and their cleavage abili-
ty, either cleaved or non-cleaved, denoted by 1 or 0 respectively. 
Out of the 891 peptides collected, 145 are classified as cleaved 

and 746 as non-cleaved. The amino acids of each peptide were 
arranged following standard Schechter and Berger nomencla-
ture: P6-P5-P4-P3-P2-P1-P’1-P’2-P’3-P’4, where cleavage oc-
curs between the scissile bond at P1-P’1 (24).

Sequence-based feature extraction
Two sequence-based feature extraction methods were imple-
mented to convert each peptide into a numerical feature vector 
which accurately stores the composition of amino acids. The 
selected methods were orthogonal (ortho) coding and pseudo 
coding. Ortho coding created a vector which represents each 
amino acid by a 20-bit long binary sequence. Pseudo coding 
created a vector by calculating the frequency of each amino 
acid at each position. Ortho and pseudo coding were applied 
to the modified dataset to produce two new datasets. Both the 
ortho and pseudo coded datasets were used in the study for all 
machine learning algorithms. 

Machine learning algorithms
Several machine learning algorithms were applied to predict 
HCV protease specificity, including three ANNs (25), random 
forest (RF) (26), a generalised linear model (GLM) (27), linear 
discriminant analysis (LDA) (28) and an SVM (29). ANNs are 
non-parametric models that can detect non-linear interactions 
between independent and dependent variables. ANN pass vari-
ables through a set of interconnected nodes, arranged in hidden 
layers, with specific weights to determine their output variable 
(classification) (30). Three ANN model packages were used in 
this study, “darch”, “h2o” and “elmNN”. The first two packages 
can produce models with multiple hidden layers whereas the 
later uses a fixed single-hidden layer. There are now a number 
of open-source multilayer ANN models to choose from. The 
two used in this study were chosen due to their ease of use and 
high performance seen in other studies (31). RF was used as it 
is not influenced by linearity, it assesses the outcome of a set of 
decision trees to classify data (32). The RF model used was cre-
ated from the “RandomForest” package. GLM, from the “stats” 
package, is a logistic regression model that transforms data into 
independent linear variables (33). LDA attempts to project raw 
data from a high-dimensional space to a univariate space, it 
is modelled from principles of Fischer’s discriminant analysis. 
An LDA model was produced from the “MASS” package. The 
last model, SVM, creates a kernel function to map data into a 
high-dimensional space and finds the optimal hyperplane to 
classify data (34). The package “e1071” was used to create an 
SVM model. 

As shown, each model used classifies data variables using 
different mathematical properties. This range of algorithms has 
been used extensively in biological research and provides ra-
tionale for the side-by-side comparison of all seven machine 
learning models.

Machine learning packages were installed from the CRAN 
repository and ran in RStudio. Default parameters were used 
for all models except darch, h2o, elmNN and RF. ANN mod-
els required an optimised number of nodes and layers. Epochs 
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were kept constant (100). Optimised number of nodes and lay-
ers were determined using general rule-of-thumb measures, in 
which the number of hidden nodes is no greater than double 
of the input nodes (35) and due to lack of computer processing 
power the number of hidden layers was restricted to two. Both 
darch and h2o algorithms performed at their best using two 
layers. The number of nodes found in each layer is summarised 
in Table 1. Optimised node parameters for ortho-elmNN were 
19 and 17 for pseudo-elmNN. 

The number of decision trees for RF to use was optimised 
from 1-500. The optimal number of trees for ortho-RF and 
pseudo-RF were found to be 107 and 99 respectively.

Evaluation measures
Prior to modelling, data was split by 5-fold cross-validation 
to produce training and testing datasets. The percentage of 
non-cleaved peptides in each fold was standardised at 16%, 
representative of the whole dataset. Cross-validation of this 
style overcomes the bias of training the model predominantly 
on either negative or positive data (36). Correct assessment of 
model performance is critical for determining an algorithms 
predictive power. Therefore, this study proposes the use of 
three different evaluators: receiving-operator characteristic 
(ROC) curves (37), precision-recall (PR) curves (38) and Mat-
thews-correlation coefficient (MCC) (39). Evaluative measures 
focus on confusion matrix results that produce true-positive 
(TP), false-positive (FP), true-negative (TN) and false-negative 
(FN) values. ROC curves use FP rates as their x-axis and TP 
rates as their y-axis, whereas PR curves use recall (x-axis) and 
precision (y-axis). Values for these curves and MCC were cal-
culated as below:

The area under curve (AUC) value was used as a descriptive 
value for ROC and PR curves. MCC values were used for the 
fine-tuning of parameters in ANN and RF models. Many stud-
ies using protease data often assess the quality of their models 
based on ROC-AUC values and accuracy. ROC is a useful tool 
for determining the robustness of a model by varying the dis-
crimination threshold for prediction values. This provides more 
information than accuracy alone. However, most protease data-
sets are imbalanced. It is common to find a larger number of 
negative, non-cleaved, peptides than positive, cleaved, peptides. 
The downfalls of ROC come from this as ROC curves neglect 
the negative variables, enhancing positive predictions. As a re-
sult, ROC-AUC values can produce overly hopeful values. 

PR curves tackle this imbalance by maximising the correct-
ly classified positive values and does not directly consider the 
negative values, which are not of importance to this study or to 
previous studies. For this reason, PR curves are more informa-
tive as the datasets have few positive instances but many neg-
ative instances. PR curves work in similar fashion to ROC in 
that they vary their discriminant threshold. 

Due to imbalanced datasets it is possible to build a mod-
el mainly on negative instances. As a result, these models can 
predict TN’s at a greater rate than TP’s, in turn this can obtain 
high accuracy scores. MCC values consider the ratio of the 
confusion matrix size, which is not taken into consideration by 
accuracy alone. As a result, the MCC score is only high when 
the classifier is able to correctly predict both positive and neg-
ative elements at a high level (40). Due to its unbiased nature 
it is a common metric used by a US FDA initiative for predic-
tive model consensus (41). For these reasons the MCC values 
were used for optimisation and further significance testing. 
The Shapiro-Wilk test, Kurtosis test, median and mean were 
used to determine normal distribution of data obtained across 
five-folds of cross-validation before using parametric t-tests 
and ANOVA (42–45). To determine whether the judgement 
of model performance differs between evaluators, Spearman’s 
rank was applied to the order of performance denoted by ROC-
AUC, PR-AUC and MCC values (46).

Results
Sequence-coding methods
Analysis of performance metrics obtained by the experiments 
show that the application of pseudo- or ortho-coded datasets to 
a classifier greatly affects a model’s performance. Fig. 1 shows the 
performance of pseudo- and ortho-models. The pseudo-coded 

Table 1. ANN optimised nodes

Model
Optimal Hidden Layer Nodes

Layer 1 Layer 2
Ortho-darch 18 11
Ortho-h2o 19 13

Pseudo-darch 1 20
Pseudo-h2o 17 16

of model performance is critical for determining an algorithms predictive power. Therefore, this 

study proposes the use of three different evaluators: receiving-operator characteristic (ROC) 

curves (37), precision-recall (PR) curves (38) and Matthews-correlation coefficient (MCC) 

(39). Evaluative measures focus on confusion matrix results that produce true-positive (TP), 

false-positive (FP), true-negative (TN) and false-negative (FN) values. ROC curves use FP 

rates as their x-axis and TP rates as their y-axis, whereas PR curves use recall (x-axis) and 

precision (y-axis). Values for these curves and MCC were calculated as below: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 100 − 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹
√(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

 

The area under curve (AUC) value was used as a descriptive value for ROC and PR curves. 

MCC values were used for the fine-tuning of parameters in ANN and RF models. Many studies 

using protease data often assess the quality of their models based on ROC-AUC values and 

accuracy. ROC is a useful tool for determining the robustness of a model by varying the 

discrimination threshold for prediction values. This provides more information than accuracy 

alone. However, most protease datasets are imbalanced. It is common to find a larger number 

of negative, non-cleaved, peptides than positive, cleaved, peptides. The downfalls of ROC 

come from this as ROC curves neglect the negative variables, enhancing positive predictions. 

As a result, ROC-AUC values can produce overly hopeful values.  

PR curves tackle this imbalance by maximising the correctly classified positive values and 

does not directly consider the negative values, which are not of importance to this study or to 

previous studies. For this reason, PR curves are more informative as the datasets have few 

positive instances but many negative instances. PR curves work in similar fashion to ROC in 

that they vary their discriminant threshold.  

Due to imbalanced datasets it is possible to build a model mainly on negative instances. As a 

result, these models can predict TN’s at a greater rate than TP’s, in turn this can obtain high 

accuracy scores. MCC values consider the ratio of the confusion matrix size, which is not 

taken into consideration by accuracy alone. As a result, the MCC score is only high when the 
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dataset produced models with higher accuracies than their or-
tho-coded counterparts. Also, the performance of ortho-coded 
models varied greater than pseudo-coded models, this can be 
seen clearly in Fig. 1. In contrast, a higher variance in model 
performance was observed across five-folds of cross-validation 
in pseudo-models compared to their orthogonal counterpart, 
as seen in Fig. 2.

Model performance
Several machine learning algorithms were applied to the two 
datasets; AUC and MCC scores were used to quantify mod-
el performance, which is summarised in Fig. 2. Experimental 
results show that the ortho-coded RF model (average results: 
ROC-AUC 0.924, PR-AUC 0.819 and MCC 0.842) outper-
formed all other ortho-coded models. This was validated by 
MCC ANOVA analysis (p-value = 7.70x10-13) and MCC t-test 
analysis against the second best performing ortho-model, SVM 
(average results: ROC-AUC 0.868, PR-AUC 0.662 and MCC 
0.640), (p-value = 0.003). Ortho-RF also obtained higher pre-
diction capabilities than its pseudo-coded counterpart, pseu-
do-RF (average results: ROC-AUC 0.914, PR-AUC 0.828 and 
MCC 0.892). This was the only ortho-model to obtain higher 
scores than its pseudo counterpart.

The lowest scoring ortho-models were both LDA (average 
results: ROC-AUC 0.638, PR-AUC 0.235 and MCC 0.294) and 
GLM (average results: ROC-AUC 0.635, PR-AUC 0.233 and 
MCC 0.300) models. 

All pseudo-coded models predicted peptide classification 
with a high degree of accuracy. The highest performance was 
found in SVM (average results: ROC-AUC 0.972, PR-AUC 
0.900 and MCC 0.860) and elmNN (average results: ROC-AUC 
0.960, PR-AUC 0.883 and MCC 0.852) models. In contrast to 
the ortho-coded models, RF performed the worst using a pseu-
do-coded dataset (average results: ROC-AUC 0.914, PR-AUC 
0.809 and MCC 0.828). 

Due to the high performance of all models there was no sig-
nificant difference across the predictions by pseudo-models, 
validated by MCC ANOVA testing (p-value = 0.981).

Evaluation measures
Three evaluation measures were applied to all models: ROC-
AUC, PR-AUC and MCC. Ranking of the models using these 
metrics were assessed to see which evaluative measures are 
consistent with each other. Consistency between metrics shows 
that regardless of which measure is being used it will rank 
model performance similarly to other measures. ROC-AUC 

classifier is able to correctly predict both positive and negative elements at a high level (40). 

Due to its unbiased nature it is a common metric used by a US FDA initiative for predictive 

model consensus (41). For these reasons the MCC values were used for optimisation and 

further significance testing. The Shapiro-Wilk test, Kurtosis test, median and mean were used 

to determine normal distribution of data obtained across five-folds of cross-validation before 

using parametric t-tests and ANOVA (42–45). To determine whether the judgement of model 

performance differs between evaluators, Spearman’s rank was applied to the order of 

performance denoted by ROC-AUC, PR-AUC and MCC values (46). 

Results 

Sequence-coding methods 

Analysis of performance metrics obtained by the experiments show that the application of 

pseudo- or ortho-coded datasets to a classifier greatly affects a model’s performance. Figure 

1 shows the performance of pseudo- and ortho-models. The pseudo-coded dataset produced 

models with higher accuracies than their ortho-coded counterparts. Also, the performance of 

ortho-coded models varied greater than pseudo-coded models, this can be seen clearly in 

Figure 1: Average ROC and PR curves across five-folds of cross-validation for 
both orthogonal-coded (A/C) and pseudo-coded models (B/D).  

Figure 1. Average ROC and PR curves across five-folds of cross-validation for both orthogonal-coded (A/C) and pseudo-coded 
models (B/D). 
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ranked model performance analogously to PR-AUC, validat-
ed by Spearman’s rank correlation (ortho-model Rho = 0.964, 
pseudo-model Rho = 1). Although the scores are not direct-
ly comparable, as they measure different predictive qualities, 
in general, ROC-AUC values were higher than PR-AUC and 
MCC values, as seen in Fig. 2. This was exemplified by the or-
tho-darch model which obtained a ROC-AUC value of 0.820 
but scored a dramatically lower PR-AUC (0.454) and MCC 
(0.494) value. 

Discussion
The aims of this study were to determine which machine learn-
ing algorithms can successfully predict HCV NS3P substrate 
cleavage sites, using two sequenced-based feature extractions 
methods, with high accuracies. Alongside this, the study inves-
tigated model evaluation to determine if the choice of predic-
tion metric affects the accuracy of model performance repre-
sentation. 

Model performance
Results from this study has shown that sequence-data transfor-

mation is a limiting-factor for high-level model performance. 
Experimental data shows that pseudo-coding data enable ma-
chine learning models to accurately classify data at a higher ac-
curacy than if it was orthogonally encoded. The large difference 
in model performance between the two extraction techniques 
is due to the dependency of the training and testing data, and 
the dimensionality reduction found in the pattern-based pseu-
do-coding technique. When splitting pseudo-code data into 
training and testing sets, the amino acids are still encoded as an 
observation frequency in the whole dataset, this makes the split 
datasets dependent on each other. Reducing dimensions within 
a dataset is extremely useful for machine learning algorithms 
as it enables variables of similarity to be replaced by a singu-
lar instance, in turn this can lead to improved model perfor-
mance, as long as no important features are lost (47). Therefore, 
pseudo-coded models greatly outperformed their orthogonal 
counterparts. However, these large differences between coding 
techniques have not been seen in other comparative studies on 
viral datasets (20). These results show that the application of 
feature extraction methods is imperative for enhanced predic-
tive power.

darch model which obtained a ROC-AUC value of 0.820 but scored a dramatically lower PR-

AUC (0.454) and MCC (0.494) value.  

Discussion 

The aims of this study were to determine which machine learning algorithms can successfully 

predict HCV NS3P substrate cleavage sites, using two sequenced-based feature extractions 

methods, with high accuracies. Alongside this, the study investigated model evaluation to 

determine if the choice of prediction metric affects the accuracy of model performance 

representation.  

Model Performance 

Figure 2: Model performance across five-folds of cross-validation using three 
performance metrics (ROC-AUC,PR-AUC and MCC) for both orthogonal-coded (A) 
and pseudo-coded (B) models. 

Figure 2. Model performance across five-folds of cross-validation using three performance metrics (ROC-AUC, PR-AUC and MCC) 
for both orthogonal-coded (A) and pseudo-coded (B) models.
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Pseudo-coded models also showed a greater variance in 
performance than ortho-models, as seen in Fig. 2. Although 
pseudo-coding reduces dimensionality, which in turn should 
help to reduce model variance, there was still disparity between 
model performances across testing sets in cross-validation. 
As mentioned, the dependency between training and testing 
sets in pseudo-coding enhances pseudo-model performance. 
However, this dependency may also be the reason for the high-
er variance in pseudo-models. Individual testing folds have a 
higher or lower rate of dependency on their constitutive train-
ing folds. As a result, a decreased relation between the training 
and testing data will reduce the model’s performance. When 
each testing fold is used in cross-validation, some folds may 
have a lower dependency. This causes the prediction to be less 
accurate, creating variance.

With a large repertoire of machine learning algorithms 
available for biologists it is important to use the optimal one for 
the classification task. This importance was shown in this study 
when using ortho-datasets, as the classifiers varied greatly 
showing the significance of correct model choice. Of these, the 
RF algorithm outperformed all models under ortho-coding. 
In contrast, previous studies have shown that decision trees 
and RF perform with lower accuracies than other algorithms 
(19,48). Results from this study show that RF should not be 
disregarded as a potential candidate for other similar pattern 
recognition tasks. 

Overall, pseudo-models showed similar predictive ca-
pabilities with moderately high variation across five-folds 
of cross-validation making it difficult to compare the pseu-
do-models. However, Fig. 2 shows that some models have par-
allel prediction power to others. The two ANN models darch 
and elmNN had uniform performances across both ortho- and 
pseudo-models. Whereas, the ANN, h2o showed greater per-
formance whilst using ortho-code and was non-distinguishable 
when using pseudo-code, due to the high variance between 
folds. This shows that the choice of specific ANN algorithm can 
also affect the results of a machine learning task. 

GLM and LDA also displayed uniform performance in Fig. 
2. These showed, the greatest difference when applying pseudo- 
or ortho-coding techniques. Ortho-GLM and ortho-LDA were 
the worst performing orthogonally encoded models whereas 
their pseudo counterparts performed to the same capabilities 
of other models. This provides evidence in favour of linear 
models for machine learning tasks, but only if the data has been 
pre-processed to a high standard.

The importance of model selection has been greatly ques-
tioned by pseudo-model performance. No pseudo-model 
significantly outperformed their orthogonal/pseudo counter-
parts, and all obtained high scores across all three-performance 
metrics used. As a result, the efficiencies of models come into 
question and reinvigorates the ideas put forward by Rögnvalds-
son and You that if all algorithms work at a high accuracy rates 
the simplest algorithm with faster run times should be used 
(22). With these ideas in mind the use of ANN models is un-
necessary due to their slower run times, need for parameter 

optimisation and overall comparatively insignificant model 
performance.

Performance measures
When measuring model performance, a variety of metrics can 
be considered. This study proposed the use of three measures 
to give full details on a model’s prediction capabilities. Fig. 2 
shows the application of three performance metrics to evaluate 
each of the models. These three metrics showed little disparity 
between ranking the models. This proved the relationship be-
tween ROC and PR even though the curves and AUC values 
can be different (49). Although ROC-AUC, PR-AUC and MCC 
are not directly comparable measurements, it was observed that 
ROC-AUC scores are traditionally higher than the other met-
rics (Fig. 2). This means that evaluation of model performance 
based on ROC-AUC scores alone can be misleading to the 
wider audience of researchers without sound knowledge on the 
workings of ROC curves. The low performance of ortho-mod-
els was expressed more obviously in PR-AUC and MCC scores, 
these were over half the ROC-AUC scores in some cases. The 
overly optimistic ROC-AUC values seen in Fig. 2 disregard the 
important principles of imbalanced datasets. Model evaluation 
from ROC-AUC alone can be misleading and unimportant 
when dealing with imbalanced datasets as it maximises the 
model’s capabilities of predicting TN’s. As mentioned previ-
ously, studies that work on viral peptide cleavage need to focus 
more on the identification of cleavable peptides, TP’s. It is this 
information which is of biological importance for the devel-
opment of new peptide inhibitors. Using scoring systems such 
as PR-AUC and MCC help correctly assess whether a model is 
favouring the prediction of non-cleaved peptides when com-
pared to ROC-AUC scores. This investigation shows that using 
a variety of scoring systems such as PR, MCC and ROC along-
side each other can help correctly assess a model’s predictive 
biases.

Reference peptides
To understand the biological significance of this study it is im-
portant to analyse the substrate predicted by the models. As a 
result, a set of reference peptides have been chosen for compar-
ison against data obtained from in vitro experiments on HCV 
NS3P substrate specificity. True-positive predictions taken 
from the top performing ortho- and pseudo-models (ortho-RF 
and pseudo-SVM) were taken, with a discriminant threshold 
of 0.5, to produce a set of nine reference peptides. The results 
from both models can be seen in Table 2. The amino acid com-
position of the reference peptides have been visualised as a 
WebLogo in Fig. 3 (50). Experimental data has shown that the 
most important amino acids in substrate peptides are found to 
be at positions P1 and P’1, either side of the scissile bond. En-
zymatic assays and consensus substrate sequence alignments 
have previously revealed that the following amino acids are 
found at each position: Asp or Glu at P6, Cys or Thr at P1 and 
Ser or Ala at P’1. Out of these key three positions, substrate 
mutations at P1 resulted in a significant decrease of substrate 
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cleavage (4). The reference peptides produced from this inves-
tigation support experimental evidence. Fig. 3 shows that the 
Asp at P6, Cys at P1 and Ser or Ala at P’1 are commonly found 
in substrate peptides, corroborating with in vitro results. Fur-
thermore, computational models also suggest that Glu or Asp 
at P5 and Glu or Val at P3 could also be an important factor for 
substrate cleavage, see Fig. 3. Other studies have shown that 
acidic residues at P5 and P6 enables the substrate to form elec-
trostatic interactions with the NS3 protease, with the poten-
tial to enhance binding (4). These in silico results support this. 
With this knowledge, it is possible that peptides with similar 
physicochemical properties to the average substrate model in 
Fig. 3. could form the basis of inhibitor molecules. 

Table 2. Set of reference peptides

Reference Peptides
ADVVCC-SMSY
DAEVVT-STWY
DDIVPC-SMKR
DDIVPC-SMSK
DEAEEC-ASHL

DEMEEC-AQHL
DEMEEC-ASAL
DEMEEC-RQHL
DEMEER-ASHL

                                          
Conclusions
In silico studies that can predict the substrate cleavage sites of 
HCV NS3P can speed the anti-hepatitis drug development 
pipeline and reduce experimental costs. The need for new an-
ti-hepatitis drugs is increasingly important as the rate of hepa-
titis has been rising (2). This study has successfully shown that 
several machine learning algorithms can be applied to deter-
mine substrate cleavage of HCV NS3P. It has been shown that 
the method of feature-extraction greatly outweighs the choice 
of algorithm. This has shown that more emphasis should be 
placed on pre-modelling techniques than the models them-
selves. Furthermore, it has also been shown that the use of 
ROC-AUC scoring as a main indicator of model performance 
can hide model biases towards the correct prediction of non-
cleaved peptides. This information can help aid future studies 
on viral proteases by providing information on the importance 

of data transformations, model selection and model assess-
ment. In future research work, physicochemical and structur-
al features should be combined with sequence information as 
these combinatorial feature approaches have been seen to en-
hance model accuracy in the prediction of HIV protease cleav-
age sites (20). Furthermore, the application of improved data 
coding techniques should also be applied as the results from 
this study show that feature-selection and extraction are the 
limiting factors over model selection. It is also hoped that mul-
tiple scoring measures will also be applied to provide transpar-
ency of model’s predictive capabilities.
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