§ sciendo

The Social Furniture of Virtual Worlds

Peter Ludlow
University of Campinas (UNICAMP)

DOI: 10.2478/disp-2019-0009 BIBLID [0873-626X (2019) 55; pp.345-369]

Abstract

David Chalmers argues that virtual objects exist in the form of data
structures that have causal powers. I argue that there is a large class
of virtual objects that are social objects and that do not depend upon
data structures for their existence. I also argue that data structures
are themselves fundamentally social objects. Thus, virtual objects are
fundamentally social objects.

Keywords
Virtual worlds, computation, data structures, social objects, virtual
objects.

A common view about virtual worlds (or “synthetic worlds” as Ted
Castronova (2005) prefers to call them) is that what transpires in
them is either “not real” or “fake” or a “mere simulation” of things
that take place on our “real world.” And to be sure, if a Second Life
friend invites you over to an in-world sushi dinner, there will be no
rice or fish entering your physical body. And the virtual sushi may be
presented on a virtual table, but you needn’t worry about bruising
your shin on the table.

On the other hand, while it might not be real edible sushi and a
real shin-bruising wooden table, it might be something real for all
that. Maybe there is a different way in which these things are real.
They aren’t real sushi on a real table but they are a real something else.

This is what David Chalmers advocates in his (2017) paper “The
Virtual and the Real.” On his view, the virtual table and sushi are real
“data structures.” They are “digital objects” existing on the Second
Life servers and the users’ client software. The table can’t bruise your
shin but it has other causal powers. It can disrupt the movement of
your avatar, for example, and it can serve as a resting place for your

Disputatio, Vol. XI, No. 55, December 2019

© 2019 Ludlow. Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License

346 Peter Ludlow

virtual sushi in virtual space. It can determine what is rendered for
you on your graphical user interface. The data structure affects the
computations performed by the Second Life servers and on your desk-
top client. It is thus definitely in the mix of real world happenings.

In a little bit, I'm going to ask whether “data structures” is the
right way to think about these digital objects, so let’s find a neu-
tral way of talking that captures the idea that digital objects cor-
respond to semi-stable states of a computational system. Let’s call
them “computational structures” for now.

It is worth noting that the computational structures of digi-
tal objects are important. The computational structures in robots
determine what they will do, and the computational structures in
the onboard computer in your car control things ranging from your
mileage to warnings about nearby objects. If computers have causal
powers (and who can deny that they do) then surely computational
structures must have causal powers as well.

Chalmers’ story concerns virtual physical objects like tables and
plates of sushi, but there are other kinds of objects one might con-
sider as well—for example, social objects like clubs and concerts and
corporations. Second Life has these too, but the funny thing is that
they don’t need computational structures to perpetuate their exis-
tence. A Second Life corporation or club can continue to exist long
after Second Life shuts down its last server.

I'm going to ask whether computational structures are all that
ontologically stable. I'll argue that, contrary to commonly held as-
sumptions, there is no independent fact of the matter grounding the
data structures (and computational structures) that a computer has.
What existence data structures have is parasitic upon the objects
they represent, whether those objects are real world physical objects
or virtual world social objects. The virtual objects of Second Life,
I contend, are more fundamental than the computational structures
on the Second Life servers and our desktop clients. This line of argu-
mentation is going to take us into the teeth of a thesis about the na-
ture of computation, offered by Chalmers (1996) that we shall have
to address.

My thought is that social objects provide a deeper insight into
virtual world ontology than the virtual physical objects that inter-
est Chalmers. Indeed, I am going to suggest that virtual “physical”

The Social Furniture of Virtual Worlds 347

objects like tables and plates of sushi just are social objects. They are
part of the social furniture of virtual worlds.

1 Social objects in virtual worlds

One of the first things I encountered in The Sims Online, back in
2003, was that users had created a number of in-world institutions,
practices, and social artifacts (construed broadly enough to include
contracts, and of course currency).

Here is an example of what [mean by an in-world social institu-
tion. A number of users in the Sims Online created criminal gangs,
modeled on Mafia organizations for the most part, and used those
gangs as instruments for the griefing (and in some cases extortion)
of other players in the game. These organizations came complete
with organizational charts, featuring capos and captains and various
other forms of gangland titles. Some groups emerged as responses
to those virtual criminal gangs, including one that called itself The
Sims Shadow Government, or SSG.

Like most virtual gangs, the SSG had a robust organizational struc-
ture and it also had a robust communications network, and not a few
spies scattered throughout the Alphaville shard of The Sims Online.

The SSG was clearly a virtual organization. It didn’t have physical
offices or real guns and they never slapped someone in their physical
face, but I don’t see that they weren’t for all that quite real and quite
capable of making your day better or worse than it started.

The SSG was interesting in a lot of ways, but one of the ways in
which it was most interesting is that it was portable. That is, the or-
ganization was capable of moving to another platform entirely, and
as the members grew tired of The Sims Online, they moved their
operations to a multiuser game called Star Wars Galaxies.

As far as I know it never happened, but it would have been en-
tirely possible for members of the SSG to begin meeting in physical
space and take up physical arms and engage in similar vigilante-style
operations in the so-called real life (Let’s call it RL). What all this
means is that whatever kind of object the SSG is, it is portable be-
tween worlds, and it can even exist in RL.

Virtual world currency is another social object that is portable.
As carly as The Sims Online there were currency exchanges that

348 Peter Ludlow

would offer rates of exchange between the currency of The Sims On-
line—Simoleans—and US Dollars or other game currencies. This
practice continues in virtual worlds like Second Life, where there are
currency exchanges that list the daily rate of exchange. But there are
also markets in which you can buy non-virtual goods with your game
currency (in Second Life, called Linden Dollars). So, for example,
you can buy tee shirts and coffee mugs with Linden Dollars. Linden
dollars have all the features that money is supposed to have: They are
a store of value, a measure of value, and a medium of exchange.

How did that happen? How did something that began, suppos-
edly, as a work of fiction in a virtual world become something that
clearly has economic value and can be used to purchase physical
items in online markets? The answer, of course, is that the currency
has value because of the virtual goods it can be used to purchase, and
that value is not restricted to the realm of the virtual. Value is value,
and the price point of virtual goods is established by their value rela-
tive to other, nonvirtual, goods.

The inventory of portable social objects is not limited to money
and vigilante organizations. There are virtual corporations and con-
tracts and works of art and, as Chalmers (2017) notes, there are also
mixed media events—concerts for example, which might take place
partly in Second Life and partly at a concert stage in RW. Where is the
concert? Well, the best first guess would be that it is in both places.

This leads us to consider the trans-world existence of social ob-
jects. They really are not dependent on a particular material sub-
strate for the most part. Groups and corporations and currencies can
exist in New York City just as easily as they can in Second life.

The first lesson of this should be that whatever social objects are,
and whatever social properties are, they are not things that depend
on their data structures for their existence and they cannot be identi-
fied with data structures (or, to use my more neutral way of talking)
computational structures. To be sure computational structures can
play arole in the way we confront those objects when we are in a vir-
tual world. But [am inclined to say that they are serving to represent
those virtual objects, or at a minimum they assist in the rendering of
representations.

I think that Chalmers might agree with much of what I have said
so far in this section—as long as it is restricted to social objects.

The Social Furniture of Virtual Worlds 349

That is, I think that he thinks social objects are not identified with
data structures in the same way that virtual chairs and virtual sushi
are. However, this is the point where we are going to part company,
for I believe that understanding social objects in virtual worlds is
key to our understanding (virtual) physical objects in virtual worlds.
What [aim to suggest is that those objects too—the virtual tables
and virtual sushi—have an existence that is quite independent of
data structures/computational structures. The fact that they are not
portable should not concern us.

To get to this conclusion we are first going to have to do some
heavy lifting on the issue of data structures and computational struc-
tures, for I am concerned that these things, whatever they are, can-
not do the job that Chalmers wishes they could do. Before we get to
that, however, I should say some things about virtual physical objects
like tables and plates of sushi, because those objects are weird.

2 Virtual “physical” objects

So, what can we say about virtual tables and virtual sushi? To make
this discussion productive, let’s take a very simple example of a vir-
tual physical object. In Second Life, for example, you can create a
simple object or “prim” (as in “primitive object”) by rezzing it in-
world. There are certain ways you can do this, but one way is simply
to point to a certain location in-world and use a pull-down menu to
create your object. When you do this, the menu will offer options for
your primitive object; you will have the option of choosing the ob-
ject’s primitive shape, for example, and you can chose the “material”
constitution of the object (rubber or stone, for example). Depending
on the material you choose, the object will behave differently within
the virtual physics of the world. If you make your object from rub-
ber, for example, it will bounce around more if you drop it. And
that is the other thing to consider. You don’t necessarily have to set
the object to “physical”. You can just rez it in space and it won’t fall
to the ground until you set it to physical. You might also choose to
make your object transparent or you might even make it physically
transparent so that people can walk through it.

In Second Life each created object receives a unique identifying
number, and herein lies one oddity about virtual objects; they have

350 Peter Ludlow

virtually no properties essentially. You can create an object that is
square and has the properties of wood and is set to physical so that
it falls to the virtual terra, but you can edit that object so that it is
made of glass, is non-physical so that if floats in space, and is a ball
or an egg shape. If we want to talk about the causal powers of virtual
objects then, we need to talk about their properties at a particular
time, or, if you prefer, under a particular edit.

Unlike the causal powers of RL objects, in worlds like Second
Life those properties appear to be a function of numerical values that
are assigned to the object at a given time. So, for example, the reason
the rubber block bounces higher than the stone block has nothing to
do with material elasticity and everything to do with numerical val-
ues of bounciness that are assigned to the different blocks.

Some properties of the object, like the sound they make when
they bounce (glass versus rubber, for example) are a function of
scripts that are inserted into the objects to make the relevant sounds.
So, for example, if you wanted to you could insert a script into a
rubber block that would cause it to make a clinking sound like glass
when it bounced.

Most of what these objects do is a function of the scripts that are
placed into them. So, for example, a spinning ball will have a spin-
ning script associated with it. The complexity of the actions that the
objects can engage in thus are only limited by the Second Life script-
ing language (LSL), which is fairly robust (it is based on C and Java)
and can encode certain basic Al behaviors. In this way, at least, it
makes sense to think of the virtual objects as having causal powers in
the same sense that computer programs do. On the other hand, one
should keep in mind that the script isn’t actually in the object—it
is just called by the object, so there is a question here as to whether
whatever the scripting language does counts as something the object
is doing or as something that the object is being made to do by a
separate program identified with the object.

If you want to identify the scripts for the object as among its caus-
al powers, then things can get weird in other ways. For example,
many virtual world objects control the behavior of avatars (as op-
posed to RL where we tend to control the objects). So, for example,
in RL, if you go to the stove to cook something, you choose to take
out a pan and put it on the stove and put food in the pan. The stove

The Social Furniture of Virtual Worlds 351

isn’t telling you what to do. In the Sims (in all versions—not just
the Online version), the stove actually tells your avatar what to do.
That is to say, rather than associate cooking and other behaviors with
the avatar, the Sims people (Maxis/Electronic Arts) associated that
information with the object and the object takes control of the avatar
and instructs it go through its cooking and other motions.

The same thing can be true in Second Life. Objects can animate
avatars. I suppose the most notorious examples of this would be the
sex beds that Stroker Serpentine sold in Second Life—virtual beds
that would put two avatars through simulated sex acts, sometimes
offering a pulldown menu with options drawn from the Kama Sutra.

I draw on this example to illustrate the kinds of questions that
might arise once we start thinking about the causal powers of virtual
objects. But of course, Chalmers (2017) did not say that the virtual
objects themselves had causal powers, he said that data structures
did, but this raises all sorts of questions about what data structures
are in general and what they might be in the case of virtual objects.

3 The trouble with data structures

In the introduction, I suggested that we back away from talking
about data structures and that we talk about computational struc-
tures instead. There are several reasons for this. The first concern
I have is that philosophers and computer scientists use ‘data struc-
tures’ in different ways. With an author like Chalmers either use
could be in play.

For a computer scientist, a data structure is a way in which data —
or more accurately data values are stored, and how those values are
related by the computer program. So, for example, a data structure
might encode the numerical “name” of the object and the values of
the different features objects can have in Second Life. For example,
I might create an object in Second Life and assign it certain proper-
ties. The data structure encodes the object number, the properties
the object has at a given moment and some “hash function” or opaque
algorithm connecting the two. Typically, for a platform like Second
Life, the data structures are at least partially located on “asset serv-
ers” and this raises the question as to whether each asset server orga-
nizes the data in the same way. Data structures can be organized in

352 Peter Ludlow

different ways, including arrays, lists, etc.

We can think of virtual world objects in terms of data structures
in this way, but as we will see it is a little bit weird to think of these
data structures having causal powers—or at least the right kinds of
causal powers. Let’s begin by thinking about objects in Second Life.
If you create a virtual object in Second Life you might begin by “rez-
zing” a cube. You can then change the values of the object, includ-
ing its physical properties (rubber or concrete), its dimensions, its
surface texture, and whether it is going to be a physical object or not
(that is, whether it will obey gravity and whether it will serve as an
obstacle to other avatars). If you save that object, it will have a unique
object number and it will be stored on a Second Life asset server. It is
entirely natural to think of this information (and the computational
process linking the object number and its properties) as constituting
a data structure in Second Life.

Here is the first thing that is weird about Second Life objects,
understood as data structures. There is nothing in that data struc-
ture itself that tells us how the object is going to be seen to other
players. How the object is seen depends upon the “viewer” or “client
software” that is being used. That viewer or software will interpret
the data structure and render an image to the user.

Here is an example of how client software can change things up.
In the Sims Online, there was a stock set of avatar shapes and a stock
set of clothing. But someone wrote a mod to the client-side software,
which rendered very different looking avatars. For example, a turtle
neck sweater might be rendered as a goth-looking leather coat (there
is a picture of my avatar in such a coat on page 6 of Ludlow and Wal-
lace 2007). Of course, client-side software might be modded in any
number of ways, so that it is entirely unpredictable how the server
side data structures will be interpreted. Some mods in The Sims On-
line rendered naked avatars, for example. The data structures only
provide attributes with numerical values after all.

This is why I think there is something weird about assigning caus-
al powers to data structures, construed in the normal understanding
of data structures and causal powers. The data structures just encode
information, and how that information is acted on or rendered de-
pends on any number of factors, including the most unpredictable of
all—how humans choose to modify their client software.

The Social Furniture of Virtual Worlds 353

You might want to say that data structures, construed in this way,
only have defined causal powers in the context of a complete compu-
tational system, which would mean that the causal powers of the data
structure would depend upon some fusion of server-side and client-
side software, and of course this would entail that a single object
(identified with a unique object number) would have different causal
powers for different users at different times. Or perhaps even for the
same user. | used to keep two computers running The Sims Online,
one with modded software and one without, so that the same avatar
would be rendered in different ways on my two computers.

A related issue applies to the server-side data structures. As I not-
ed above, virtual worlds can have multiple asset servers, so that the
relevant data structure is distributed—or at least stored in multiple
places. But here is the thing: It is casy to imagine a case where dif-
ferent asset servers use completely different kinds of data structures
(for example an array on one server and a linked list on another)
and we rely on the viewer (the client-side software) to be able to
interpret both kinds of data structures. Now, when you layer the
possibility of client-side modding on top of that, we can envision a
case in which the same object could have completely different data
structures and be rendered in completely different ways at the same
time and the same virtual location.

I'm not saying one can’t make sense of this, but I think we now
need a better understanding of what causal powers in general are,
and certainly about what causal powers are for virtual world data
structures. I certainly feel some pull to say that they don’t have any
obvious causal powers—they are just lists or arrays of numerical
values. Something obviously has causal powers but data structures
aren’t the obvious candidates, especially when we start thinking in
terms of counterfactual dependencies and so forth.

There is another worry about data structures in this sense, which
is that they are often eliminable. For example, an optimizing com-
piler can take a high-level program (like C) and its data structures
and collapse them into a more efficient program that might dispense
with data structures altogether, or at least eliminate some of the data
structures and fold their information into the algorithm. Applied to
a virtual world, the idea would be that after objects are created the
server and client software could be compiled in a way that dispensed

354 Peter Ludlow

with the data structures. It would still deliver the same “objects” to
the screen however. And for our (philosophical) purposes we don’t
even need an optimizing compiler. To make our philosophical point
we only need a compiler that replaced the data structures with a
smaller set of data structures and a complex algorithm). It wouldn’t
matter to the philosophical point that the resulting algorithm was
less efficient.

Now, it is entirely possible that Chalmers meant something dif-
ferent by data structure—philosophers (myself certainly included)
often talk of data structures as being semi-stable local syntactic states
of a computational system. This is a pretty squishy idea, and it pretty
much needs to be squishy to work for objects in virtual worlds. The
notion of a “local state” would have to include a distributed state that
is inclusive of both the servers and the client-side computer. “Semi-
stable states” would have to be understood in a way that those states
survived the client software being turned on and off quite frequent-
ly. I don’t think this is impossible to do—the definition just needs
to be cleaned up. Just to distinguish this idea from the traditional
understanding of data structures, I'm going to speak in terms of com-
putational structures. The key difference from the computer scientist’s
notion of data structure is that a computational structure would in-
clude much more information about the architecture and states of
the processing system (understood to be a distributed processing sys-
tem that includes states of both server and client).

Could we understand virtual objects as computational structures
in this way, and would it make sense to say that such computational
structures have causal powers? Well, yes, but it would seem to entail
that we get a kind of fission of virtual objects. If the computational
structure supervenes on states of the server and the client, then we
seem to have different virtual objects for each mod. Maybe the vir-
tual object needs to be understood disjunctively? Or maybe there are
lots of computational objects and they don’t line up with our infor-
mal talk of a single table or a single plate of sushi.

Once everything is cleaned up, however, it all still rests on
an assumption—the assumption that there is a fact of the matter
about the computational states of the system in isolation. By that I
mean that Chalmers’ idea of digital objects rests on the idea that the
states of the computer, once causally fixed, are what they are quite

The Social Furniture of Virtual Worlds 355

independently of whatever is going on outside of the computer (or
server-client system, in our case). Here I am less sure that we have a
fundamentally coherent idea.

I tend towards being an externalist about computation—not in
the sense of Clark and Chalmers 1998; my idea is independent of
whether notebooks and smartphones are part of our minds. The idea
is rather that computational states depend upon environmental em-
bedding. On that line of thinking, something is a syntactic state of a
computer, or a computational structure, or the cornputational state
of the fusion of you and your iPhone, only by virtue of such states
representing something external to that system. The system-exter-
nal content is metaphysically prior. Computers can still represent
things that don’t exist, but they can’t represent things that don’t bot-
tom out in properties and things that do exist.

Note that we aren’t talking about vanilla externalism about con-
tent here. I'm not merely saying that what a computational state rep-
resents depends upon environmental embedding. I mean that whether
something is a syntactic state (or computational state) depends upon
environmental embedding.

Now, what I'm saying is controversial, because it dances around
the idea that there are no computational states in isolation, or as
some people have unhelpfully put it: Any physical system can instan-
tiate any finite state computer program. Chalmers (1996) has ad-
dressed this idea in the past, but sometimes I wonder if the advocates
of the view have put forward the best case for it. The most infamous
versions are no doubt Searle (1980, 1990), and Putnam (1988), but I
think that the stronger case comes from Kripke (1982) in his recon-
struction of Wittgenstein’s (1991) rule following argument. I'll get
to those arguments in a bit.

First, why would anyone think that any physical system can in-
stantiate any finite state automaton? I think the basic idea is simple
enough. A simple block of wood lying on a desk might be used to
perform computations. Suppose that the input consists of my pushing
the block with my finger and the output consists of the final resting
place of the block on my desk. Then the syntactic states of the ma-
chine (here taken as the system including the table and the block) su-
pervene on those inputs and outputs and the known surface friction
of known irregularities in the block and the table. Hypothetically,

356 Peter Ludlow

there could be creatures for whom making the appropriate finger
movements and “reading” the final resting positions of the rock on
the table would be simple (imagine someone that memorized the
markings on a slide rule—and their positions—and could “read” the
inputs and outputs of the blank slide rule). Perhaps less persuasively,
Searle has argued that even a wall can instantiate a program like the
“Wordstar” word processing program, which I'm not entirely sure is
still in use, so think of Word.

Chalmers (1996) argues that Searle goes too far here. Accord-
ing to Chalmers, what we should be interested in here is whether a
physical system instantiates a combinatorial state automaton, or CSA.
Such automata differ from finite state automata in that the inter-
nal states of a CSA have combinatorial structure. In particular, as
Chalmers puts it, its internal state is a vector [S', 7, ..., §"], where “the
ith component of the vector can take on a finite number of different
values, or substates. ... The substates correspond to symbols in those
squares or particular values for the cells. State-transition rules
are determined by specifying for each component of the state vec-
tor a function by which its new substrate depends on the old overall
state vector and input vector (it will frequently depend on only a few
“nearby” components of these vectors), and the same for each ele-
ment of the output vector.” (2017: 324).

So far this sounds right. The processes we are interested in in
cognitive science involve computational systems that have variable
(but discrete) substates. Those substates in turn, depending on their
values, can impact the computations in important ways. This then
leads to the question of what it would mean for a physical system to
implement a CSA, understood as above. Chalmers offers the following
proposal.

A physical system implements a given CSA if there is a decomposition
of its internal states into substates [s', s, ..., 5], and a mapping f from
these substates onto corresponding substates §' of the CSA, along with
similar mappings for inputs and outputs, such that: for every formal state
transition ([I',...,F],[S",...,S")—=([S™,...,S™],[0",...,01) of the CSA, if the
system is in internal state [s',..., s"] and receiving input [i',..., i"] such that
the physical states and inputs map to the formal states and inputs, this
causes it to enter an internal state and produce an output that map appro-
priately to the required formal state and output. (Chalmers 2017: 325)

The Social Furniture of Virtual Worlds 357

If we think about the implementation conditions of CSAs in this way
then Putnam-and-Searle-type arguments are certainly more difficult
to get up and running. For example, the physical system would not
only have to mirror the structure of the CSA in a given state, but
the sub-states of the physical system would have to be able to encode
different values and the substates would have to be connected in the
right way. For example, in the example above where we pushed a
rock across the table, it is not enough that there be states of the table
that are isomorphic to those of the CSM and that the system pass
through those states in the right order. Those states would have to be
capable of taking different values and they would have to be causally
connected in the right way. I assume that this also means that the
dependencies between the states would have to be non-accidental.
There have to be laws connecting the state transitions of our rock/
table computer.

Given these constraints it seems implausible to think that any
physical object could instantiate any computer program, and it is re-
ally hard to see how a wall might implement a computer program
like Word. It may even be correct to suggest, as Chalmers does, that
“the right sort of complex structure will be found in very few physi-
cal systems.” [don’t know if that’s right or not, but we can set that
question aside. The real issue is not how many physical systems can
instantiate a program, but rather, given a system that is sufficiently
complex to implement one CSA, whether the system in isolation is
enough to determine which CSA is being instantiated.

Consider the question of whether a given physical computer is
executing a procedural or a declarative language. Here, we are as-
suming that we don’t have access to the intentions of the program-
mer, and no way to download whatever high-level program is being
executed (or no reason to trust the contents of such a download).

As a canonical example of a declarative language we might take
Prolog, and as a canonical example of a procedural language we
might take C or Pascal.

Biermann (1997) describes the difference this way:

Most programs are of the form

Do this.
Do that.

358 Peter Ludlow

Do something else.
Etc.

Thus the programmer uses the program to tell the machine what to do.
Prolog programs, however, are of the form

This is a fact.

That is a fact.
Something else is a fact.
Etc.

Using Prolog, the programmer does not tell the machine how to do a cal-
culation. The program merely states facts, and the machine automatical-

ly finds the facts needed to answer a question. (Biermann 1997: 306—7)

Now, the difference between declarative and procedural languages
may seem like a big deal, but the question is whether there is really
something different going on down at the level of the circuits of the
machine’s hardware. There could be differences, particularly in the
translation of the higher-level language into assembly language and
then machine language, but apart from the translation, is there a
difference?

Let’s consider the difference between Prolog and Pascal on a sim-
ple task like addition. On the surface, there is a significant difference
between the two programs. In a procedural language like Pascal,
addition looks like this.

Z := (X+Y)

In a language like Prolog, on the other hand, things look somewhat
more complicated. First, we need to write a program to add a list of
numbers.

fO, [D).
£S, [X|Y]) := KZ.Y), S is X+Z

What this is saying is first that the function f associates 0 with the
null list. It then says that the sum S is found by adding up everything
Y but the first entry X in the list [X|Y] to obtain Z. Then X is added
to Z to obtain the result. Given these two functions, if we want to
add two numbers (say, 7 and 5) we type the following.

The Social Furniture of Virtual Worlds 359

(X, 17, 51)

Maybe this looks like a lot of trouble. Isn’t it easier to just tell the
machine to add? Pascal seems so much simpler. But let’s return to the
Pascal instruction and see what is going on at a lower level.

The line of code Z := (X+Y) is telling the computer to add X and
Y, and assign the resulting value to Z, but how is it doing this? First
the statement is translated into assembly language, so that the result
is something like the following (I'm following Biermann’s exposition

here).

COPY AX,X
ADD AX,Y
COPY CN1,AX
COPY AX,CN1
COPY Z,AX

These assembly language instructions are then translated into the
binary codes of machine language, so the result might be something

like the following,

00101101
01001010
00100111
00101111
00100001

These instructions are loaded into the computer’s memory and are
called and used when the instruction pointer of the computer gives
their location. So, if 01001010 is called, a particular circuit is acti-
vated—Tlet’s say that in this case it is a circuit that adds.

The question here is whether there is an interesting difference
between the Pascal and Prolog programs at the level of circuitry,
and at least as far as the addition operation goes, if the Programs run
on the same machine they very well could be calling 01001010 and
activating the same circuit.

Where am I going with all this? I submit that computer programs
like Prolog and Pascal are fundamentally descriptions of complex

360 Peter Ludlow

physical systems at a level of abstraction that we can understand and
use to manipulate the actions of the machine. Some of these lan-
guages are at a level of abstraction that make it easy to manipulate the
machine to carry out mathematical operations (Pascal being a canon-
ical example) and others make it easy to manipulate the machine to
serve as an intelligent data base (Prolog being a canonical example).
But apart from the computational resources that are dedicated to the
translation of the higher-level language into assembly language and
machine language, the basic operations of the machines might well
be the same.

Returning to the business of CSAs, the description of the ma-
chine in terms of Prolog and the description of the machine in terms
of Pascal both satisfy the description of computations in terms of
variable substates, connected in the relevant ways. Obviously, both
correlate to physical properties of the system, even if the points of
correlation are at different levels of physical abstraction. (Clearly,
neither program is isomorphic to the operations of at the level of
machine language, much less lower level physical properties, so I as-
sume some notion of physical-level-of-abstraction has to be allowed).

What this means for us is that the question of what a data struc-
ture is becomes less and less obvious, and the same can now be said
for what 'have called computational structure. If the very distinction
between procedural and declarative programs is called into question,
then there isn’t much for us to hang our hats on vis-a-vis the machine
in isolation. In a bit I'll offer a positive proposal, but first I think it
is important to understand just how deep this problem runs: It even
raises questions about there being a fact about the machine in isola-
tion that determines the design of the circuitry. Here we take up the
arguments from Wittgenstein and Kripke, and we are going to use
Fodor as our foil.

Fodor (1975) articulates a view about computation that I believe
is still widely held—that the computational states of the physical sys-
tem just are what they are, quite independently of the external envi-
ronment. As far as [know, Fodor’s view about computation survived
his (1994) conversion to externalism about psychological content.

The physics of the machine thus guarantees that the sequences of states
and operations it runs through in the course of its computations re-

The Social Furniture of Virtual Worlds 361

spect the semantic constraints on formulae in its internal language.
What takes the place of a truth definition for the machine language
is simply the engineering principles which guarantee this correspon-
dence. (Fodor 1975: 66)

.. it is worth mentioning that, whatever Wittgenstein proved, it can-
not have been that it is impossible that a language should be private in
whatever sense the machine language of a computer is, for there are such
things as computers, and whatever is actual is possible. (Fodor 1975: 68)

What Fodor is suggesting is that the computational states of the ma-
chine are fixed by low level physical properties of the components of
the machine and the engineering principles that govern those com-
ponents. Interestingly, however, Wittgenstein anticipates this move
and counters it in Philosophical Investigations. Here is how Kripke
(1982) framed up the Wittgensteinian response.

[cannot really insist that the values of the function are given by the ma-
chine. First, the machine is a finite object, accepting only finitely many
numbers as input and yielding only finitely many as output—others are
simply too big. Indefinitely many programs extend the actual finite be-
havior of the machine. Usually this is ignored because the designer of
the machine intended it to fulfill just one program, but in the present
context such an approach to the intentions of the designer simply gives
the skeptic his wedge to interpret in a non-standard way. (Indeed, the
appeal to the designer’s program makes the physical machine superflu-
ous; only the program is relevant. The machine as physical object is of
value only if the intended function can somehow be read off from the

physical object alone). (Kripke 1982: 34)

You might think that, following Fodor, we could figure out the pro-
gram being run by appeal to the physics of the system and its engi-
neering principles. For example, we could (theoretically) study the
logic gates of the computer and determine what it was built to do.
But Wittgenstein anticipates this response.

The machine as symbolizing its action: the action of a machine—I
might say at first—seems to be there in it from the start. What does
this mean?—If we know the machine, everything else, that is its move-
ment, seems to be already completely determined.

We talk as if these parts could only move in this way, as if they
could not do anything else. How is this—do we forget the possibility of

362 Peter Ludlow

their bending, breaking off, melting and so on? (Wittgenstein 1991 §193)

Like most of Wittgenstein, that is pretty enthymematic, but Kripke
(1982) develops this idea in more detail.

Actual machines can malfunction: through melting wires and slipping
gears they may give the wrong answer. How is it determined when a
malfunction occurs? By reference to the program of the machine, as in-
tended by the designer, not simply by reference to the machine itself.
Depending on the intent of the designer, any particular phenomenon
may or may not count as a machine ‘malfunction’. A programmer with
suitable intentions may even have intended to make use of the fact that
wires melt or gears slip, so that a machine that is ‘malfunctioning’ for me
is behaving perfectly for him. Whether a machine ever malfunctions and,
if so, when, is not a property of the machine itself as a physical object but
is well defined only in terms of its program, as stipulated by its designer.
Given the program, once again the physical object is superfluous for the
purpose of determining what function is meant. (Kripke 34-5)

So, the idea is that the appeal to the physics of the system has come
full circle. You can’t determine what program a system is executing
until you are clear on whether it is functioning properly, but you
can’t determine if the system is functioning properly until one has
the program that the system is executing.

Let’s be clear that we are sticking with talk of human-built com-
puters here and not “natural computational systems.” I say this so that
we can get the Chomskyans on board here. Chomsky (2000) thinks
that the above considerations apply to human-built computational
systems but not to natural biological systems.

Computer models are often invoked to show that we have robust, hard-
headed instances of the kind: psychology then studies software prob-
lems. That is a dubious move. Artifacts pose all kinds of questions that
do not arise in the case of natural objects. Whether some object is a key
or a table or a computer depends upon designer’s intent, standard use,
mode of interpretation, and so on. The same considerations arise when
we ask whether the device is malfunctioning, following a rule, etc.
There is no natural kind of normal case... Such questions do not arise
in the study of organic molecules, the wings of chickens, the language
faculty, or other natural objects. (Chomsky 2000: 105)

I doubt that Chomsky can keep the Kripkean skepticism away from

The Social Furniture of Virtual Worlds 363

biological systems, but it is worth noting that his position marks a re-
treat from his previous (1986) position, where he was claiming there
were narrow facts about computers that determined their computa-
tional states.

It might seem like this is getting a bit deep for a paper on virtual
tables and sushi, so hang on, because it is about to get deeper. In
Ludlow 2019 T argue that the very idea of information and informa-
tion processing itself is perspectival—meaning that what informa-
tion is carried by a system depends upon the observer. Others have
claimed that information is “subjective.” I don’t like that formulation,
but let’s roll with it because it will save me from a long explanation
of my proposal and it is clear enough for current purposes. Here is
how Galistel and King put it (using the midnight ride of Paul Revere
as their example).

Shannon defined the amount of information communicated to be the dif-
ference between the receiver’s uncertainty before the communication
and the receiver’s uncertainty after it. Thus the amount of information
that Paul got when he saw the lights depends not only on his knowing
beforehand the two possibilities (knowing the set of possible messages)
but also on his prior assessment of the probability of each possibility.
This is an absolutely critical point about communicated information—
and the subjectivity that it implies is deeply unsettling. By subjectivity,
we mean that the information communicated by a signal depends on
the receiver’s (the subject’s) prior knowledge of the possibilities and
their probabilities. Thus, the amount of information actually commu-
nicated is not an objective property of the signal from which the sub-
ject obtained it! (Galistel and King 2009, Chapter 1)

[like the Galistel and King formulation because it shows why we
needn’t be skeptics about computation—there is a fact about what is
computed and what information is being processed. It just happens
to not be a fact in isolation. It is grounded in a broader set of facts
about us. What is being computed is a matter of what is legible to us.

Now (finally!) we can get back to our virtual objects. If a com-
puter represents properties of social objects it is by virtue of there
being social objects (or types of social objects) out there to be repre-
sented. And whether the computer is representing those social ob-
jects and properties is a matter of whether it is representing them
for us—whether the computations are legible to us, given our social

364 Peter Ludlow

practices and our social ontology. There is nothing about the com-
puter in isolation—no set of narrow properties—that determines
those representational states.

4 Virtual (physical) objects as social objects

I hope I made it clear in the previous section that I'm not a skeptic
about data structures or computational structures. My point is rather
that what those structures are depends in large measure on the leg-
ibility of the actions of the machine, and that is going to depend upon
the properties that are salient to us and on the kinds of objects that
we wish to represent.

Now, in the case of social objects, I think it is pretty easy to make
the case that they cannot be identified with computational structures.
The argument, to some extent, has the form of a multiple instantia-
tion argument—the same social object can be represented in untold
ways on untold computational architectures. But this is a bit stronger
than a multiple instantiation argument because we know that social
objects in virtual worlds do not depend on any kind of computational
substrate for their existence. The SSG can not only move to a com-
pletely different gaming platform it could also easily operate in RL.

It follows that whatever distributed computational architecture is
representing the SSG in a video game, does so only by virtue of their
being an SSG out there for it to represent. There is no natural, semi-
stable syntactic state or states of the machine that we could point
to and say “that is a natural computational object and it is the SSG”,
nor even “that is a natural computational object independent of the
existence of the SSG.”

This of course raises all sorts of interesting questions about what
social objects are (for an excellent survey of the literature on social
ontology see Epstein 2018). On some views, they are grounded in
psychological properties, or are socially constructed, or built from
social kinds, or bottom out in some diffuse set of physical properties,
or some combination of the above. I'm not going to take sides in the
debate because I think that what I have to say is neutral with respect
to all of these proposals. The only view I have about social properties
and socially constructed individuals is that whatever they are, they
are not data structures or computational structures.

The Social Furniture of Virtual Worlds 365

A view similar to this has been advocated for works of fiction—
for example, by Thomasson (2003). On her view, fictional objects
are abstract objects that owe their existence to a set of social prac-
tices. The difference in this case is that [am claiming that not only
do the abstract objects owe their existence to such practices, but that
the data structures representing them do as well!

There is also a view out there (sometimes associated with Hegel
perhaps) that physical objects too are fundamentally social. That
view seems like a stretch for real life chairs and sushi, but I would
rather remain neutral on this view as well. What does not seem at
all like a stretch is the idea that the virtual objects of Second Life are
social objects. If I build a virtual table or virtual sushi in Second Life
it is not implausible to think that its being a table or sushi, or really
anything, is a function of social consensus. Even if I rez a simple
primitive object in Second Life—Ilet’s say a cube—one could make
the case that it is only an object in Second Life by virtue of some
community consensus. Virtual world experiences are full of glitchy
things that people agree to ignore. What is special about my cube is
that I created it using the agreed-upon protocol for making objects.

This protocol is partly dictated by the company that owns and
supports Second Life (Linden Lab), but people have to accept that
protocol. Sometimes clever hackers find ways to make objects by
flouting the normal protocols. In Second Life, an avatar by the name
of Gene Replacement (previously named Plastic Duck) found a way
to make “illegally” large primitive objects (theoretically, large ob-
jects can mess with the integrity of the server-side computations).
These quasi-objects could have been construed as glitches or illegal
hacks by the community and they could have petitioned Linden Lab
to climinate those quasi-objects (some did). Instead they were ac-
cepted and dubbed “megaprims,” and Second Life builders began to
incorporate them into their large-scale builds—including one build-
er who used Gene Replacement’s megaprims in the construction of
the IBM Pavilion in Second Life (see Mistral 2006). They had com-
munity uptake and were thus no longer quasi-objects. They were
accepted SL objects.

I think it is even more clear that the virtual properties of SL objects
is a matter of social consensus as well. My primitive block is (virtu-
ally) wooden because we accept it as being (virtually) wooden. We

366 Peter Ludlow

agree that they shall be regarded as virtual wood because of their
texture and perhaps sound effects. But many of the properties of
the objects in Second Life are quite clearly social properties in other
ways—they perform social functions.

This is probably the insight that Second Life furniture designers
have made a living on for years. People, could just stand around and
talk in Second Life, but, for example, when meetings are held (even
meetings by IBM) conference rooms are called for and conference ta-
bles are called for and people sit at those tables and doing so facilitates
discussion. Why? Whether by habit or some feature of human cogni-
tive psychology (or both) tables play an important social function.

The same can be said for the virtual sushi. It plays a social func-
tion, just as RL sushi does. Sushi is not designed solely to be an ef-
ficient and tasty delivery system for calories and nutrients. It clearly
(at times) plays an important social function for those who partake
in the meal-—even when one is interacting only with the sushi chef.
When a friend of mine in Second Life began to make virtual plates of
sushi, the intent was to create objects that serve this function.

Now, there is an important difference between virtual social ob-
jects like the SSG and virtual physical objects like tables and sushi.
The SSG appears to be portable in a way that tables and sushi are not.
The SSG can exist in RL, but the table I build and the sushi my friend
makes in Second Life cannot be ported into RL. Or so it appears.

The first thing we should note, however, is that under the right
conditions my virtual table and my virtual plate of sushi can be ported
into another virtual world. Indeed, people have moved much of their
inventory from Second Life to another platform called Open Sim.

Here we can get into all kinds of interesting debates about wheth-
er a table I make in Second Life is really the table that gets ported
over to Open Sim. Perhaps it is only a copy? Notice though that we
would encounter similar questions if we started teleporting people
and furniture from place to place using Star Trek style teleporters. Is
the thing that materializes on the other end the same as the original
or is it a copy? The question gets particularly interesting if multiple
versions of the original end up on the other end.

I don’t have a theory of object identity under teleportation, but I
do note that for a single object to “survive” such teleportation, only
one object can end up on the receiving end (or in any case, only one

The Social Furniture of Virtual Worlds 367

of them gets to be the original object), and the original can’t stay
behind in the original location. One certainly needs some type of
causal connection as well—the original has to play a causal role in
what appears on the other end.

Similarly, for an object to be teleported from Second Life to Open
Sim, the original has to vanish and only one object gets to appear in
its place. The original has to be causally related to what appears on
the other end. I suppose the other requirement would have to be that
migrants from Second Life to Open Sim would have to recognize the
table as the very same table. There would have to be social uptake.

Could virtual physical objects in Second Life make an appearance
in RL as well? Given the rules of thumb we introduced earlier, cer-
tain conditions would have to obtain. The Second Life object would
have to go out of existence and there could be only one object ap-
pearing in its place. There would have to be a causal relation between
the two. These conditions can probably be satisfied for some kinds of
virtual physical objects. There used to be (maybe there still are) ser-
vices that offer to 3D print or mill Second Life objects directly from
Second Life. For obvious reasons, this limits the possible portable
objects to those that can be 3D printed or milled—plastics, metals,
etc. Sushi seems out of the question, given current technology. Sup-
pose we started a service that would print or mill a RL object only
on the condition that the SL object was deleted. Suppose further that
I furnish my RL house with objects causally related to my (former)
SL furnishings in this way. Would we be inclined to talk of these as
being the same objects teleported into RL?

I don’t know what to say about cases like this, except to say that
they soften our inclination to think of virtual physical objects as be-
ing importantly different from virtual social objects. In the worst
case for my proposal, we would have to think of virtual physical
objects as being different because they are intended to mimic certain
features of physical objects, including the fact that they can only ap-
pear in one location at one time and they may or may not survive
teleportation. Such features would not undermine the idea that the
objects are inherently social objects; it would simply mean that ad-
ditional constraints were being placed on the class of objects. The
constraints don’t make the objects less social; it only allows them to
also mimic some features of RL physical objects.

368 Peter Ludlow

5 Conclusion

Computational data structures and more generally computational
structures do not serve as good candidates for the identity of virtual
world objects. Nor do they serve as plausible ways of grounding such
objects. If I am right, the objects ground the data structures instead
of the other way around. In the case of social objects like groups
and organizations in virtual worlds this is pretty easy to see. Such
objects don’t even need computational systems to sustain them. But
I think that the same is true for virtual “physical” objects. In the
first place, I don’t believe there is any single data structure or class
of data structures with which a given virtual physical object can be
identified. Beyond that, virtual world physical objects look a lot like
social objects in a number of ways: They need social uptake to be
recognized as objects, their properties require social uptake as well,
and their key properties are predominantly social (for example, they
instantiate the social properties of a conference table if not the physi-
cal properties).

If this is right then understanding the ontology of virtual objects
requires an understanding of social objects (and all the squishiness
that comes with that). That suggests an interesting opportunity for
our better understanding social ontology. Indeed, we could even
think of virtual worlds as laboratories for exploring the ontology of
social objects, their relation to physical objects, of course how they
can be represented by computational systems.'

Peter Ludlow

Center for Logic and Epistemology (CLE)
University of Campinas (UNICAMP)
Brazil

peterjludlow(@gmail.com

Rgferences

Biermann, A. 1997. Great Ideas in Computer Science. Cambridge: MIT Press.
Castronova, T. 2005. Synthetic Worlds. Chicago: University of Chicago Press.

" Thanks to Cory Ondrejka (former Chief Technology Officer of Linden Labs
and a principle architect of Second Life) for comments on an ecarlier draft.

The Social Furniture of Virtual Worlds 369

Chalmers, D. 1996. Does a rock implement every finite-state automaton?
Synthese 108: 310—33.

Chalmers, D. 2017. The virtual and the real. Disputatio 9(46): 309—52.

Chomsky, N. 1986. Knowledge of Language. New York: Praeger.

Chomsky, N. 2000. New Horizons in the Study of Language and Mind. Cambridge:
Cambridge University Press.

Clark, A.; and Chalmers, D. 1998. The extended mind. Analysis 58: 7—19.

Epstein, B. 2018. Social ontology. The Stanford Encyclopedia of Philosophy (Summer
2018 Edition), ed. by Edward N. Zalta, forthcoming URL = <https://plato.
stanford.edu/archives/sum2018/entries/social-ontology/>

Fodor, J. 1975. The Language of Thought. Cambridge: Harvard University Press.

Fodor, J. 1994. The Elm and the Expert. Cambridge: MIT Press.

Galistel, C. R.; and King, A. 2009. Memory and the Computational Brain: Why
Cognitive Science Will Transform Neuroscience. Chichester: Wiley-Blackwell.

Kripke, S. 1980. Naming and Necessity. Cambridge: Harvard University Press.

Kripke, S. 1982. Wittgenstein on Rules and Private Language. Cambridge: Harvard
University Press.

Ludlow, P. 2019. Interperspectival Content. Oxford: Oxford University Press.

Ludlow, P.; and Wallace, M. 2007. The Second Life Herald: The Virtual Tabloid that
Witnessed the Dawn of the Metaverse. Cambridge: MIT Press.

Mistral, P. 2006. Shock! Banned griefer’s tarp covers IBM theatres. Alphaville
Herald, Dec 15, 2016. <http://alphavilleherald.com/2006/12/ibm_
shocker_lls.htmI>

Putnam, H. 1988. Representation and Reality. Cambridge: MIT Press.

Searle, J. 1980. Minds, brains, and programs. Behavioral and Brain Sciences 3:
417-57.

Searle, J. 1990. Is the brain a digital computer? Proceedings and Addresses of the
American Philosophical Association 64: 21-37.

Thomasson, A. 2003. Fictional characters and literary practices. British Journal
of Aesthetics 43: 138—57.

Wittgenstein, L. 1991. Philosophical Investigations. New York: Wiley.

