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Abstract
A goal of regenerative medicine is to repair and regenerate damaged cells, tissues, and organs and ultimately restore function. 
Regeneration can be obtained by cell replacement or by stimulating the body’s own repair mechanisms. It requires a favorable 
microenvironment so that regenerative signals can stimulate resident stem/stromal cells. Regeneration is only possible after 
resolution of injury-induced inflammation. Immune response may be aggravated in degenerative, inflammation-based diseases. 
In this mini-review we discuss how cells isolated from the amniotic membrane of human term placentas and their derivatives, 
such as conditioned cell culture medium, can help resolve many diseases characterized by altered immune response by acting 
on different inflammatory mediators.
Amniotic cells and derivatives have a wide spectrum of immunomodulatory properties that help trigger tissue regeneration. 
They can promote resolution of injury-related inflammation by reducing pro-inflammatory signals and favoring anti-inflam-
matory immune components.
The multifaceted, immunomodulatory properties of amniotic membrane-derived cells and derivatives make them attractive 
for a variety of applications, especially in diseases with an exacerbated immune response, such as degenerative, inflammato-
ry-based diseases.
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Introduction
The modern view of regenerative medicine is concerned more with the immunomodu-
latory potential of mesenchymal stromal/stem cells (MSC) as a key to regeneration, than 
with their differentiation capacity. Mesenchymal stromal/stem cells can be isolated from a 
variety of tissues. For over a decade, the human term placenta, long regarded as biological 
waste, has been the major source of MSC for several reasons, including lack of ethical 
concerns and ease of cell isolation. Moreover, placental MSC virtually lack expression of 
human leukocyte antigens and co-stimulatory molecules, making them very attractive for 
transplantation in allogeneic settings.

Human term placenta: a precious reservoir of cells 
The human placenta plays the fundamental role of exchanging oxygen, nutrients and 
waste products between the mother and the growing fetus. It also maintains fetomaternal 
tolerance during pregnancy. The placenta is an oval or roundish organ of maternal and fe-
tal origin that may vary in diameter (15–20 cm) and thickness (2-3 cm). The maternal side 
of the placenta is composed of the decidua, derived from the maternal endometrium (1). 
The fetal component includes all the placental tissues that originate from the blastocyst, 
including the placental disc, the amniotic and chorionic membranes (often referred to 
as fetal membranes), and the umbilical cord.1 Starting from the fetus, the innermost part 
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of the placenta, that encloses the fetus in the amniotic sac and 
is in direct contact with amniotic fluid, is called the amniotic 
membrane (or amnion). The amnion is a thin, avascular sheet 
with epithelial and stromal layers. The amniotic epithelium is 
composed of a single layer of flat, cuboidal or columnar epi-
thelial cells, uniformly arranged on a basement membrane (2). 
The amniotic epithelium also covers the umbilical cord, which 
is composed of the umbilical vein and two umbilical arteries 
embedded in a gelatinous proteoglycan-rich matrix, known as 
Wharton’s jelly. The amniotic stroma is a compact collagen-rich 
acellular layer with widely dispersed fibroblast-like cells and 
rare macrophages. The chorion, or outermost membrane of the 
sac enclosing the fetus, comprises the chorionic stromal and 
trophoblastic layers (3).

A variety of cells with stem/progenitor properties have been 
isolated from the four major regions of the human term placenta, 
namely, amniotic epithelial, amniotic mesenchymal stromal, 
chorionic mesenchymal stromal and chorionic trophoblastic 
tissues. According to the First International Workshop on 
Placenta-Derived Stem Cells (4), the stem/progenitor cells 
that can be isolated from these regions are human amniotic 
epithelial cells (hAEC), human amniotic mesenchymal stromal 
cells (hAMSC), human chorionic mesenchymal stromal cells 
(hCMSC), and human chorionic trophoblastic cells (hCTC), 
respectively (4). Cells with characteristics of mesenchymal 
stromal/stem cells (MSC) can also be isolated from other 
placental regions, such as chorionic villi (5-8), decidua (9), and 
the umbilical cord (10, 12). The human placenta also harbors 
a wide variety of hematopoietic cells, as well as mature and 
immature hematopoietic progenitors and hematopoietic stem 
cells (13, 14).

Here we discuss how cells isolated from the amniotic mem-
brane of human term placentas and their derivatives, such as 
conditioned cell culture medium, can help resolve many dis-
eases characterized by altered immune response by acting on 
different inflammatory mediators.

The contribution of amniotic cells and 
their derivatives to tissue regeneration: 
immunomodulation
There is widespread interest in understanding how mesenchy-
mal stem/stromal cells isolated from different tissues, includ-
ing the placenta, can contribute to the regeneration of damaged 
tissues. On one hand, a more “traditional” widely-discussed 
mechanism is that of cell differentiation, whereby transplanted 
cells differentiate into tissue-specific cell types in order to re-
place damaged tissue (15, 16). On the other hand, a more mod-
ern and widely-accepted mechanism is that stem/stromal cells 
can act via paracrine signaling through release of bioactive me-
diators, which may stimulate resident target cells to proliferate 
or induce resident progenitor cells to differentiate. 

Many groups have demonstrated that the bioactive media-
tors secreted by amniotic cells have immunomodulatory prop-
erties. Thus, a more contemporary proposed mechanism is that 
amniotic cells favor suppression of persistent exacerbated in-

flammation activated by injury, thus facilitating the repair and 
regeneration of damaged tissues.

We and others have demonstrated that amniotic cell trans-
plant favors tissue repair and regeneration in rodent models 
of inflammation-based diseases, such as liver fibrosis (17,18), 
lung fibrosis (19-24). collagen-induced arthritis (25), inflam-
matory bowel disease (25),  severe dextran-induced colitis (26),  
experimental autoimmune encephalomyelitis (EAE, an animal 
model for multiple sclerosis) (25),  traumatic brain injury (27, 
28), and cardiac ischemia (29-31).  

Others have shown beneficial effects after transplant 
of amniotic cells in fetal models of lung injury, such as 
bronchopulmonary dysplasia-like injury induced by exposure 
to hyperoxic conditions (32), or ventilation-induced fetal lung 
injury (33), and also inflammation-induced fetal lung injury 
generated by intra-amniotic lipopolysaccharide (LPS) injection 
(34),   Tissue regeneration has been shown to be induced by 
ovine amniotic epithelial cells (AEC) allotransplanted into 
sheep with experimentally-induced tendon lesions (35, 36).  

It is progressively being demonstrated that paracrine 
mechanisms are largely responsible for the beneficial properties 
exerted by amniotic cells. In cases where amniotic cells were 
absent in injured tissues after transplantation, they are thought 
to produce factors that acted on nearby resident cells, improving 
their survival, proliferation, differentiation and function. Our 
group recently demonstrated that although human amniotic 
mesenchymal stromal cells (hAMSC) were absent in the brain 
after systemic injection, their administration to mice with 
traumatic brain injury increased neuronal rescue and vascular 
density in the injured cortex (27),  In line with this, other groups 
have shown that in an ischemic stroke model, besides modulating 
peripheral and local inflammation, hAMSC produce factors 
with anti-apoptotic, neurogenic and angiogenic effects (37). 
Epithelial cells of the amniotic membrane (hAEC) have also 
been shown to promote cutaneous wound healing by enhancing 
the proliferation and migration of keratinocytes (38, 39).

In favor of the paracrine/secretory action of amniotic cells, 
several groups have demonstrated that the beneficial effects 
were also achieved with cell-free treatments, such as with 
conditioned media containing factors secreted by amniotic 
cells during culture in vitro. In fact, we and others have shown 
that conditioned medium from amniotic mesenchymal cell 
culture (CM-hAMSC) has beneficial effects in preclinical 
models of lung fibrosis (40, 41) and cardiac ischemia (42).  More 
recently, our group demonstrated that CM-hAMSC accelerates 
the healing of ulcers in diabetic mice (43).  Application of 
CM-hAMSC to spontaneous tendon and ligament injuries in 
horses has also been shown to significantly decrease the rate of 
subsequent injuries compared to untreated animals (44.)  Other 
groups have reported therapeutic effects using conditioned 
medium containing factors secreted from amniotic epithelial 
cells (CM-hAEC) in corneal alkali injuries in rabbits (45) or in 
dogs with induced corneal ulcers (46). To further substantiate 
a paracrine mechanism of action, our group showed that 
release of soluble factors by amniotic cells is associated with 
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the therapeutic effects observed after treatment with amniotic 
membrane patches in models of liver fibrosis (47, 48)  and 
cardiac ischemia (49).

In line with preclinical results, our in vitro studies sustain 
the immunomodulatory potential of amniotic cells. We showed 
that hAMSC reduce T cell proliferation induced by different 
stimuli (50) inhibit maturation of monocytes to dendritic cells 
(51) and induce macrophage differentiation into alternative-
ly activated M2 macrophages (51). Our more recent results 
strongly support the notion ascribing the immunomodula-
tory properties of hAMSC to their secretome, as reported by 
studies using hAMSC in transwell systems (that prevent cell-
to-cell contact), and those using their conditioned medium 
(CM-hAMSC). Specifically, hAMSC in transwells, and also 
their conditioned medium, induce anti-proliferative effects in 
T cells (50-53), skew T cell polarization, enhancing T regulato-
ry cells and reducing Th1 and Th17 populations (54), and in-
hibit differentiation of monocyte-derived dendritic cells (51). 
Interestingly, we recently demonstrated that CM-hAMSC fa-
vors the M1 to M2-macrophage switch as well as enhancing 
M2 features, and that macrophages generated in the presence 
of CM-hAMSC enhance wound healing in diabetic mice (43). 

Conclusions
Tissue injury triggers several overlapping events that lead to 
an inflammatory response. The latter involves recruitment of 
immune cells to the site of injury, under the control of molec-
ular regulators. Inflammation plays a fundamental role in the 
regeneration of injured tissues. Acute self-limiting and self-re-
solving inflammation is a fundamental step for repair, whereas 
unresolved chronic inflammation can lead to tissue damage 
and deregulated tissue healing, ultimately causing a series of 
pathologies, including fibrosis and autoimmune diseases. Am-
niotic cells and derivatives act on different inflammatory me-
diators, participating in a resolution-promoting inflammatory 
response, and this seems to be the mechanism underlying their 
therapeutic effect, observed in different preclinical models.
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