GENERALIZED DERIVATIONS WITH LEFT ANNIHILATOR CONDITIONS IN PRIME AND SEMIPRIME RINGS

Basudeb Dhara

Basudeb Dhara, Department of Mathematics
Belda College, Belda, Paschim Medinipur, 721424, W.B. India

Abstract
Let \(R \) be a prime ring with its Utumi ring of quotients \(U \), \(C = Z(U) \) be the extended centroid of \(R \), \(H \) and \(G \) two generalized derivations of \(R \), \(L \) a noncentral Lie ideal of \(R \), \(I \) a nonzero ideal of \(R \). The left annihilator of \(S \subseteq R \) is denoted by \(l_R(S) \) and defined by \(l_R(S) = \{ x \in R \mid xS = 0 \} \). Suppose that \(S = \{ H(u^n)u^n + u^nG(u^n) \mid u \in L \} \) and \(T = \{ H(x^n)x^n + x^nG(x^n) \mid x \in I \} \), where \(n \geq 1 \) is a fixed integer. In the paper, we investigate the cases when the sets \(l_R(S) \) and \(l_R(T) \) are nonzero.

Keywords: prime ring, derivation, Lie ideal, generalized derivation, extended centroid, Utumi quotient ring.

2010 Mathematics Subject Classification: 16W25, 16W80, 16N60.

1. Introduction
Let \(R \) be an associative ring with center \(Z(R) \). For \(x, y \in R \), the commutator of \(x, y \) is denoted by \([x, y] \) and defined by \([x, y] = xy - yx \). By \(d \) we mean a derivation of \(R \). An additive mapping \(F \) from \(R \) to \(R \) is called a generalized derivation if there exists a derivation \(d \) from \(R \) to \(R \) such that \(F(xy) = F(x)y + xd(y) \) holds for all \(x, y \in R \). Throughout this paper, \(R \) will always present a prime ring with center \(Z(R) \), extended centroid \(C \) and \(U \) is its Utumi quotient ring. A well known result proved by Posner [20], states that if the commutators \([d(x), x] \in Z(R) \) for all \(x \in R \), then either \(d = 0 \) or \(R \) is commutative. Then result of Posner was generalized in many

This work is supported by a grant from National Board for Higher Mathematics (NBHM), India. Grant No. is NBHM/R.P. 26/2012/Fresh/1745 dated 15.11.12.
directions by a number of authors. Posner’s theorem was extended to Lie ideals in prime rings by Lee [17] and then by Lanski [12].

On the other hand, authors generalized Posner’s theorem by considering two derivations. In [3], Brešar proved that if d and δ are two derivations of R such that \(d(x)x - xδ(x) \in Z(R) \) for all \(x \in R \), then either \(d = δ = 0 \) or R is commutative. Later Lee and Wong [18] consider the situation \(d(x)x - xδ(x) \in Z(R) \) for all \(x \) in some noncentral Lie ideal \(L \) of R and they proved that either \(d = δ = 0 \) or R satisfies \(s_4 \).

Recently in [22] Vukman proves that if \(d \) and \(δ \) are derivations on \(2mn(m+n-1) \)-torsion free semiprime rings \(R \) such that \(d(x)x^n + x^nδ(x^m) = 0 \) for all \(x \in R \), where \(m,n \geq 1 \) are fixed integers, then both derivations \(d \) and \(δ \) map \(R \) into its center and \(d = -δ \).

In [23], Wei and Xiao studied the similar situation replacing derivations \(d \) and \(δ \) by generalized derivations \(G \) and \(H \). More precisely they proved the following:

Let \(m,n \) be fixed positive integers, \(R \) be a noncommutative \(2(m+n)! \)-torsion free prime ring and \(G,H \) be a pair of generalized Jordan derivations on \(R \). If \(G(x^m)x^n + x^nH(x^m) \in Z(R) \) for all \(x \in R \), then \(G \) and \(H \) both are right (or left) multipliers.

In [14], Lee and Zhou studied the same situation of above result without considering torsion free restriction on \(R \). In this paper, Lee and Zhou [14] proved the following:

Let \(R \) be a prime ring that is not commutative and such that \(R \not\cong M_2(GF(2)) \), let \(G,H \) be two generalized derivations of \(R \), and let \(m,n \) be two fixed positive integers. Then \(G(x^m)x^n - x^nH(x^m) = 0 \) for all \(x \in R \) iff the following two conditions hold:

1. There exists \(w \in Q \) such that \(G(x) = xw \) and \(H(x) = wx \) for all \(x \in R \);
2. either \(w \in C \), or \(x^m \) and \(x^n \) are \(C \)-dependent for all \(x \in R \).

There are many papers in the literature which studied the identities of generalized derivations with left annihilator conditions.

For any subset \(S \) of \(R \), denote by \(r_R(S) \) the right annihilator of \(S \) in \(R \), that is, \(r_R(S) = \{ x \in R \mid Sx = 0 \} \) and \(l_R(S) \) the left annihilator of \(S \) in \(R \) that is, \(l_R(S) = \{ x \in R \mid xS = 0 \} \). If \(r_R(S) = l_R(S) \), then \(r_R(S) \) is called an annihilator ideal of \(R \) and is written as \(ann_R(S) \).

In [4], Carini et al. studied the left annihilator of the set \(\{ H(u)u - uG(u) \mid u \in L \} \), where \(L \) is a noncentral Lie ideal of \(R \) and \(H,G \) two non-zero generalized derivations of \(R \). In case the annihilator is not zero, the conclusion is one of the following:

1. there exist \(b', c' \in U \) such that \(H(x) = b'x + xc' \), \(G(x) = c'x \) with \(ab' = 0 \);
2. \(R \) satisfies \(s_4 \) and there exist \(b', c', q' \in U \) such that \(H(x) = b'x + xc' \), \(G(x) = c'x + xq' \), with \(a(b' - q') = 0 \).
Recently, Carini and De Filippis proved the following theorem:

Let R be a prime ring, U the Utumi quotient ring of R, $C = Z(U)$ the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists an integer $n \geq 1$ such that $H(u^n)u^n + u^nG(u^n) \in C$, for all $u \in L$, then either there exists $a \in U$ such that $H(x) = xa, G(x) = -ax$, or R satisfies the standard identity s_4. Moreover, in the last case the structures of the maps G, H are obtained.

In the present paper, we shall investigate the left annihilator of the sets $\{H(u^n)u^n + u^nG(u^n) \mid u \in L\}$ and $\{H(x^n)x^n + x^nG(x^n) \mid x \in I\}$, where L is a noncentral Lie ideal of R, I is a nonzero ideal of R, $n \geq 1$ is a fixed integer and H, G two non-zero generalized derivations of R. More precisely, we prove the following theorems:

Theorem 1.1. Let R be a prime ring with its Utumi ring of quotients U, $C = Z(U)$ be the extended centroid of R, H and G two generalized derivations of R, L a noncentral Lie ideal of R and $S = \{H(u^n)u^n + u^nG(u^n) \mid u \in L\}$, where $n \geq 1$ is a fixed integer. If $I_R(S) \neq \{0\}$, then either there exist $b', p \in U$ such that $H(x) = b'x - xp$ and $G(x) = px$ for all $x \in R$ with $ab' = 0$ or R satisfies s_4. Moreover, in the last case, if R satisfies s_4, then one of the following holds:

1. n is even, there exist $b, p \in U$ and derivations d, δ of R such that $H(x) = bx + d(x)$ and $G(x) = px + \delta(x)$ for all $x \in R$, with $a(b + p) = 0$;
2. n is odd, there exist $b, p \in U$ and derivations d, δ of R such that $H(x) = bx + d(x)$ and $G(x) = px + \delta(x)$ for all $x \in R$, with $a(b + p) = 0$.

Theorem 1.2. Let R be a noncommutative prime ring with char $(R) \neq 2$, U its Utumi ring of quotients, $C = Z(U)$ be the extended centroid of R, H and G two generalized derivations of R, I a nonzero ideal of R and $S = \{H(x^n)x^n + x^nG(x^n) \mid x \in I\}$, where $n \geq 1$ is a fixed integer. If $I_R(S) \neq \{0\}$, then there exist $b', p \in U$ such that $H(x) = b'x - xp$ and $G(x) = px$ for all $x \in R$ with $ab' = 0$.

As an immediate application of the Theorem 1.1, in particular when $G = -H$, then we have the following result which gives a particular result of Theorem 1.1 in [6].

Corollary 1.3. Let R be a prime ring with its Utumi ring of quotients U, $C = Z(U)$ be the extended centroid of R, H a generalized derivation of R and L a noncentral Lie ideal of R. Suppose that there exists $0 \neq a \in R$ such that $a[H(u^n), u^n] = 0$ for all $u \in L$, where $n \geq 1$ is a fixed integer. Then either there exists $\lambda \in C$ such that $H(x) = \lambda x$ for all $x \in R$ or R satisfies s_4.

As an application of the Theorem 1.1, in particular when $G = 0$, then using
Theorem 2.2 in [8], we have the following result which gives a generalization of Theorem 1.1 in [21].

Corollary 1.4. Let R be a prime ring of char $(R) \neq 2$ with its Utumi ring of quotients U, $C = Z(U)$ be the extended centroid of R, H a generalized derivation of R and L a noncentral Lie ideal of R. Suppose that there exists $0 \neq a \in R$ such that $aH(u^n)u^n = 0$ for all $u \in L$, where $n \geq 1$ is a fixed integer. Then either there exist $b', p \in U$ such that $H(x) = b'x$ for all $x \in R$ with $ab' = 0$.

2. Proof of main results in prime rings

Let R be a prime ring with extended centroid C. Let $H(x) = bx + xc$ and $G(x) = px + xq$ for all $x \in R$ and for some $b, c, p, q \in U$, be two inner generalized derivations of R and L be a noncentral Lie ideal of R. Then $a(H(x^n)x^n + x^nG(x^n)) = 0$ implies $a(bx^{2n} + x^n(c + p)x^n + x^{2n}q) = 0$ for all $x \in L$. We know that if char $(R) \neq 2$, by [2, Lemma 1] there exists a nonzero ideal I of R such that $0 \neq [I, R] \subseteq L$. If char $(R) = 2$ and $\dim_C RC > 4$ i.e., char $(R) = 2$ and R does not satisfy s_4, then by [13, Theorem 13] there exists a nonzero ideal I of R such that $0 \neq [I, R] \subseteq L$. We assume that R does not satisfy s_4. Then in any case of char $(R) = 2$ or char $(R) \neq 2$, we can conclude that there exists a nonzero ideal I of R such that $0 \neq [I, I] \subseteq L$. By hypothesis, we have

\[
(1) \quad a(b[x_1, x_2]^{2n} + x_1, x_2]^n(c + p)[x_1, x_2]^n + [x_1, x_2]^{2n}q) = 0
\]

for all $x_1, x_2 \in I$. Then following lemmas are immediate consequences:

Lemma 2.1. R satisfies a nontrivial generalized polynomial identity (GPI) or $c, p, q \in C$ such that $a(b + c + p + q) = 0$.

Proof. Assume that R does not satisfy any nontrivial GPI. Then R must be noncommutative. Let $T = U \ast_C C\{x_1, x_2\}$, the free product of U and $C\{x_1, x_2\}$, the free C-algebra in noncommuting indeterminates x_1 and x_2.

Then,

\[
a (b[x_1, x_2]^{2n} + [x_1, x_2]^n(c + p)[x_1, x_2]^n + [x_1, x_2]^{2n}q)
\]

is zero element in T. If $q \notin C$, then q and 1 are linearly independent over C. Then from above

\[
a[x_1, x_2]^{2n}q = 0 \in T,
\]

implying $q = 0$, since $a \neq 0$, a contradiction. Therefore, we conclude that $q \in C$.

Unauthentifiziert | Heruntergeladen 31.08.19 14:52 UTC
Then by hypothesis,
\[(2) \quad a((b + q)[x_1, x_2]^n + [x_1, x_2]^n(c + p))[x_1, x_2]^n = 0 \in T.\]

If \(c + p \notin C\), then by (2)
\[a([x_1, x_2]^n(c + p)) [x_1, x_2]^n = 0 \in T,\]
implying \(c + p = 0\), since \(a \neq 0\), a contradiction. Therefore, we have \(c + p \in C\) and hence
\[a(b + q + c + p)[x_1, x_2]^{2n} = 0 \in T.\]
This implies \(a(b + q + c + p) = 0\).

Lemma 2.2. \(c + p, q \in C\) with \(a(b + c + p + q) = 0\), unless \(R\) satisfies \(s_4\).

Proof. By hypothesis, \(R\) satisfies GPI
\[(3) \quad f(x_1, x_2) = a(b[x_1, x_2]^{2n} + [x_1, x_2]^n(c + p)[x_1, x_2]^n + [x_1, x_2]^{2n}q).\]

If \(R\) does not satisfy any nontrivial GPI, by Lemma 2.1, we obtain \(c, p, q \in C\) with \(a(b + c + p + q) = 0\) which gives the conclusion. So, we assume that \(R\) satisfies a nontrivial GPI. Since \(R\) and \(U\) satisfy the same generalized polynomial identities (see [5]), \(U\) satisfies \(f(x_1, x_2)\). In case \(C\) is infinite, we have \(f(x_1, x_2) = 0\) for all \(x_1, x_2 \in U \otimes_C \overline{C}\), where \(\overline{C}\) is the algebraic closure of \(C\). Moreover, both \(U\) and \(U \otimes_C \overline{C}\) are prime and centrally closed algebras [9]. Hence, replacing \(R\) by \(U\) or \(U \otimes_C \overline{C}\) according to \(C\) finite or infinite, without loss of generality we may assume that \(C = Z(R)\) and \(R\) is \(C\)-algebra centrally closed. By Martindale’s theorem [19], \(R\) is then a primitive ring having nonzero socle \(soc(R)\) with \(C\) as the associated division ring. Hence, by Jacobson’s theorem [10, p.75], \(R\) is isomorphic to a dense ring of linear transformations of a vector space \(V\) over \(C\).

If \(\dim_C V = 2\), then \(R \cong M_2(C)\), that is, \(R\) satisfies \(s_4\), a contradiction. So, let \(\dim_C V \geq 3\).

We show that for any \(v \in V\), \(v\) and \(qv\) are linearly \(C\)-dependent. Suppose that \(v\) and \(qv\) are linearly independent for some \(v \in V\). Since \(\dim_C V \geq 3\), there exists \(u \in V\) such that \(v, qv, u\) are linearly \(C\)-independent set of vectors. By density, there exists \(x_1, x_2 \in R\) such that
\[x_1v = v, \quad x_1qv = 0, \quad x_1u = qv; \quad x_2v = 0, \quad x_2qv = u, \quad x_2u = 0.\]
Then \(0 = a(b[x_1, x_2]^{2n} + [x_1, x_2]^n(c + p)[x_1, x_2]^n + [x_1, x_2]^{2n}q)v = aqv.\)
This implies that if for some \(v \in V\), \(aqv \neq 0\), then by contradiction, \(v\) and \(qv\) are linearly \(C\)-dependent.
Now choose $v \in V$ such that v and qv are linearly C-independent. Then $aqv = 0$. Let us consider a subspace $W = \{\alpha v + \beta v q | \alpha, \beta \in C\}$ of V. Let $aq \neq 0$. Then, there exists $w \in V$ such that $aqv \neq 0$. Then $aq(v - w) = aqw \neq 0$. Then by the above argument, w, qw are linearly C-dependent and $(v - w), q(v - w)$ too. Thus there exist $\alpha, \beta \in C$ such that $qw = \alpha w$ and $q(v - w) = \beta(v - w)$. Then $qv = \beta(v - w) + qw = \beta(v - w) + \alpha w$ i.e., $(\alpha - \beta)w = qv - \beta v \in W$. Now $\alpha = \beta$ implies that $qv = \beta v$, a contradiction. Hence $\alpha \neq \beta$ and so $w \in W$.

Next assume that $u \in V$ such that $aqv = 0$. Then $aq(w + u) = aqw \neq 0$. By above argument, $aq(w + u) \neq 0$ implies $w + u \in W$. Since $w \in W$, we have $u \in W$. Thus it is observed that for any $v \in V$, $aqv \neq 0$ implies $v \in W$ and $aqv = 0$ implies $v \in W$. This implies that $V = W$ i.e., dim$_C V = 2$, a contradiction.

Thus up to now we have proved that v and qv are linearly C-dependent for all $v \in V$, unless $aq = 0$. If $aq \neq 0$, by standard argument, it follows that $qv = \lambda v$ for all $v \in V$ and $\lambda \in C$ fixed. Then $(q - \lambda)V = 0$, implying $q = \lambda \in C$.

Now let $aq = 0$. Since dim$_C V \geq 3$, there exists $w \in V$ such that v, qv, w are linearly C-independent set of vectors. By density, there exists $x_1, x_2 \in R$ such that

$$x_1v = v, \ x_1qv = 0, \ x_1w = v + qv; \ x_2v = 0, \ x_2qv = w, \ x_2w = 0.$$

Then $0 = a(b[x_1, x_2]^{2n} + [x_1, x_2]^n(c + p)[x_1, x_2]^n + [x_1, x_2]^{2n}q)v = av$. Then by above argument, since $a \neq 0, q \in C$.

Therefore, we have proved that in any case $q \in C$. Hence our identity reduces to

$$a(b'[x_1, x_2]^{2n} + [x_1, x_2]^n c'[x_1, x_2]^n) = 0,$$

where $b' = b + q$ and $c' = c + p$.

Now we prove that v and $c'v$ are linearly C-dependent. If possible let v and $c'v$ be linearly independent for some $v \in V$. Then there exists $w \in V$ such that $v, c'v$ and w are linearly independent over C. By density there exist $x_1, x_2 \in R$ such that

$$x_1v = 0, \ x_1c'v = v, \ x_1w = 2c'v; \ x_2v = c'v, \ x_2c'v = w, \ x_2w = 0.$$

Then $0 = a(b'[x_1, x_2]^{2n} + [x_1, x_2]^nc'[x_1, x_2]^n)v = a(b' + c')v$. As above, this implies either $a(b' + c') = 0$ or $c' \in C$. Let $a(b' + c') = 0$. Then we have that R satisfies $0 = a[c', x_1, x_2]^n][x_1, x_2]^n$. By density there exist $x_1, x_2 \in R$ such that

$$x_1v = 0, \ x_1c'v = v, \ x_1w = c'v; \ x_2v = c'v, \ x_2c'v = w, \ x_2w = 0.$$

Thus $0 = a[c', x_1, x_2]^n][x_1, x_2]^nv = ac'v$. This implies either $ac' = 0$ or $c' \in C$. Let $ac' = 0$. Then we have that R satisfies $0 = a[x_1, x_2]^n]c'[x_1, x_2]^n$. Again by density there exist $x_1, x_2 \in R$ such that

$$x_1v = 0, \ x_1c'v = v, \ x_1w = v + c'v; \ x_2v = c'v, \ x_2c'v = w, \ x_2w = 0.$$
Thus \(0 = a[x_1, x_2]^n]c'[x_1, x_2]^nv = av\). Since \(a \neq 0\), this implies \(c' \in C\). Thus in any case, we have \(c' \in C\). Hence \(R\) satisfies \(0 = a(b' + c')[x_1, x_2]^{2n}\), which implies \(a(b' + c') = 0\).

Proof of Theorem 1.1. Let \(0 \neq a \in l_R(S)\). Then \(a(H(u^n)u^n + u^nG(u^n)) = 0\) for all \(u \in L\). If \(\text{char } (R) = 2\) and \(R\) satisfies \(s_4\), then we obtain our conclusion (1). So we assume that either \(\text{char } (R) \neq 2\) or \(R\) does not satisfy \(s_4\). Then by [2, Lemma 1] and [13, Theorem 13], since \(L\) is a noncentral Lie ideal of \(R\), there exists a nonzero ideal \(I\) of \(R\) such that \([I, I] \subseteq L\). Hence, by our hypothesis, we have

\[
a(H([x_1, x_2]^n]x_1, x_2]^n + [x_1, x_2]^nG([x_1, x_2]^n]) = 0
\]

for all \(x_1, x_2 \in I\). Since \(I\), \(R\) and \(U\) satisfy the same generalized polynomial identities (see [5]) as well as the same differential identities (see [16]), they also satisfy the same generalized differential identities. Hence, by [15], \(U\) satisfies

\[
a(H([x_1, x_2]^n]x_1, x_2]^n + [x_1, x_2]^nG([x_1, x_2]^n)) = 0
\]

for all \(x_1, x_2 \in U\), where \(H(x) = bx + d(x)\) and \(G(x) = px + \delta(x)\), for some \(b, p \in U\) and derivations \(d\) and \(\delta\) of \(U\), that is, \(U\) satisfies

\[
a(b[x_1, x_2]^{2n} + d([x_1, x_2]^n])x_1, x_2]^n + [x_1, x_2]^n p[x_1, x_2]^n
\]

\[+ [x_1, x_2]^n \delta([x_1, x_2]^n)) = 0.\]

Now we divide the proof into two cases:

Case I. Let \(d(x) = [c, x]\) for all \(x \in U\) and \(\delta(x) = [q, x]\) for all \(x \in U\) i.e., \(d\) and \(\delta\) be inner derivations of \(U\). Then from (4), we obtain that \(U\) satisfies

\[
(5)\quad a((b + c)[x_1, x_2]^{2n} + [x_1, x_2]^n(p - c + q)[x_1, x_2]^n - [x_1, x_2]^{2n}q) = 0.
\]

By Lemma 2.2, when \(R\) does not satisfy \(s_4\), we have \(q, p - c + q \in C\) with \(a(b + p) = 0\). This implies \(p - c \in C\). Hence \(H(x) = bx + [c, x]\) = \(bx + [p, x] = b'x - xp\), \(G(x) = px\) for all \(x \in U\) and so for all \(x \in R\) with \(ab' = 0\), where \(b' = b + p\).

Moreover, when \(R\) satisfies \(s_4\) (in this case by assumption \(\text{char } (R) \neq 2\)), then \(R \subseteq M_2(F)\) and, \(R\) and \(M_2(F)\) satisfy the same GPI, where \(M_2(F)\) is a matrix ring over a field \(F\). Hence \(M_2(F)\) satisfies \(a((b + c)[x_1, x_2]^{2n} + [x_1, x_2]^n(p - c + q)[x_1, x_2]^n - [x_1, x_2]^{2n}q) = 0\). Since \([x, y]^2 \in Z(M_2(F))\) for all \(x, y \in M_2(F)\), \(M_2(F)\) satisfies

\[
(6)\quad a((b + c - q)[x_1, x_2]^{2n} + [x_1, x_2]^n(p - c + q)[x_1, x_2]^n) = 0.
\]

If \(n\) is even, then by choosing \(x_1 = e_{12}\), \(x_2 = e_{21}\), we have \(0 = a(b + p)\).

If \(n\) is odd, then \(M_2(F)\) satisfies \(a((b + c - q)[x_1, x_2] + [x_1, x_2]^n(p - c + q)) [x_1, x_2]^{2n-1} = 0\). By Lemma 2.7 in [7], we conclude that \(p - c + q \in Z(R)\) and \(a(b + p) = 0\).
Thus when R satisfies s_4, one of the following holds:

(i) n is even and $a(b + p) = 0$. In this case, $H(x) = bx + [c, x]$ and $G(x) = px + [q, x]$ for all $x \in R$, with $a(b + p) = 0$. This is our conclusion (2).

(ii) n is odd and $p - c + q \in C$ and $a(b + p) = 0$. Hence $H(x) = bx + [c, x]$ and $G(x) = px + [q, x] = px - [p - c, x] = xp + [c, x]$ for all $x \in R$, with $a(b + p) = 0$. This is our conclusion (3).

Case II. Next assume that d and δ are not both inner derivations of U, but they are C-dependent modulo inner derivations of U. Suppose $d = \lambda \delta + adc$, that is, $d(x) = \lambda \delta(x) + [c, x]$ for all $x \in U$, where $\lambda \in C$, $c \in U$. Then d can not be inner derivation of U. From (4), we have that U satisfies

$$a \left(b[x_1, x_2]^{2n} + \lambda \delta([x_1, x_2]^n)[x_1, x_2]^n + [c, [x_1, x_2]^n][x_1, x_2]^n
+ [x_1, x_2]^n p[x_1, x_2]^n + [x_1, x_2]^n \delta([x_1, x_2]^n) \right) = 0. $$

This gives

$$a \left(b[x_1, x_2]^{2n} + \lambda \sum_{i=0}^{n-1} [x_1, x_2]^i \delta([x_1, x_2]^i)[x_1, x_2]^{n-i}[x_1, x_2]^n
+ [x_1, x_2]^n p[x_1, x_2]^n + [x_1, x_2]^n \sum_{i=0}^{n-1} [x_1, x_2]^i \delta([x_1, x_2]^i)[x_1, x_2]^{n-i} \right) = 0. $$

Then by Kharchenko’s theorem [11], we have that U satisfies

$$a \left(b[x_1, x_2]^{2n} + \lambda \sum_{i=0}^{n-1} [x_1, x_2]^i ([y_1, x_2] + [x_1, y_2])[x_1, x_2]^{n-i}[x_1, x_2]^n
+ [x_1, x_2]^n p[x_1, x_2]^n
+ [x_1, x_2]^n \sum_{i=0}^{n-1} [x_1, x_2]^i ([y_1, x_2] + [x_1, y_2])[x_1, x_2]^{n-i} \right) = 0. $$

In particular U satisfies blended component

$$a \left(b[x_1, x_2]^{2n} + [c, [x_1, x_2]^n][x_1, x_2]^n + [x_1, x_2]^n p[x_1, x_2]^n \right) = 0$$

and

$$a \left(\lambda \sum_{i=0}^{n-1} [x_1, x_2]^i ([y_1, x_2] + [x_1, y_2])[x_1, x_2]^{n-i}[x_1, x_2]^n
+ [x_1, x_2]^n \sum_{i=0}^{n-1} [x_1, x_2]^i ([y_1, x_2] + [x_1, y_2])[x_1, x_2]^{n-i} \right) = 0. $$
For \(y_1 = [q, x_1] \) and \(y_2 = [q, x_2] \), where \(q \notin C \) we have that \(U \) satisfies
\[
(10) \quad a(\lambda q, [x_1, x_2]^n)[x_1, x_2]^n + [x_1, x_2]^n[q, [x_1, x_2]^n]) = 0.
\]

By Lemma 2.2, if \(R \) does not satisfy \(s_4 \), then \(q \in C \), a contradiction. Hence we conclude that \(R \) satisfies \(s_4 \). Now the relations (8) and (10) are similar to the relation (5). Thus by same argument as given in Case I, when \(R \) satisfies \(s_4 \) (in this case \(\text{char}(R) \) must be not equal to 2), one of the following holds:

(i) Let \(n \) be even. Then by (8), \(a(b + p) = 0 \). Thus \(H(x) = bx + d(x) \) and \(G(x) = px + \delta(x) \) for all \(x \in R \), with \(a(b + p) = 0 \). This is our conclusion (2).

(ii) Let \(n \) be odd. Then by (8), \(p - c \in C \) and \(a(b + p) = 0 \). Again by (10), \(q - \lambda q = q(1 - \lambda) \in C \). Since \(q \notin C \), we have \(\lambda = 1 \). Then replacing \(y_1 = x_1 \) and \(y_2 = 0 \), (9) gives \(na(\lambda + 1)[x_1, x_2]^{2n} = 0 \), implying \(2na = 0 \). Since \(\text{char}(R) \neq 2 \), \(na = 0 \). Hence \(H(x) = bx + \lambda \delta(x) + [c, x] = bx + \delta(x) + [c, x] \) and \(G(x) = px + \delta(x) = (p-c)x + cx + \delta(x) = xp + \delta(x) + [c, x] \) for all \(x \in R \). This is our conclusion (3).

The situation when \(\delta = \lambda d + ad_c \) is similar.

Next assume that \(d \) and \(\delta \) are \(C \)-independent modulo inner derivations of \(U \).

Since neither \(d \) nor \(\delta \) is inner, by Kharchenko’s Theorem [11], we have from (4) that \(U \) satisfies
\[
(11) \quad a\left(b[x_1, x_2]^{2n} + \sum_{i=0}^{n-1} [x_1, x_2]^i([u_1, x_2] + [x_1, u_2])[x_1, x_2]^{n-1-i}[x_1, x_2]^n + [x_1, x_2]^n p[x_1, x_2]^n + [x_1, x_2]^n \sum_{i=0}^{n-1} [x_1, x_2]^i([v_1, x_2] + [x_1, v_2])[x_1, x_2]^{n-1-i}\right) = 0.
\]

Then \(U \) satisfies blended component
\[
(12) \quad a\left(b[x_1, x_2]^{2n} + [x_1, x_2]^n p[x_1, x_2]^n\right) = 0
\]
and
\[
(13) \quad a\left([x_1, x_2]^n \sum_{i=0}^{n-1} [x_1, x_2]^i([v_1, x_2] + [x_1, v_2])[x_1, x_2]^{n-1-i}\right) = 0.
\]
Replacing \(v_1 \) with \([q, x_1] \) and \(v_2 \) with \([q, x_2] \) for some \(q \notin C \) in (13), we obtain that \(U \) satisfies
\[
(14) \quad a([x_1, x_2]^n[q, [x_1, x_2]^n]) = 0.
\]

By Lemma 2.2, we have \(q \in C \), a contradiction, unless \(R \) satisfies \(s_4 \). So we consider the case when \(R \) satisfies \(s_4 \). In this case by same argument of Case I, (12) and (14) together implies that \(n \) is even and \(a(b + p) = 0 \). This gives our conclusion (2). Hence the theorem is proved. \(\blacksquare \)
Corollary 2.3. Let R be a prime ring with its Utumi ring of quotients U, $C = Z(U)$ be the extended centroid of R, H and G two generalized derivations of R and L a noncentral Lie ideal of R. Suppose that there exists $0 \neq a \in R$ such that $a(H(u^2)u^2 + u^2G(u^2)) = 0$ for all $u \in L$. Then either there exist $b', p \in U$ such that $H(x) = b'x - xp$ and $G(x) = px$ for all $x \in R$ with $ab' = 0$ or R satisfies s_4. Moreover, if R satisfies s_4, then one of the following holds:

1. char $(R) = 2$;
2. there exist $b, p \in U$ and derivations d, δ of R such that $H(x) = bx + d(x)$ and $G(x) = px + \delta(x)$ for all $x \in R$, with $a(b + p) = 0$.

Proof of Theorem 1.2. Let $0 \neq a \in l_R(S)$. Then $a(H(x^n)x^n + x^nG(x^n)) = 0$ for all $x \in I$. By Theorem 1.1, we have only to consider the case when R satisfies s_4. In this case R is a PI-ring, and so there exists a field K such that $R \subseteq M_2(K)$ and, R and $M_2(K)$ satisfy the same GPI. First we assume that H and G are inner generalized derivations of R, that is, $H(x) = bx + xc$ for all $x \in R$ and $G(x) = px + xq$ for all $x \in R$, for some $b, c, p, q \in R$. Since $M_2(F)$ is a simple ring, by our hypothesis, $M_2(F)$ satisfies

$$a(bx^{2n} + x^n(c + p)x^n + x^{2n}q) = 0.$$

Moreover, R is a dense ring of K-linear transformations over a vector space V. Let $aq \neq 0$. Assume there exists $v \neq 0$, such that $\{v, qv\}$ is linear K-independent. By the density of R, there exists $r \in R$ such that $rv = 0; \ r(qv) = qv$.

Hence $0 = a(br^{2n} + r^n(c + p)r^n + r^{2n}q)v = aqv$.

Of course for any $w \in V$ such that $\{w, v\}$ are linearly K-dependent implies $aqw = 0$. Since $aq \neq 0$, there exists $w \in V$ such that $aqw \neq 0$. Then $\{w, v\}$ must be linearly K-independent. By the above argument it follows that w and qw are linearly K-dependent, as are $\{w + v, q(w + v)\}$ and $\{w - v, q(w - v)\}$. Therefore there exist $\alpha_w, \alpha_{w+v}, \alpha_{w-v} \in K$ such that

$$qw = \alpha_ww, \quad q(w + v) = \alpha_{w+v}(w + v), \quad q(w - v) = \alpha_{w-v}(w - v).$$

In other words we have

$$\alpha_ww + qv = \alpha_{w+v}w + \alpha_{w+v}v$$

and

$$\alpha_ww - qv = \alpha_{w-v}w - \alpha_{w-v}v.$$
By comparing (16) with (17) we get both

\[(2\alpha_w - \alpha_{w+v} - \alpha_{w-v})w + (\alpha_{w-v} - \alpha_{w+v})v = 0\]

and

\[2qv = (\alpha_{w+v} - \alpha_{w-v})w + (\alpha_{w+v} + \alpha_{w-v})v.\]

By (18) and since \{w, v\} is \(K\)-independent and \char(K) \(\neq 2\), we have \(\alpha_w = \alpha_{w+v} = \alpha_{w-v}\). Thus by (19) it follows \(2qv = 2\alpha_wv\). Since \{qv, v\} is \(K\)-independent, the conclusion \(\alpha_w = \alpha_{w+v} = 0\) follows, that is \(qw = 0\) and \(q(w+v) = 0\), which implies the contradiction \(qv = 0\).

Hence we conclude that for any \(v \in V\), \{\(v, qv\}\} is linearly \(K\)-dependent. Thus there exists a suitable \(\alpha_v \in K\) such that \(qv = \alpha_vv\), and standard argument shows that there is \(\alpha \in K\) such that \(qv = \alpha v\) for all \(v \in V\). Now let \(r \in R, v \in V\). Since \(qv = \alpha v\),

\[(q, r)v = (qr)v - (rq)v = q(rv) - r(qv) = \alpha(rv) - r(\alpha v) = 0.\]

Thus \([q, r]v = 0\) for all \(v \in V\) i.e., \([q, r]V = 0\). Since \([q, r]\) acts faithfully as a linear transformation on the vector space \(V\), \([q, r] = 0\) for all \(r \in R\). Therefore, \(q \in C\).

Thus up to now, we have proved that either \(aq = 0\) or \(q \in C\).

Let \(aq = 0\). In this case, assume that there exists \(v \neq 0\), such that \(\{v, qv\}\) is linear \(K\)-independent. By the density of \(R\), there exists \(r \in R\) such that

\(rv = 0; \quad r(qv) = v + qv.\)

Hence

\(0 = a(br^{2n} + r^n(c + p)r^n + r^{2n}q)v = av.\)

Thus by the same argument as above, this implies either \(a = 0\) or \(q \in C\). Since \(a \neq 0\), \(q \in C\).

Thus in any case we conclude that \(q \in C\).

Then (15) reduces to

\[a((b + q)x^n + x^n(c + p))x^n = 0.\]

Let there exists \(v \neq 0\), such that \(\{v, (c + p)v\}\) is linear \(K\)-independent. By the density of \(R\), there exists \(r \in R\) such that

\(rv = 0; \quad r((c + p)v) = (c + p)v.\)

Hence

\(0 = a((b + q)r^n + r^n(c + p)r^n)v = a(c + p)v.\)
Then again by same argument, \(c + p \in C \). Then (21) reduces to
\[
\begin{align*}
(22) \\
a(b + c + p + q)x^{2n} &= 0
\end{align*}
\]
for all \(x \in R \). This implies \(a(b + c + p + q) = 0 \), where \(q, c + p \in C \). Hence
\[
H(x) = bx + xc = bx + x(c + p) - xp = (b + c + p)x - xp = (b + c + p + q)x - x(p + q)
\]
for all \(x \in R \) and \(G(x) = (p + q)x \) for all \(x \in R \). This gives our conclusion.

Next assume that \(H(x) = bx + d(x) \) and \(G(x) = px + \delta(x) \), where \(d, \delta \) are not both inner derivations of \(R \). In this case by our hypothesis, \(R \) satisfies
\[
(23) \\
a(bx^{2n} + d(x^n)x^n + x^npx^n + x^n\delta(x^n)) = 0.
\]
If \(d \) and \(\delta \) are \(C \)-dependent modulo inner derivations of \(R \), then \(d = \lambda \delta + ad_c \) for some \(\lambda \in C \). In this case (23) reduces to
\[
(24) \\
a(bx^{2n} + \lambda \delta(x^n)x^n + [c, x^n]x^n + x^npx^n + x^n\delta(x^n)) = 0.
\]

By Kharchenko’s Theorem [11], \(R \) satisfies
\[
(25) \\
a\left(bx^{2n} + \lambda \sum_i x^iyx^{n-i}x^n + [c, x^n]x^n + x^npx^n + x^n\sum_i x^iyx^{n-i-1}\right) = 0.
\]
Replacing \(y \) with \([p, x]\) for some \(p \notin C \), we have from (25) that
\[
(26) \\
a\left(bx^{2n} + \lambda[p, x^n]x^n + [c, x^n]x^n + x^npx^n + x^n[p, x^n]\right) = 0.
\]
Then this implies as above (for inner derivation case) that \(p \in C \), a contradiction.

The case when \(\delta = \lambda d + ad_c \) for some \(\lambda \in C \), is similar.

Next assume that \(d \) and \(\delta \) are \(C \)-independent modulo inner derivations of \(R \). Then by Kharchenko’s Theorem [11], \(R \) satisfies
\[
(27) \\
a\left(bx^{2n} + \sum_i x^iyx^{n-i}x^n + x^npx^n + x^n\sum_i x^izx^{n-i-1}\right) = 0.
\]
Replacing \(y \) with \([p, x]\) and \(z \) with \([p', x]\) for some \(p, p' \notin C \), we have
\[
(28) \\
a\left(bx^{2n} + [p, x^n]x^n + x^npx^n + x^n[p', x^n]\right) = 0.
\]
Then by same argument as above, it yields that \(p' \in C \), a contradiction.

In particular, when \(H \) and \(G \) are two derivations of \(R \), we have the following:

Corollary 2.4. Let \(R \) be a noncommutative prime ring with char \((R) \neq 2 \) and \(C \) the extended centroid of \(R \). Let \(d \) and \(\delta \) be two derivations of \(R \). If there exists \(0 \neq a \in R \) such that \(a(d(x^n)x^n + x^n\delta(x^n)) = 0 \) for all \(x \in R \), where \(n \geq 1 \) is a fixed integer, then \(d = \delta = 0 \).
3. Results on semiprime rings

In this section we extend the Corollary 2.4 to semiprime rings. Let R be a semiprime ring and U the left Utumi ring of quotients of R. Then $C = Z(U)$, center of U, is called extended centroid of R. It is well known that C is a Von Neumann regular ring. It is known that C is a field if and only if R is a prime ring. The set of all idempotents of C is denoted by E. The elements of E are called central idempotents.

We know that any derivation of R can be uniquely extended to a derivation of U (see [16, Lemma 2]).

By using the standard theory of orthogonal completions for semiprime rings, we prove the following:

Theorem 3.1. Let R be a noncommutative 2-torsion free semiprime ring, U the left Utumi quotient ring of R and d, δ be two derivations of R. If there exists $0 \neq a \in R$ such that $a(d(x^n)x^n + x^n\delta(x^n)) = 0$ for all $x \in R$, where $n \geq 1$ is a fixed integer, then there exist orthogonal central idempotents $e_1, e_2, e_3 \in U$ with $e_1 + e_2 + e_3 = 1$ such that $(d + \delta)(e_1U) = 0$, $e_2a = 0$, and e_3U is commutative.

Proof. Since any derivation d can be uniquely extended to a derivation in U, and U and R satisfy the same differential identities (see [16]), $a(d(x^n)x^n + x^n\delta(x^n)) = 0$ for all $x \in U$.

Let B be the complete Boolean algebra of E. We choose a maximal ideal P of B such that U/P is 2-torsion free. Then PU is a prime ideal of U, which is d-invariant. Denote $\overline{U} = U/PU$ and $\overline{d}, \overline{\delta}$ be the canonical pair of derivations on \overline{U} induced by d and δ respectively. Then by hypothesis, $\overline{a}(\overline{d}(\overline{x^n})\overline{x^n} + \overline{x^n}\overline{\delta(x^n)}) = 0$ for all $x \in \overline{U}$. Since \overline{U} is a prime ring, by Corollary 2.4, either $\overline{d} = \overline{\delta} = 0$ or $[\overline{U}, \overline{U}] = 0$ or $\overline{a} = 0$. In any case, we have $ad(U)[U, U] \subseteq PU$ and $ad(U)[U, U] \subseteq PU$ for all P, that is, $aD(U)[U, U] \subseteq PU$ for all P, where $D = d + \delta$. Since $\bigcap \{ PU : P \text{ is any maximal ideal in } B \}$ is the set of all central idempotents $e_1, e_2, e_3 \in U$ with $e_1 + e_2 + e_3 = 1$ such that $D(e_1U) = 0$, $e_2a = 0$, and e_3U is commutative.

By using the theory of orthogonal completion for semiprime rings (see, [1, Chapter 3]), it follows that there exist orthogonal central idempotents $e_1, e_2, e_3 \in U$ with $e_1 + e_2 + e_3 = 1$ such that $D(e_1U) = 0$, $e_2a = 0$, and e_3U is commutative.

References

doi:10.1016/0021-8693(69)90029-5

doi:10.1090/S0002-9939-1957-0095863-0

doi:10.3336/gm.40.2.01

Received 27 October 2016
Revised 1 June 2017
Accepted 6 July 2017