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EBTNA UTILITY GENE TEST

Abstract
Lymphatic malformations (LMs) show phenotypic variability, as well as clinical and genetic heterogeneity. Inheritance is au-
tosomal dominant, recessive or X-linked and major genes involved in predisposition for LMs are continuously being discov-
ered. The literature also indicates that somatic mutations play an important role in the development of LMs. In fact, activating 
somatic mutations in PIK3CA have been reported in lymphatic endothelial cells obtained from patients with different kinds 
of LM. This Utility Gene Test was developed on the basis of an analysis of the literature and existing diagnostic protocols. It is 
useful for confirming diagnosis, as well as for differential diagnosis, couple risk assessment and access to clinical trials.
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Lymphatic malformations with or without primary lymphedema
(Other synonyms: Primary lymphatic malformations are a group of diseases; see pheno-
typic variants)

General information about the disease
The term “lymphatic malformations” refers to a broad range of lymphatic system defects 
(aplasia, hypoplasia and hyperplasia of lymphatic channels and nodes (1), or localized 
unifocal lesions consisting of dilated lymphatic channels filled with lymph but discon-
nected from the rest of the lymphatic system (2)). In many cases these defects cause 
lymphedema (abnormal accumulation of interstitial fluid due to inefficient uptake and 
reduced lymphatic flow); in other cases lymphatic malformations are not associated with 
lymphedema. In the past, lymphatic malformations (LMs) and primary lymphedema 
were considered two different entities, however according to the Hamburg classification, 
primary lymphedema is a clinical manifestation of LMs appearing in later stages of lym-
phangiogenesis (truncular LMs) (1), whereas extratruncular lesions, known as cystic/
cavernous lymphangiomas, develop during earlier stages of lymphangiogenesis (1). The 
prevalence of truncular and extratruncular LMs is 1-5/10,000.

In the first step of diagnosis, clinical history and physical examination (3) of patients with 
LMs should reveal whether the malformation is truncular, extratruncular or syndromic, 
and if the disorder is inherited or sporadic (4). Lymphoscintigraphy has proved extremely 
useful for depicting specific lymphatic abnormalities (3). Radioactive colloid is injected 
into the toe web spaces and uptake by the ilioinguinal nodes is measured at intervals. 
Lymphoscintigraphy is performed to determine if there is a lack of uptake of radioactive 
tracer. Other diagnostic tools used to elucidate lymphangiodysplasia/lymphedema 
syndromes (also in newborns and children) include lymphangioscintigraphy, magnetic 
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resonance imaging (MR lymphography and MR angiography), 
computed tomography (CT), CT lymphograms, 3-D oil 
contrast lymphography, CT-SPECT, ultrasonography, indirect 
lymphography, near infrared fluorescent imaging (also known as 
ICG lymphography) and fluorescent microlymphangiography 
(3). Lymphoscintigraphy is not always essential for diagnosis 
and one can proceed directly to molecular testing (5).

Differential diagnosis should include hereditary 
lymphedema; lymphedema-distichiasis; Emberger syndrome; 
hypotrichosis-lymphedema-telangiectasia syndrome; 
microcephaly with or without chorioretinopathy, lymphedema 
and mental retardation; lymphedema-choanal atresia; 
Hennekam lymphangiectasia-lymphedema syndrome; 
anhidrotic ectodermal dysplasia with immunodeficiency, 
osteopetrosis and lymphedema; congenital lipomatous 
overgrowth, vascular malformations and epidermal nevi 
syndrome; and Klippel-Trenaunay syndrome.

LMs are associated with several conditions characterized 
by allelic and locus heterogeneity and different modes 
of inheritance. Inheritance can be autosomal dominant, 
autosomal recessive or X-linked recessive. Genes involved in 
a predisposition to lymphedema triggered by surgery have also 
been reported (6, 7).

Autosomal dominant non-syndromic LMs
•	 hereditary lymphedema 1A (LMPH1A, OMIM disease 

153100) - FLT4 (OMIM gene 136352) (4); 
•	 hereditary lymphedema 1C (LMPH1C, OMIM disease 

613480) - GJC2 (OMIM gene 608803) (8); 
•	 hereditary lymphedema 1D (LMPH1D, OMIM disease 

615907) - VEGFC (OMIM gene 601528) (9); 
•	 bilateral lymphedema of the lower limbs (OMIM disease 

not available) - CELSR1 (OMIM gene 604523) and HGF 
(OMIM gene 142409) (7, 10).

Autosomal dominant syndromic LMs 
•	 lymphedema-distichiasis (OMIM disease 153400) - FOXC2 

(OMIM gene 602402) (11); 
•	 primary lymphedema with myelodysplasia or Emberger 

syndrome (OMIM disease 614038) - GATA2 (OMIM gene 
137295) (12); 

•	 hypotrichosis-lymphedema-telangiectasia syndrome 
(HLTS, OMIM disease 607823) - SOX18 (OMIM gene 
601618) (13); 

•	 microcephaly with or without chorioretinopathy, 
lymphedema or mental retardation (MCLMR, OMIM 
disease 152950) - KIF11 (OMIM gene 148760) (14); 

•	 oculodentodigital dysplasia (ODDD, OMIM disease 
164200) - GJA1 (OMIM gene 121014) (15); 

•	 nonimmune hydrops fetalis and/or atrial septal defect 
(HFASD, OMIM disease 617300) - EPHB4 (OMIM gene 
600011) (16); 

•	 Noonan syndrome 1, 3, 4, 6, 8 (NS, OMIM disease 163950, 
609942, 610733, 613224, 615355) - PTPN11 (OMIM gene 
176876), KRAS (OMIM gene 190070), SOS1 (OMIM gene 

182530), NRAS (OMIM gene 164790), and RIT1 (OMIM 
gene 609591) (17-21); 

•	 Noonan-like syndrome with or without juvenile 
myelomonocytic leukemia (NSLL, OMIM disease 613563) 
- CBL (OMIM gene 165360) (22); 

•	 Costello syndrome (OMIM disease 218040) - HRAS (OMIM 
gene 190020) (23);

•	 Noonan-like syndrome with loose anagen hair (NSLH, 
OMIM disease 607721) - SHOC2 (OMIM gene 602775) 
(21); 

•	 cardiofaciocutaneous syndrome 1 (OMIM disease 115150) - 
BRAF (OMIM gene 164757) (24).

Autosomal recessive syndromic LMs 
•	 hypotrichosis-lymphedema-telangiectasia syndrome 

(HLTS, OMIM disease 607823) - SOX18 (OMIM gene 
601618) (13); 

•	 lymphedema-choanal atresia (OMIM disease 613611) - 
PTPN14 (OMIM gene 603155) (25); 

•	 Hennekam lymphangiectasia-lymphedema syndrome 1 
and 2 (HKLLS1 and 2, OMIM disease 235510 and 616006) 
- CCBE1 (OMIM gene 612753) or FAT4 (OMIM gene 
612411) (26, 27); 

•	 hereditary lymphedema 3 (LMPH3, OMIM disease 616843) 
- PIEZO1 (OMIM gene 611184) (28). 

•	 Recently, a new form of HKLLS (HKLLS3), caused by loss-
of-function mutations in ADAMTS3 (OMIM gene 605011), 
has been described (29).

X-linked recessive syndromic LMs 
•	 anhidrotic ectodermal dysplasia with immunodeficiency, 

osteopetrosis and lymphedema (OLEDAID, OMIM disease 
300301) - IKBKG (OMIM gene 300248) (30).

Diseases with paradominant inheritance (as consequence of 
a second-hit, germline + somatic, variation) associated with 
LMs
•	 RASA1-related lymphatic malformations (OMIM disease 

not available) - RASA1 (OMIM gene 139150) (31, 32); 
•	 congenital chylothorax (OMIM disease 603523) - ITGA9 

(OMIM gene 603963) (33).

Diseases with sporadic onset, due to de novo somatic 
variations, associated with LMs 
•	 PIK3CA-associated syndromes (OMIM disease not 

available) - PIK3CA (OMIM gene 171834);  the following 
disorders are included in this spectrum: isolated lymphatic 
malformations (OMIM disease not available), congenital 
lipomatous overgrowth, vascular malformations and 
epidermal nevi syndrome (CLOVES, OMIM disease 
612918), Klippel-Trenaunay syndrome (KTS, OMIM 
disease 149000) and fibro-adipose vascular anomaly (FAVA, 
OMIM disease not available) (34);

•	 Proteus syndrome (OMIM disease 176920) caused by 
somatic mutations in AKT1 (OMIM  gene 164730) (35). 
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Other likely genes
ADM (OMIM gene 103275), CALCRL (OMIM gene 114190), 
CDH5 (OMIM gene 601120), PDPN (OMIM gene 608863), 
RAMP2 (OMIM gene 605154), NRP2 (OMIM gene 602070), 
PROX1 (OMIM gene 601546), GJA4 (OMIM gene 121012), 
CYP26B1 (OMIM gene 605207), ITGA5 (OMIM gene 135620), 
MAP4K4 (OMIM gene 604666), ASPP1 (OMIM gene 606455), 
ARAP3 (OMIM gene 606647), CDK5 (OMIM gene 123831), 
NFATC1 (OMIM gene 600489), TIE1 (OMIM gene 600222), 
ANGPT2 (OMIM gene 601922), DCHS1 (OMIM gene 603057), 
NR2F2 (OMIM gene 107773), SMARCA4 (OMIM gene 
603254), LPAR4 (OMIM gene 300086), FOXC1 (OMIM gene 
601090), EMILIN1 (OMIM gene 130660), RORC (OMIM gene 
602943), SVEP1 (OMIM gene 611691), SDC4 (OMIM gene 
600017), PECAM1 (OMIM gene 173445), VANGL2 (OMIM 
gene 600533), FLT1 (OMIM gene 165070), NOTCH1 (OMIM 
gene 190198), RELN (OMIM gene 600514), EFNB2 (OMIM 
gene 600527), SEMA3A (OMIM gene 603961), NRP1 (OMIM 
gene 602069), PLXNA1 (OMIM gene 601055), PROX1 (OMIM 
gene 601546), FABP4 (OMIM gene 600434), SOX17 (OMIM 
gene 610928), VCAM1 (OMIM gene 192225), MET (OMIM 
gene 164860), FOXC2-AS1 (OMIM gene not available), LZTR1 
(OMIM gene 600574), SOS2 (OMIM gene 601247), MAP2K2 
(OMIM gene 601263), MAP2K1 (OMIM gene 176872), 
PPP1CB (OMIM gene 600590), RAF1 (OMIM gene 164760).

Pathogenic variants may include missense, nonsense, 
splicing, small insertions, small deletions, small indels, gross 
insertions, duplications and complex rearrangements.

Aims of the test 
•	 To determine the gene defect responsible for the disease;
•	 To confirm clinical diagnosis;
•	 To assess the recurrence risk and perform genetic counselling 

for at-risk/affected individuals.

Test characteristics
Specialist centers/Published guidelines
The test is listed in the Orphanet database and is offered by 22 
accredited medical genetic laboratories in the EU, and in the 
GTR database, offered by 7 accredited medical genetic labora-
tories in the US. 

Guidelines for clinical use of the test are described in dis-
ease-specific chapters of Genetics Home Reference (ghr.nlm.
nih.gov) and Gene Reviews (36).

Test strategy
Clinically distinguishable syndromes can be analyzed by 
sequencing only those genes known to be associated with that 
specific disease using Sanger or Next Generation Sequencing 
(NGS); if the results are negative, or more generally if clinical 
signs are ambiguous for diagnosis, a multi-gene NGS panel 
is used to detect nucleotide variations in coding exons and 
flanking introns of the above genes. 
•	 If the disorder is familial, the test is performed to identify 

pathogenic germline variants. 

•	 If the disease is sporadic, the first step is to identify germline 
variants and check the possibility of a dominant de novo 
mutation. 

•	 If the test is negative or if only a single germline variant 
in a paradominant gene (RASA1 or ITGA9) is found, the 
second step is to analyze affected tissues to find de novo 
somatic mutations that could be present only at the site of 
the malformation. 

The test for paradominant (RASA1 or ITGA9) and de novo 
(AKT1 and PIK3CA) somatic variations is to compare results 
obtained from germinal lineage (blood or saliva specimens) 
and affected tissue. For variant selection, a cut-off value (re-
lated to biopsy and blood results) is used, and if the variant 
frequency is higher than the cut-off value it is considered for 
further analysis. The cut-off depends on tissue quality, extrac-
tion method, biocomputing software and other parameters. 
Potentially causative variants need to be verified by further 
means (e.g. cloning + Sanger sequencing, Sanger sequencing, 
minisequencing).

Genetic analysis should be extended to relatives when the test 
is positive in familial cases or when a de novo germline variant is 
found that could be inherited by offspring. Potentially causative 
variants and regions with low coverage are Sanger-sequenced. 
Sanger sequencing is also used for family segregation studies. 

Multiplex Ligation Probe Amplification (MLPA) is used to 
detect duplications and deletions in FOXC2, GATA2, NRAS, 
HRAS and BRAF.

To perform molecular diagnosis, a single sample of biologi-
cal material is normally sufficient. This may be 1 ml peripheral 
blood in a sterile tube with 0.5 ml K3EDTA or 1 ml saliva in a 
sterile tube with 0.5 ml ethanol 95%. Sampling rarely has to be 
repeated. 

A frozen intra-lesional biopsy specimen, in addition to 
blood or saliva, is necessary to test for somatic variations.

Gene-disease associations and the interpretation of genet-
ic variants are rapidly developing fields. It is therefore possible 
that the genes mentioned in this note may change as new sci-
entific data is acquired. It is also possible that genetic variants 
today defined as of “unknown or uncertain significance” may 
acquire clinical importance.

Genetic test results
Positive
Identification of pathogenic variants in the above genes confirms 
the clinical diagnosis and is an indication for family studies.

A pathogenic variant is known to be causative for a given 
genetic disorder based on previous reports or predicted to be 
causative based on loss of protein function or expected signifi-
cant damage to protein or protein/protein interactions. In this 
way it is possible to obtain a molecular diagnosis in new/other 
subjects, establish the risk of recurrence in family members and 
plan preventive and/or therapeutic measures.
Inconclusive
Detection of a variant of unknown or uncertain significance 
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(VUS): a new variation without any evident pathogenic signif-
icance or a known variation with insufficient evidence (or with 
conflicting evidence) to indicate it is likely benign or likely path-
ogenic for a given genetic disorder. In these cases, it is advisa-
ble to extend testing to the patient’s relatives to assess variant 
segregation and clarify its contribution. In some cases, it could 
be necessary to perform further examinations/tests or to do a 
clinical reassessment of pathological signs.

Negative
The absence of variations in the genomic regions investigated 
does not exclude a clinical diagnosis but suggests the following 
possibilities:
•	 Alterations that cannot be identified by sequencing, such 

as large rearrangements that cause loss (deletion) or gain 
(duplication) of extended gene fragments.

•	 Sequence variations in genomic regions not investigated 
by the test, such as regulatory regions, 5’- and 3’-UTR) and 
deep intronic regions.

•	 Variations in other genes not investigated by the present test.

Unexpected
Unexpected results may emerge from the test, for example in-
formation regarding consanguinity, absence of family correla-
tion or other genetically-based diseases.

Risk for progeny
If the identified pathogenic variant has autosomal dominant trans-
mission, the probability that an affected carrier transmit the dis-
ease variant to his/her children is 50% in any pregnancy, irrespec-
tive of the sex of the child conceived.

In autosomal recessive mutations, both parents are usually 
healthy carriers. In this case, the probability of transmitting the 
disorder to the offspring is 25% in any pregnancy of the couple, 
irrespective of the sex of the child. An affected individual generates 
healthy carrier sons and daughters in all cases, except in pregnan-
cies with a healthy carrier partner. In these cases, the risk of an 
affected son or daughter is 50%. 

In X-linked recessive inheritance, affected males transmit the 
pathogenic variant to their daughters and the probability that a 
female carrier transmit the pathogenic variant to her offspring 
is 50% in any pregnancy irrespective of the sex of the child con-
ceived. Females who inherit the pathogenic variant are carriers 
and usually unaffected. Males who inherit the pathogenic variant 
are affected.

De novo somatic variations cannot be inherited or transmitted.
In paradominant inheritance, only the germline genetic variant 

is transmitted in an autosomal dominant fashion and the prob-
ability that carriers transmit the germline pathogenic variant to 
their children is 50% in any pregnancy, irrespective of the sex of 
the child conceived.

Limits of the test
The test is limited by current scientific knowledge regarding the 
genes and diseases.

Analytical sensitivity (proportion of positive tests 
when the genotype is truly present) and specificity 
(proportion of negative tests when the genotype is 
not present)
NGS Analytical sensitivity >99.99%, with a minimum coverage 
of 10X; Analytical specificity 99.99%.
SANGER Analytical sensitivity >99.99%; Analytical specificity 
99.99%.
MLPA Analytical sensitivity >99.99%; Analytical specificity 
99.99%.

Clinical sensitivity (proportion of positive tests 
if the disease is present) and clinical specificity 
(proportion of negative tests if the disease is not 
present)
Clinical sensitivity is estimated at about 25% (2).
Clinical specificity: data not available. 

Prescription appropriateness
The genetic test is appropriate when:
a) the patient meets the diagnostic criteria for LMs;
b) the sensitivity of the test is greater than or equal to that of 
tests described in the literature.

Clinical utility
Clinical management Utility

Confirmation of clinical diagnosis Yes

Differential diagnosis Yes

Couple risk assessment Yes

Availability of clinical trials can be checked on-line at 
https://clinicaltrials.gov/
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