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Abstract
Phytoremediation is a plant based environmental cleanup technology to contain (rendering less toxic), sequester and degrade 
contaminated susbtrates. As can be seen from data metrics, it is gaining cosiderable importance globally. Phytoremediation 
approach is being applied for cleanup of inorganic (potentially toxic metals), organic (persistent, emergent, poly-acromatic hy-
drocarbons and crude oil etc.) and co-contaminated (mixture of inorganic and organic) and/or polluted sites globally. Recently 
new approaches of utilizing abundantly available natural organic amendments have yielded significant results. Ricinus commu-
nis L. (Castor bean) is an important multipurpose crop viz., Agricultural, Energy, Environmental and Industrial crop. The cur-
rent status of knowledge is abundant but scattered which need to be exploited for sustainable development. This review collates 
and evaluates all the scattered information and provides a critical view on the possible options for exploiting its potential as 
follows: 1. Origin and distribution, 2. Lead toxicity bioassays, 3. Progress in arbuscular mycorrhizal fungi-assisted phytore-
mediation, 4. Promising bioenergy crop that can be linked to pytoremediation, 5. A renewable source for many bioproducts 
with rich chemical diversity, 6. It is a good biomonitor and bioindicator of atmospheric pollution in urban areas, 7. Enhanced 
chelate aided remediation, 8. Its rhizospheric processes accelerate natural attenuation, 9. It is suitable for remediation of crude 
oil contaminated soil, 10. It is an ideal candidate for aided phytostabilization, 11. Castor bean is a wizard for phytoremediation 
and 12. Its use in combined phytoextraction and ecocatalysis. Further, the knowledge gaps and scope for future research on 
sustainable co-generation of value chain and value addition biobased products for sustainable circular economy and environ-
mental security are described in this paper.

Introduction
Globally the value of land has increased exhorbitantly. Contaminated and polluted land  
will have adverse effects on quality of living and economy. Contaminated lands are not fit 
for food production due to possible bioavailability and accumulation of toxic substanc-
es in the food chain. Decontamination of such land and utilization for non-food crops 
would be beneficial environmentally, socially and economically. Phytoremediation gained 
enormous momentum for environmental decontamination and particularly the cases 
dealing with Ricinus communis (Fig. 1). For a successful rehabilitation of contaminated 
and polluted sites, selection of appropriate candidate species is necessary.  Obviously the 
criteria for selection for such a species would be a) the plant must be tolerant to the stress 
imposed by the contaminants and pollutants and b) it must produce high biomass under 
several limitations. (Fig. 2a, b).

Origin and distribution
Castor bean (R. communis L.) has a long history from ancient times in literature of dif-
ferent parts of the world. It is native to Ethiopia, tropical Africa (1). In 1753, Linnaeus 
has identified the genus Ricinus. L. and J. Mueller Argavoskii described and placed in 
Euphorbiaceae (Surge family) and recognized only one species R. communis L. (2). It is a 
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Figure 1. Number of papers  published on phytoremediation. Keyword used = Phytoremediation and Ricinus commu-
nis. The inset shows exclusive papers on R. communis.  Data source: www.sciencedirect.com  

Figure 2. a) R. communis (castor bean) growing on contaminated soil – a dry land agricultural, energy, environmental and 
industrial crop, b) Its leaves are very large, lamina is more than 1 foot diameter, ideal for biomonitoring the quality of air in 
polluted urban ecosystems.

perennial crop cultivated in many dry regions of India and of-
ten grows in waste, degraded and contaminated soils as a wild.  
It is popularly known as ‘Castor bean’ or ‘Castor oil plant’ or 
‘Wonder tree’. (Fig. 2 a,b). 

According to FAO, castor is cultivated in about 20 nations, 
India being the top producer of castor seed and oil followed 
by  China  and Brazil  (Fig. 3 a,b). Castor is a multipurpose 
crop of international interest because of its commercial impor-
tance and unique biochemistry and valuable biomaterials such 

as, castor oil, ricinoleic acid, ricinoleyl-sulfate, lithium grease 
(lithium hydroxystearate), 10-undecylenic acid, 11-amino-un-
decanoic acid (3).

It has also been demonstrated that it can be grown in saline 
soils and soils contaminated with toxic metals like nickel, chro-
mium, copper, manganese (4) and arsenate (5). Castor can also 
be used for phytoremediation of Cs137 (Cesium).

Castor has been considered for remediation and to improve 
green cover as it stabilizes the nutrient cycling (7). It is a fast 
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growing perennial crop in semi-arid subtropical agro-climat-
ic conditions yielding oil crop with potential for phytoreme-
diation (8, 9). Recently, it gained considerable importance to 
remediate metalliferous substrates having high concentrations 
of Cu, Zn, Mn, Pb and Cd (Table 1). It is reported to remediate 
toxic metals and hazardous materials in the ecosystem (10). It 
is useful for phytoextraction of Boron and tolerant to Cu, Fe, 
Mn and Zn (11). Castor bean is an ideal plant suitable for re-
mediation of  Cd and Pb in contaminated soils (12). R. commu-
nis can remove the Cd high quantity from contaminated soils 
better than mustard (Brassica juncea) due to its large amount of 
above ground and underground biomass (13, 14).  

The emerging strategies for improved and integrated phy-
toremediation on field scale are a) identification of contami-
nant tolerant and high biomass producing plant  b) application 
of abundantly available low cost natural organic amendments 
(Fig. 4 and 5). 

With this background we have conducted dosimetric studies 
for Lead (not essential) toxicity bioassays using R. communis. 
Pot experiments with various natural organic amendments are 
being conducted and additional investigations are in progress. 
(Data are huge and not shown as this being investigated a part 
of Ph.D. thesis).

Figure 3. a) Annual crushing of castor seeds, b) Castor oil production (3).

Figure 4. Approaches for large scale field applications of phytoremediation using low cost natural organic amendments (6).
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Table 1.  R. communis  L. (Castor bean) an important dry land agricultural, energy, environmental and industrial crop for bioeconomy 
and environmental sustainability – an annotated synopsis of liteature

Year Author(s) Contribution to the theme of this paper Ref.

2017 Saadaoui et al. Castor bean diversity, seed oil and uses. 188

2016 Riberio et al. Chemical constituents and their pharmacological activities 36

2016 Zhang et al. Comparison of chelates for enhancing phytoremediation of Cd and Pb contaminated soil 54

2016 Chhajro et al. Chelators applied to soil promote accumulation of Cd 55

2016 Wu et al. Screening of high Cd accumulation varieties for remediation 65

2016 Pandey et al. Energy crops in sustainable phytoremediation 99

2016 Huang et al. Biochemistry of root exudates and Cu-accumulation 69

2016 Wang et al. Growth in single element /co-contaminated soils:pot experiments 90

2016 Amouri et al. Life cycle analysis approach for production of biodiesel 100

2016 Bauddh et al. Bioeconomy and remediation of Cd contaminated substrates 101

2016 Hadi et al. Ecophysiological changes in phytoremediation of Cd by castor 102

2016 Rani et al. Phytostabilization of tannery sludge amended soil 103

2016 Silintonga et al. Synthesis and optimization of  feedstock for biodiesel production 105

2016 Srinivasarao et  al. Ecophysiological investigations in rainfed K deficient alfisols 106

2016 Wei et al. Fractionation of stable Cd isotopes in the cadmium tolerant plant 107

2016 Yashim et al. Phytoremediation potential in Northern Nigeria 109

2016 Yi et al. Photosynthesis and antioxidant enzymes of castor growing in lead/ zinc tailings 110

2015 Hadi et al Phytoremediation of  Cd  in hydrophonic condition 108

2015 Alexopoulou et al. Performance of  castor hybrids 111

2015 Armendariz et al. Evaluation of castor genotypes or the production of biodiesel 112

2015 Aziera et al. Uptake and translocation of zinc and cadmium in sewage sludge contaminated soil 113

2015 Saadawi et al. Phytoremediation effect of  Ricinus communis on crude oil contaminated soil                        114

2015 Baishya et al. Phytoremediation of crude oil contaminated soil in India 77

2015 Bauddh  et al. Bio-accumulation and partitioning of Cd in castor  applied with organic and inorganic 
amendments

116

2015 Campbell et al. Use of the sap flow method specific crop coefficient 119

2015 Capuani  et al. Acidic amendments and sewage sludge with phosphorus on castor bean applied for 
remediation

120

2015 Grichar et al. Castor tolerance and weed control with pre-emergence herbicides 121

2015 Hadi et al.  Phytoremediation of cadmium by castor in hydrophonic condition 122

2015 Kang  et al. Copper phytotoxicity in hydroponic culture as a function of chemical forms in the root 
cells

123

2015 Liu et al. Bio-aviation fuel production from hydroprocessing of castor oil 124

2015 Medeiros et al. Bio-nanocomposite nanoparticles derived from castor oil 125

2015 Moncada et al. Design and analysis of a second and third generation biorefinery 127

2015 Ribeiro et al. Biomass allocation in seedlings of two contrasting genotypes subjected to temperature 
stress

128

2015 Rissato  et al. Phytoremediation of organochlorine pesticides polluted soils 129

2015 Rissato et al. Phytoremediation of polluted soil with organochlorine pesticides 169

2015 Sanchez Castor oil methanolysis to obtain biodiesel 130

2015 Severino et al. Endosperm composition of castor seed 131

2015 Shi  et al. Drought stress altered root morphology decreases Cd  acumulation 132

2015 Srivastava and Kumar Response of castor to sulphur under irrigation, India. 134

2015 Zhang et al. Castor cultivar leaves exhibit differences in Cd accumulation 136

2015 Zhang et al. Citric acid assisted phytoextraction of heavy metals 135

2015 Mendes et al. Castor bean as a potential environmental bioindicator 47
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Table 1. (cont.) R. communis  L. (Castor bean) an important dry land agricultural, energy, environmental and industrial crop for bioecon-
omy and environmental sustainability – an annotated synopsis of liteature

Year Author(s) Contribution to the theme of this paper Ref.

2015 Ma et al. Serpentine bacteria promote metal translocation and bioconcentration in multi-metal 
polluted soils

76

2015 González-Chávez Crude oil and bioproducts of castor bean grown  on mine tailings 34

2014 Bonanno  Efficient biomonitor of atmospheric pollution in urban areas 48

2014 Silva  et al. Mucilage protects aluminum toxicity during germination and root elongation 133

2014 Atiku Fuel properties of wild castor seed oil 137

2014 Bauddh et al. A multipurpose crop for the sustainable environment 138

2014 Bauddh et al. Vermicompost, chemical fertilizers, biofertilizers and customized fertilizers affect  Cd 
partitioning 

139

2014 Chen et al. Cadmium tolerance, accumulation and relationship with Cd subcellular distribution 141

2014 Goyal et al. Adaptive modulation of traits to urban environments facilitate phytostabilization 142

2014 Neto et al. A comparative study of salt-tolerant  castor bean  with salt-sensitive Jatropha curcas 143

2014 Magriotis  et al. Castor bean presscake as an efficient low cost adsorbent for removal of textile dyes 144

2014 Rodrigues et al. Ecophysiological investigation 145

2014 Zhang  et al. Cadmium accumulation/tolerance  vs. antioxidant systems 148

2013 Andreazza et al. Phytoremediator for copper-contaminated soils 70

2013 Bosiacki  et al. Phytoextraction of cadmium and lead from contaminated substrates 18

2013 Makeswari  and Santhi Adsorption of Cr(VI) from aqueous solutions 150

2013 Martins et al. Removal of heavy metals  leaf powder as a green adsorbent 94

2013 Olivares et al. Mine tailings stabilization 10

2013 Pal  et al. Responses to lead stress 151

2013 Pandey Suitability for phytoremediation of fly ash disposal sites 71

2011 Kathi and Khan Phytoremediation approaches to PAH contaminated soil.                                                                           152

2013 Perdomo Physicochemical characterization of seven Mexican varieties oil contents 153

2013 Sun et al. Growth and ecophysiology irrigated with saline solution 51

2013 Severino  and Auld Growth and development of castor plant 154

2013 Tyagi et al. Phyto-chemical constituents under the  influence of industrial effluent. 156

2013 Wang  et al. Rhizoremediation of PAHs in co-contaminated soil by co-plantation 157

2013 Bale  et al. Castor oil fatty acid methyl ester (COFAME) yield  174

2013 Yasur and Rani Ecophysiological effects of nanosilver 158

2012 Bauddh  et al. Ecophysiological investigation in salinity and drought affected cadmium contaminated soil 13

2012 Bauddh  et al. Comparative study of phytoremediation by two oil yielding plants on metal contaminated 
soil.

14

2012 De Souza Costa et al. Cd and Pb phytoremediation 17

2012 de Abreu et al. Organic matter and barium absorption 30

2012 Wu  et al. Ameliorative effect of castor on saline soil 53 

2012 Adhikari and Kumar Nickel phytoremediation 160 

2012 Ananthi et al. Natural and induced phytoextraction 159

2012 Bauddh and Singh Saline, drought and Cd contaminated soil 161

2012 Dos Santos et al. Pb-phytoextractor 163

2012 Lavanya et al. Prospects for biodiesel production in India 164

2012 Melo et al. Arsenic accumulation grown on contaminated soils. 165

2012 Prasad et al. Electrochemical applications of carbon nanoparticles derived from castor oil soot 166

2012 Severino et al. Challenges for increased production of castor 167

2012 Varun et al. Glass industry contaminated substrates 168

2012 Singh et al. Biosynthesis of silver nanoparticles using  leaf extract and its antibacterial activity                              179
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Table 1. (cont.) R. communis  L. (Castor bean) an important dry land agricultural, energy, environmental and industrial crop for bioecon-
omy and environmental sustainability – an annotated synopsis of liteature

Year Author(s) Contribution to the theme of this paper Ref.

2011 Huang et al. Phytoremediation DDT and Cd co-contaminated soil 83

2011 Li et al. Ecophysiological parameters influencing yield prediction on coastal saline land 84

2011 Kang and  Zheng Copper hyperaccumulator.                                                         155

2011 Perea-Flores et al. Microscopic image analysis for evaluation of and physico-chemical properties and mor-
phological features for seeds 

170

2011 Goytia-Jime´nez Environmental variations on plant and oil content 171

2010 Reddy  & Matcha  Role of nitrogen on development, growth and productivity 31

2010 Babita et al. Drought tolerance and yield 173

2010 Santhi  et al. Activated from the epicarp adsorbs malachite green 175

2010 Shi and Cai Oil crops for phytoremediation of zinc 176

2010 Singh  et al. Restoration of fly ash dump sites 177

2010 Ye et al. Speciation  of arsenic in conducting tissues 178

2009 Carreno et al. Nickel-carbon nanocomposites prepared using castor oil 162

2009 Melo  et al. Arsenic  accumulation in hydroponics 5

2009 Shi and Cai Cd tolerance and accumulation 9

2009 Niu et al. Phytoextraction of Cd and Pb – influence on  root and aerial biomass 82

2009 Coscione and Berton Phytoextractor of Barium  91

2009 Zhi-Xin et al. Phytoextraction of Cd and Pb 180

2008 Al Rmalli  et al. Powdered leaf powder of castor bean as biosorbent  of mercury from aqueous solutions 
of 

181

2008 Figueroa et al. Phytochelatin production on silver mine waste 182

2008 Oladoja  et al. Removal of basic dye using  castor seed shell as a sorbent 183

2008 Sas-Nowosielska et al. Soil remediation 184

2005 Lu et al. Tolerance uptake and accumulation of cadmium 185

2000 Kammerbauer and Dick Monitoring of urban traffic emissions R. communis 147

1994 Rigby et al. Phloem translocation of a reduced oligogalacturonide 146

1994 Stephan  et al. Translocation of Fe, Cu, Mn, and Zn in phloem 186

1982 Scarpa and Guerci Economic uses of the castor 187

Lead toxicity bioassays
Lead (Pb) availability to plants in the environment are from 
technogenic (various industrial effluents) and geogenic (min-
ing) sources (15). Hydroponics are considered to be appro-
priate to evaluate the phytoremediation potential of species to 
tolerate high metal concentrations. Castor bean (R. commu-
nis, Euphorbiaceae) is a fast-growing, perennial shrub, with a 
well-developed root system, tolerance to poor soil fertility, high 
economic and biomass value. These traits make castor bean a 
candidate species for phytoremediation (16-19). 

The seedlings of castor bean were transplanted to modified 
Hoagland’s solution, and after one month of acclimatization, 
seedlings of uniform size were selected and treated for ten days 
with Pb(NO3) at different Pb concentration ( 0, 200 µM and 
400 µM ). To determine the plant tolerance level, metal accu-
mulation, chlorophyll (20), proline (21), protein (22) and lipid 
peroxidation (23) were analysed. Sophisticated and reliable in-
strumentation such as Fourier Transform Infrared Spectrom-
eter (FTIR) and Scanning Electron Microscopy and Energy 

–Dispersive X-ray Spectroscopy (SEM-EDS) were applied to 
characterize the functional groups, structural analysis and el-
emental composition of root cell wall.

Lead treatment at different concentration caused different 
levels of phytotoxicity, which includes chlorosis, visible dam-
age of leaf and reduction in growth. Accumulation of Pb in the 
tissue of plants was calculated on a dry weight basis and was 
increased significantly as compared to control. Roots were the 
main accumulation site as they absorbed much higher quan-
tities (16.67-19.53 mg g-1 dw) than stems (0.07-0.38 mg g-1 

dw) while in leaves, Pb accumulation was (0.03-0.05 mg g-1 

dw). Contents of Chl a, b and total chlorophyll were reduced 
about 50% in 200 µM and 30% in 400 µM when compared to 
the control. MDA (Malondialdehyde) estimation, an indicator 
of lipid peroxidation, showed that the MDA concentration in 
roots of castor plants was elevated and the magnitude of eleva-
tion ranged from 50 folds at 200 and 400 µM of Pb more than 
control respectively. Proline content increased at 200 µM Pb, 
but slightly greater at 400 µM when compared to control (Fig. 
6a-d). Protein levels significantly decreased about 80% in both 
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200 and 400 µM Pb treatment when compared to control. Lead 
treated roots exhibited increase in protein content in a dose-de-
pendent manner. This was attributed to Pb induced protein 
synthesis inhibition or oxidation of proteins. SEM-EDX anal-
ysis revealed that disruption of plant root cell wall and chang-
es in membrane permeability observed and metal adhered to 
the plant cell wall and vacuoles. Comparison of control and Pb 
treated [FTIR 4000~500 cm−1] revealed Pb was bound to the 
carboxyl (-COOH) and hydroxyl (-OH) groups mainly hemi-
celluloses, cellulose, polysaccharides and other acidic polar 

compounds in the cell wall (Fig. 7).
Castor bean (R. communis) showed tolerance and accumu-

lation of Pb in its tissues. Chlorophyll content and total protein 
decreased while proline and lipid peroxidation (MDA) content 
increased significantly at 200 µM and 400 µM when compared 
to the control. FTIR and SEM-EDX showed metal accumula-
tion and disruption of root cell wall. These traits along with 
published literature qualifies castor bean as a suitable candidate 
for application in phytoremediation. 

Figure 5.  Strategies for improved and integrated phytoremediation (6, 189).

Figure 6. a) Chlorophyll measurement,  b) Protein,  c) Lipid peroxidation (MDA) and d) Proline in roots of castor 
seedlings after ten days of Pb treatment.
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Castor promotes arbuscular mycorrhizal fungi-
assisted phytoremediation
Arbuscular mycorrhizal fungi (AMF) are cosmopolitan and 
abundant, which form symbiotic association with plants (24). 
They assist the candidate species involved in phytoremediation 
processes of contaminated soils (25). They improve the water 
and nutrient intake by plants (26, 27).

Castor as a promising bioenergy crop coupling 
with phytoremediation
R. communis is a good candidate for biodiesel production and 
also an industrial crop (28) and the cultivation has encouraged 
for biodiesel and bioethanol production in Brazil (29, 30). Cas-
tor bean leaf area development and stem elongation and devel-
opmental aspects are proportional to leaf nitrogen levels (31). 
Castor oil and its derivatives, besides being used in medicine, 
are used in a wide range of sectors including agriculture, good 
quality lubricants, industrially useful fatty acids, pharmaceuti-
cals, plastics engineering, and rubber, paper and textile indus-
tries (32). 

Castor is a source of bioproducts with rich 
chemical diversity
Castor bean produces many of bioproducts such as seed oil, 
cake and seed coat for which will be useful for different pur-
poses. India produces about 90% of the castor oil in the world 
(33). R. communis bioproducts like seed cake and seed coats are 
used as fertilizer to improve soil quality (34). The detoxified or 

refined seed protein would be used as fish feed, farm animals, 
poultry, pig rearing and seed cake is used as good fertilizer (35). 
Castor has an array of chemical diversity of which reflects in 
the pharmaceutical activity and it is a good alternative source 
of bioactive compounds aims to develop plant-based new drug 
discovery (36). Eighty three compounds from the seeds, leaves, 
roots and stems of Castor which include some alkaloids, ter-
penoids, flavonoids, benzoic acid derivatives, coumarins, to-
copherols, terpenoids and fatty acids (36). In Brazil, castor oil 
is in great demand by the pharmaceutical and chemical indus-
tries. Castor products have tremendous social and ecological 
implications (33).  Castor products are applied in gasohol (liq-
uid biofuel) by conversion to transesterification (37). Castor 
seeds contain high levels of toxic compounds like ricin and 
ricinine (32, 38). 

Castor seed oil is pale straw colored, viscous liquid. Crude 
oil has distinct odour, non-drying, it can deodorize in refin-
ing (39, 40). Castor bean oil is the only commercially available 
natural hydroxylated fatty acids (41) and has huge industrial 
applications for lubricants, grease, polymers, cosmetics, paints, 
soaps, linoleum, coatings, polyurethane, printing inks and 
plastics (42-45). About 1.3 Mt of castor oil seeds are produced 
in a year which yield 550 Kt of oil and India largely dominates 
the international market and exports 80% of oil alone (46).

Castor as good biomonitor and bioindicator of 
pollution in urban areas
The attention of air quality biomonitoring in the urban areas 
has been increased using different plant species as indicators to 

Figure 7. FTIR spectra of root cell wall of R. communis a) Control, b) 200 µM and c) 400 µM Pb (NO3) solution after 10 
days of treatment. 
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monitor the effects of pollution. Castor is a reliable bioindicator 
of air quality owing its large leaf surface area and rapid growth 
(47). Fruits of castor bean are more sensitive to Pb accumula-
tion compared to leaves and fruits and leaves are used as good 
biomonitor of atmospheric pollution in urban areas (48)(Fig. 
2b).  

Pigments can also play a vital role as indicators for assessing 
the environmental quality and pollution. Chlorophyll and ca-
rotenoids (chloroplasts) show sensitive indicators to the heavy 
metal toxicity, especially to the levels of Pb in the soil (49). R. 
communis is a salt tolerant plant (50, 51) however, at seedling 
stage sensitive to salt stress (52). It could be useful to remediate 
seashore saline soils (53).

Castor enhance chelate aided remediation 
Chelator is one type of bonding ion, which involves in the for-
mation of two or more separate coordinate bonds. Citric acid 
(CA), ethylenediamine disuccinic acid (EDDS) chelates effect 
the growth, heavy metal accumulation, metal bioavailability 
in the rhizhosphere and the non-rhizosphere on metal accu-
mulation and enhance the phytoremediation efficacy in castor 
bean of Cd and Pb contaminated soils (54). Ethylene diamine 
tetra acetic acid (EDTA), nitriloacetic acid (NTA), ammonium 
citrate have accelerated Cd uptake in R. communis in Cd con-
taminated soils (55).

Castor rhizospheric processes accelerate  
phytoremediation
Manipulation of rhizospheric processes of plants growing on 
metal-contaminated or co-contaminated soils accelerate the 
phytoremediation (56). Soil microorganisms, including the 
microbial consortia as well as the tissue-colonized symbiotic 
bacteria, are an integral part of the rhizosphere biota. They play 
vital role in the biogeochemical cycle, through various mech-
anisms involving recycling of plant minerals and nutrients in 
the environment (57). Further studies confirmed that microbi-
al consortia could affect the mobility and bioavailability of the 
trace metal in the soil (Fig. 8). Pairing both of efficient plant 
growth promoting rhizobacteria with accumulator may be the 
best way for the restoration of vegetation on metal-contaminat-
ed land (58, 59).

R. communis interacts with rhizosphere microbial commu-
nity and plays an important role in making soil nutrient bio-
availability (35, 57, 58)  R.communis derives benefit from the 
rhizospheric microbial populations through the recycling and 
solubilization of mineral nutrients, as well as the increased sup-
ply of metabolites including growth promoting phytohormones 
that stimulate growth (60). Thus alterations in the microbial 
consortia of rhizosphere soils greatly alter various processes 
in metal-polluted soils. These include recycling of nutrients, 
maintenance of soil structure, detoxification of pollutants, and 

Figure 8.  Ricinus communis interactions with rhizospheric bacteria, fungi. Key processes important for phytostabilization are 1 and 2 
Phytovolatilization of organic contaminants including biomonitoring of atmospheric pollutants, 3. Leaf detritus increases organic matter 
in soil, 4. Robust root system contribute to phytostabilization, 5. Dissolved organic carbon can increase leaching, 6. Roots act as a sink for 
organic and inorganic contaminants, 7. Root exudates influence metal mobility and microbial activity, 8 and 9. Rhizosphere bacteria and 
mycorrhiza influence metal mobility and availability (35, 75, 76, and 78).
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control of plant pests and promoting plant growth and plant 
health (60-62). Castor bean is reported as a suitable candidate 
for phytostabilization of co-contaminated sites (organics and 
inorganics) (10, 63-65), heavy metals (11, 66-69) and polycy-
clic aromatic hydrocarbons (PAHs). 

This process of phytostabilization is accomplished through 
phytoexclusion (use of plants with low metal uptake) (70) aided 
phytostabilization (11, 13), hydraulic control (inhibition of pol-
lutant leaching), and phytorestoration (phytostabilization with 
the help of native plants) (71). Acceleration of the beneficial  
interaction between plants and rhizosphere microorganisms is 
a promising strategy to achieve anticipated results in the field of 
remediation of heavy metals (72). For a successful restoration 
of municipal waste dumpsites with metalliferous waste, it is 
necessary to exploit promising metal-tolerant plant-microbe 
partnerships. Disposal of hazardous waste was considered as 
the major industrial problem.

R. communis grows abundantly on the industrial waste-con-
taminated sites, along the road sides, rail tracks, open lands 
and other disturbed areas with high tolerance for growth un-
der harsh environmental conditions. Several other studies have 
also shown that R. communis grows spontaneously in met-
al-contaminated sites and has been proposed as a good candi-
date for restoration of contaminants (18, 19, 73, and 74). It has 
been reported that R. communis is tolerant to different stresses 
like salinity, drought, frost and has proved to be the preferred 
phytoremediator when compared to Brassica juncea. Moreover, 
it grows fast and has been recommended for plantation on 
wasteland as it requires minimal inputs with little maintenance 
for its establishment (44, 58, 59, 75, and 76). 

Besides the use of its biomass as biofuel and biofertilizer, it 
can make contaminated soils productive. Some investigations 
have been made with regard to ecophysiological response of 
R. communis  under heavy metal stress and the role of plant 
growth-promoting bacteria on plant productivity and phytore-
mediation in artificially metal-spiked soils (pot culture and 
greenhouse experiments). 

Plant roots discharge a wide range of carbon containing com-
pounds into the rhizosphere of which play vital role in nutrient 
mobilization known as rhizodeposits. The root exudates such as 
organic acids and amino acids influence the tolerant capacity of 
castor in contaminated areas. Experiments were conducted to 
determine the efficacy of exudates from roots of castor in the Cu 
accumulation. The results indicated that the root exudates tartar-
ic, citric and oxalic acids tolerate the high Cu concentrations in 
Cu mining area. This activity could be beneficial for the selection 
of castor as high Cu accumulator (69,77).

Castor is suitable for remediation of crude oil 
contaminated soil
Soil contamination with spent oils should limit some diffu-
sion processes which reduce the availability of soil nutrients 
to plants (77,79) and causes harmful effects such as necrosis, 
growth stunting, leaf necrosis and low biomass production. 

Plant-based technology is eco-friendly and cost effective meth-
od to remediate the accidental spillage of crude oil on soils. R. 
communis  can improve revegetation of cleaned-up oil polluted 
soils and grow in spent lubricating oil  contaminated soils and 
can accumulate Mn, Ni, Pb and V (80, 81).

Castor is ideal for revegetation of fly ash dump sites
The plant has ability to grow in metalloid, organic pollutant, 
salinity, drought and sea shore soil areas due to its massive, 
deep root system to absorb more pollutants from contaminat-
ed soils and reduce soil erosion caused by water (13, 14, 44, 67, 
82, 83-85). R. communis  is a potential candidate for phytore-
mediation of fly ash disposal sites in tropical and sub-tropical 
regions and recommended for large cultivation on coal-based 
thermal power plants generated fly ash disposal lands. R. com-
munis canopy is also implicated in effective carbon sequestra-
tion and enhance esthetically the landscape, co-generation of 
value chain and value based products (71).

Castor is an ideal candidate for aided 
phytostabilization 
Humic substances are the natural organic matter formed by de-
caying of plant debris and strengthen the soil potential. These 
can change the soil  bio-geochemical properties and contribute 
soil improvement. Some field experiments have proven that the 
castor residue or meal used as natural manure which enhance 
the soil fertility. It adds elements such as N, P, K, Zn, Mn and 
Cu to the soil.

Composting is a traditional practice in which the organic 
material is transformed into compost by microorganisms. The 
application of compost in contaminated soils can be reduce the 
concentration of toxic metals, change physico-chemical soil 
properties and enhance the fertility status due to presence of 
nitrogen, phosphorous, potassium and other elements. Mature 
compost is a material in which biological activity has slowed, 
dark in colour and a rich earthy smell. Compost can act as 
bioremediation tool and enhances the heavy metal immobiliza-
tion and bioavailability of Cd and Pb (86). Composting process 
limits the solubility and bioavailability of toxic metal complex-
es and enhances the binding properties of the organic waste 
residuals to the organic compost matrix and matter. Pb being 
the most strongly bound element and Ni the weakest, with Zn, 
Cu and Cd showing intermediate sorption characteristics in 
municipal solid waste or sewage sludge (87).  

Castor is a wizard of phytoremediation 
Castor bean has the potential to tolerate and accumulate heavy 
metals like Cd (13, 14 ), As (67, 88), Ni (68, 89, 99), Zn (100), 
and Cu (70, 77) and high tolerance to Cd, Cu and Zn (90). R. 
communis is a good candidate for the removal of DDTs (dichloro 
diphenyl trichloroethane) and Cd from contaminated soils (78). 
It is a good potential phytoaccumulator for Ba (11, 91), Cd and 
Pb (91, 93). Castor leaf powder acts as a green adsorbent for the 
removal of heavy metals from aqueous solutions (94). 
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Applications of combined phytoextraction and 
ecocatalysis 

Phytoextraction process is the translocation of heavy metals 
from soil to aerial parts of the plant. The field of “phytomin-
ing” and “agromining” are emerginging areas (191). By com-
paring translocation and bioconcentration factors, one should 
be able to judge the efficient plants for field application. Castor 
possesses a unique root system with rich microbial diversity in 
rhizosphere that is an essential attribute for extraction of toxic 
contaminants (189). Ability of different plant taxa reacting to 
different concentration of metals can be a) produce high bio-

Figure 9. Coupling Ricinus communis with phytoremediation, biofuels and biorpoducts strengths 
sustainable circular economy  (96-99).

Figure 10. Ricinus communis,  an important multipurpose crop viz., 
agricultural, energy, environmental and Industrial crop for eco-de-
velopment (96-99). 

mass with low concentration of metals in their tissues b) hy-
peraccumulate metals in large quantity in their tissues with low 
biomass, both the situation can be exploited for economic and 
environmental benefit  (95). Plants capable of  concentrating  
metals in their tissues serves as ecocatalysts  (1) for green-fine 
chemistry (catalyst production from metal accumulating bio-
mass) and (2) for biorefinery (prehydrolysis and organosolv 
pre-treatment of metal  accumulated  lignocellulosic biomass) 
4,18, 56, 62, 68, 82, 88, 91, 135, 136, 157, 159,160, 163, 180, 189 
and 190).

Conclusions
Demand for bioproducts and energy based on phytoremedi-
ation supports sustainable circular economy. Land is under 
pressure  for food and biofuels production. The challenge in 
this field is quick results and boosting economy. In such a sce-
nario, optimization of productivity of plants used in phytore-
mediation of contaminated sites and co-generation of bioprod-
ucts would attract global attention for implementation with the 
involvement of all the stake holders (Fig. 9 and 10). The general 
belief is that phytoremediation is low cost but takes long time. 
In this back drop, multipurpose high biomass producing plants 
like R. communis with proven record as shown in table 1 have 
great scope for boosting bioeconomy  linking biofuels, value 
chain and value additions. Phytoproducts and bioenergy via 
innovative and efficient technologies are already a reality offer-
ing great opportunities and solutions to major societal, envi-
ronmental and economic challenges, including environmental 
security (96, 97, 192).
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