

CzOTO 2019, volume 1, issue 1, pp. 574-582

ON RAPID DEVELOPMENT OF REACTIVE WIRELESS SENSOR

SYSTEMS

doi: 10.2478/czoto-2019-0073

Date of submission of the article to the Editor: 04/11/2018

Date of acceptance of the article by the Editor: 22/12/2018

Paweł Gburzyński1 – orcid id: 000-0002-1844-6110

Elżbieta Kopciuszewska1 – orcid id: 0000-0002-4216-6215
1
Vistula University, Poland, p.gburzynski@vistula.edu.pl

Abstract: We present a software platform for designing and testing wireless networks

of sensors and actuators (WSNs). The platform consists of three components: an

operating system for small-footprint microcontrollers (dubbed PicOS), a software

development kit (SDK) amounting to a C-based, event-oriented (reactive)

programming language, and a virtual execution platform (VUE2) capable of emulating

complete deployment environments for WSNs and thus facilitating their rapid

development.1 Its most recent incarnation introduced in the present paper is a

component of the WSN lab being currently set up at Vistula in collaboration with

Olsonet Communications Corporation.2 We highlight the platform’s most interesting

features within the context of a production WSN installed at independent-living

facilities.

Keywords: wireless sensor networks, people and asset tracking, monitoring, reactive

systems

1. INTRODUCTION

A substantial part of our research culminating in the system discussed in the present

paper took part in the academe (Akhmetshina et al., 2003; Haque et al., 2009; Boers

et al., 2010; Boers et al., 2012); however, our efforts were primary oriented towards

the industry within the framework of specific commercial projects, e.g., (Gburzynski et

al., 2016), with the objective to effectively, reliably, and quickly build custom WSN

applications.

By a WSN we mean a distributed cohort of wirelessly connected nodes processing

information acquired from sensors and forwarding that information, or its collectively

preprocessed derivatives, to one or more data collection points. The definition covers

the obvious class of applications where simple sensor readings, e.g., periodic

1
 Note that the superscript in VUE

2
 is part of the name. The abbreviation stands for “Virtual

Underlay Execution Engine,” i.e., the “E” is “squared.”
2
 http://www.olsonet.com

575 Production engineering

readouts, are passed to a central computer for logging and/or presentation, as well as

unforeseen in advance, distributed sensing systems where the network processes the

sensor data in a way that exploits the distributed and possibly mobile nature of its

nodes. For example, the traffic patterns in our WSN need not be constrained to the

unidirectional sensor-to-sink flow, naturally allowing for actuators. Also, some sensors

can be virtual, i.e., their “readings” may arise from some internal and distributed

processing (see Section 4). What we mean is not a simple re-interpretation of a

sensor value (like unit conversion or visualization), but some “value added”

transformation where the network is an essential enabler.

The primary, generic class of applications envisioned for our networks is monitoring

appertaining to people, assets, or the environment, e.g., for security or generally

interpreted well-being. In contrast to some monitoring systems, e.g., ones involving

surveillance cameras, the amount of data carried by our networks is small. A typical

sensor reading involves a few bytes. A typical readout frequency of a sensor

(translating into the ballpark report frequency of a node) is of order 1Hz (or less).

Having started in a competitive industrial environment, we strived from the very

beginning to base our networks on the cheapest (smallest-footprint) hardware

available. The nodes of our networks are built around microcontrollers with 1-10 KB of

RAM and 20-48 KB of flash ROM outfitted with RF modules operating in the ISM (sub-

1GB) RF band at the nominal transmission rate between 4.5 and 200 kbps. They do

not adhere to the popular standards, like Bluetooth or IEEE 805.15-4, for internal RF

communication, although they can be easily interfaced to sensing and peripheral

equipment compatible with those standards.

1.1. Network structure and terminology

In its general view, a WSN constitutes a mesh where all nodes are peers from the

viewpoint of communication. The ad-hoc forwarding scheme, known as TARP

(Gburzyński et al., 2007; Olesiński et al., 2003), automatically (or semi-automatically)3

adapts to all reasonable communication patterns required by the application. One can

often see two types of nodes: Tags implementing the (possibly mobile) leaf devices,

typically equipped with sensors, and Pegs acting as (mostly sensor-less) access

points for the Tags. Such a model, dubbed Tags & Pegs (T&P), would naturally apply

to a network deployed within a facility (a building or a campus) with the Pegs acting as

a semi-infrastructure. One can also think of a spontaneous network deployed entirely

on demand. For example, a (supervised) group of people traveling together, or a set

of related goods transported together, might form a network to keep track of the

group’s well-being. A network built according to this model would be comprised

exclusively of Tags assuming both roles, i.e., end devices as well as routers; hence

the model’s name: Routing Tags (RT). In our approach, models like that become so-

called application blueprints, i.e., actual, albeit virtual, networks with open-ended

functionality and smart parametrization. The idea is to abstract from many application-

level details, like the assortment of physical sensors and the functions of the external

programs, while fully implementing the network framework. In Section 3, we explain

how it is possible to fully implement a sensor network without completely specifying its

hardware.

3
 In a way controlled by parameters than can be set dynamically by the network manager.

SYSTEM SAFETY: HUMAN -TECHNICAL FACILITY - ENVIRONMENT, CzOTO vol. 1, Iss.1, 2019 576

A complete (target) application of a WSN is separated from its blueprint by one more

intermediate entity called the praxis by which we mean the full collection of programs

implementing the logical functionality of a given sensor system. In addition to the

blueprint WSN, the praxis includes external software interfacing the network to the

users (which may be software agents). That software is referred to as the operational

support system (OSS). The identification of the praxis as an instance of the blueprint

makes it possible, e.g., to develop and test the OSS with the real-life, physical

network being yet unavailable.

1.2. The challenges

Targeting low-end devices for the network nodes, we wanted to be able to program

them comfortably and efficiently, to harness their minuscule resources in the best

possible way. Contrary to the popular opinion, especially in the academe, the demand

for tiny-footprint microcontrollers is not subsiding, and is not likely to be eliminated

soon by the decreasing prices of the larger ones. For illustration, the success of one

of our commercial projects hinged on being able to use a microcontroller equipped

with 2 KB of RAM instead of its marginally more expensive 4 KB variant. A small-

footprint device capable of achieving the same feat as a large one will always win, not

only by being cheaper, but also in terms of energy demands and reliability. The

problem of maximizing the yield from a tiny microcontroller equipped with an RF

module should be viewed holistically because of the multiple facets of the tradeoffs.

For example, minimizing the energy usage of a microcontroller (critical from the

viewpoint of a battery-powered wireless sensor node) requires a careful approach to

programming where the duty cycling utilizing deep-sleep states of the CPU is

achieved by a structured collection of multiple reactive threads. One problem is thus

fitting those threads into the limited RAM without sacrificing their flexibility. For that we

needed a programming environment that would allow us to apply high-level

techniques to produce flexible software with a tiny footprint.

The concepts of blueprints and praxes, coming before applications, is critical from the

viewpoint of rapid, effective, and reliable development. A blueprint and a praxis can

be procured and tested in advance with the intention to be used as the engines of

multiple actual application. Having an environment where this kind of development

process can be carried out virtually and authoritatively, with the deployment of

physical devices only happening as its final, crowning step, is a paramount

advantage, not only in industrial projects but also in education.

2. THE PROGRAMMING ENVIRONMENT

The most serious problem with multithreaded programming in a tiny-RAM

environment is the stack space which tends to fragment the scarce memory. With the

traditional approach to multithreading, every thread needs a private and comfortably-

sized chunk of stack to be able to execute functions and preserve context. One

popular approach in tackling this issue, e.g., adopted in TinyOS (Levis & others,

2005), is to drastically limit the number of threads (e.g., to one) delegating the

concurrency to the interrupt service functions. This is restrictive from the

programmer’s viewpoint as well as prone to reliability problems (Regehr et al., 2005).

577 Production engineering

2.1. The programming languge

The programming language of our platform has been designed and implemented as

an extension of C and integrated with the operating system. As the two are

inseparable, it is common for them to be referred to by the same name: PicOS.

Fig. 1 shows a sample PicOS thread. The opening keyword fsm stands for “finite state

machine.” A thread typically consists of a number of states interpreted as entry points.

A thread declares its willingness to respond to an event by indicating the state to be

assumed upon the event’s occurrence. For example, by invoking delay in its first state

(HR_INIT), the thread in Fig. 1 indicates that it wants to be run in state HR_SEND

after the specified delay.

Any reason why a thread may not be able to run (which in a reactive system is the

default state of affairs) translates into waiting for a transition to some specific state. A

single thread may be waiting for several events at the same time: the first one to

occur will trigger the respective transition. This mechanism also applies to thread

blocking on I/O or (temporary) unavailability of resources. For illustration, in its second

state, the thread attempts to send out a packet, which action consists of acquiring a

packet buffer for output (operation tcv_wnp), filling it with data, and finally releasing

the buffer (with tcv_endp). The first step may block on the lack of buffer space. In

such a case, the function will not return, and the thread will end up waiting for an

event, to be resumed in the same state HR_SEND when the buffer space becomes

available.

While waiting for an event, to enter or re-enter one of its states, a thread uses no

stack space. The only context information needed to continue its execution is the

state identifier. This approach strikes a compromise between the preemption

opportunities (a thread can only lose the CPU at a boundary between states) and the

amount of RAM needed for multithreading. Any “local” variables declared by the

thread after the opening keyword, e.g., HeartRate in Fig. 1, are in fact static, i.e., they

are not allocated on the stack (say, as in plain C). A truly local (automatic, in C

parlance) variable, exemplified by cr in Fig. 1, must be declared within the scope of

one state, and it does not survive state transitions. This way, all threads can share the

same stack which is also safely used by the interrupt service functions of the

fsm hrate {

 byte HeartRate;
 state HR_INIT:
 delay (3 * 1024, HR_SEND);
 release;
 state HR_SEND:

 byte cr;
 if ((cr = hrc_get ()) != 255)
 HeartRate = cr;
 if (XWS == 0) {
 address packet;
 packet = tcv_wnp (HR_SEND, BSFD, 2);
 put1 (packet, PT_HRATE);
 put1 (packet, HeartRate);
 tcv_endp (packet);
 }
 proceed HR_INIT;
}

Fig. 1. A sample thread in PicOS

SYSTEM SAFETY: HUMAN -TECHNICAL FACILITY - ENVIRONMENT, CzOTO vol. 1, Iss.1, 2019 578

operating system. This compromise appears to nicely fit the reactive paradigm of

threads running in a wireless mote.

2.2. The operating system

The OS layout is shown in Fig. 2. The system features a holistic I/O API (dubbed

VNETI) where drivers are implemented as plugins supplementing a blanket default

functionality. New plugins can affect (modify, complement) other plugins, which

makes it easy to safely and structurally re-parameterize blueprints and praxes to

slightly different requirements and expectations of specific applications.

3. VIRTUAL EXECUTION

The FSM-based programming paradigm was inspired by SMURPH (Dobosiewicz et

al., 1993) (Gburzyński and Nikolaidis, 2006) which is a specification system and low-

level simulator for communication networks and protocols. The closeness of the two

programming environments made it possible to think of mechanically translating

application program TARP other plugins

VNETI
API plugs

PHY

PICOS kernel driver driver

microcontroller

RF
module

other
device

...

GPIO, ADC, DAC

Fig. 2. The operating system layout

application program TARP other plugins

VNETI
API plugs

PHY

VUE2

SMURPHvirtual
pins

virtual
UART

other
devices

virtual
RF

module

interface server channel model
virtual network

Fig. 3. VUE
2
 emulation of a PicOS application

579 Production engineering

PicOS programs into SMURPH code whereby the resulting SMURPH model

describes a complete network whose detailed configuration is parameterized by

additional data. This is shown schematically in Fig. 3 which, in confrontation with

Fig. 2, identifies the demarcation point where the SMURPH model takes over from

PicOS. In contrast to the popular approach of emulation at the microcontroller level,

we take a bypass into the SMURPH model by recompiling the network part of the

praxis into code acceptable by SMURPH. This is handled by the same PicOS

compiler which, in its original guise, transforms PicOS programs into C. One

advantage of this approach is its independence of the microcontroller. Another

advantage is the immediate access of the model to the plethora of SMURPH tools for

describing networks and (wireless) communication channels. In particular, the step

where the set of programs intended for the different types of physical nodes are

transformed into instances executed at multiple copies of their virtual counterparts is

handled elegantly by encapsulating C code into C++ objects owned by instances of

node classes.

One can see now how the virtual execution in VUE2 naturally facilitates the praxis

concept. In the model, it is quite natural to abstract from the physical idiosyncrasies of

specific sensors and actuators, substituting for them some abstract objects generating

the requisite data, e.g., handled directly by the developer (from a GUI) or by external

agents that can be attached to the model via the interface server (Fig. 3). Most

notably, the OSS programs for the complete application can be fully developed by

interacting with the model. With an authoritative virtual replica of the network in the

development loop, the OSS programs can be developed faster and tested much

better than with the real network, by being easily exposed to extreme and abnormal

conditions, which may be difficult to come by in the real (production) world. This is not

entirely unlike using an aircraft simulator for testing exceptional (or physically

dangerous) scenarios.

4. A SAMPLE APPLICATION

For a real-life implementation of the T&P blueprint, consider the network, dubbed

Alphanet in the sequel, deployed at a number of independent living (IL) facilities in

Belgium and France (Gburzynski et al., 2016). The network’s goal is to detect events

(or alarms) and communicate them to the OSS. Typically, those events are indicative

of anomalies requiring personnel’s attention. The Pegs jointly form the network fabric

whereby alarms reported by the Tags propagate, possibly over multiple hops, towards

the so-called master Peg directly connected to the OSS. Any Peg can pick up and

forward any packet addressed to the master, be it an alarm packet directly issued by

a (nearby) Tag or a report relayed by a nearby Peg. TARP (Gburzyński et al., 2007)

dynamically and automatically adjusts the path redundancy in the mesh of Pegs to

make sure that the events are delivered to the master with satisfying reliability. The

praxis assumes that Tags never forward packets. Most of them are battery-powered,

so their energy budget is critical. Pegs, on the other hand, are deployed at fixed

(inconspicuous) locations and powered from outlets. Both node types are built around

the same CC430F6137 microcontroller by Texas Instruments equipped with an ISM

RF module (Texas Instruments, 2013). The nominal data rate of the wireless channel

is 38,400 bps.

In addition to obvious event triggers, like physical sensors and panic buttons, the

system implements several types of virtual sensors whose role is to evaluate

SYSTEM SAFETY: HUMAN -TECHNICAL FACILITY - ENVIRONMENT, CzOTO vol. 1, Iss.1, 2019 580

distributed alarm predicates, e.g., resulting from the (sensed) proximity of Tags to

other devices. The most interesting of them is the “location sensor,” i.e., a full

lightweight location tracking system implemented as a relatively simple add-on to the

network’s basic functionality. The tracking problem is defined as identifying the room

(or area) when the Tag triggering a particular class of alarms is located, so the

personnel can promptly locate the patient in need. The sole physical prerequisite is

the RSS (received signal strength) measurement from packets received by the Pegs

from the tracked Tag. The surprisingly high accuracy of the Alphanet location tracker,

which from the perspective of heavy-weight systems (Adame et al., 2018) is based on

trivial and cheap assumptions, results from a creative application of multiple power

levels to a series of short packet bursts emitted by the Tag along with the alarm event.

The creativity (and the resulting quality) is in the interpretation of the readings incurred

by those bursts at the neighboring Pegs.

5. SUMMARY

The most interesting feature of our platform is its unique ability to execute complete

WSN applications in a virtual environment. The execution is authoritative, i.e., the

applications can be virtually deployed and tested without the need to install physical

devices. This shortens the development cycle and makes the product more reliable by

exposing it to possibly stressful and exhaustive tests that may be difficult (or

impossible) to carry out in a production system. Note that testing and debugging a

physically deployed network may be a tedious process calling for frequent code

replacement in multiple devices possibly distributed over a large area, often in difficult

to access places. Several tools have been proposed to assist debugging and code

replacement in wireless nodes (Whitehouse et al., 2006), but they all pose tall

demands on node resources, be it RAM or the energy budget for RF communication,

which makes them inapplicable in our domain. Even with perfect tools, the comfort of

armchair development of complete network applications on a laptop will always trump

the limited malleability of the real system.

Ad-hoc communication may not immediately appear as strikingly advantageous in an

environment where solid infrastructure (Ethernet, WiFi) is a norm and the routing

nodes are effectively nailed to the wall (Section 4). Note, however, that the ad-hoc

communication paradigm makes the WSN independent of the infrastructure and thus

more reliable, which means more than merely making the system less prone to power

failures or disasters (Wang et al., 2016). A more important advantage is in rendering

the system portable, so, for example, it can be taken “on the road”' or quickly

deployed (in an ad-hoc manner), e.g., for a special (external) event.4 Most importantly,

being able to fully control all the communication nodes contributing to the WSN makes

it easier to implement virtual sensors. The kind of accurate tracking system

implemented in Alphanet could only be realized in a network whose infrastructure was

in our full control.

Last, but not least, the platform is useful for education. The WSN lab currently being

set up at Vistula will play a two-fold role: enabling practical experiments with real-life

wireless sensor networks (both for research and education) and equipping the

researcher or student with a cozy environment for building such networks on a laptop

4
 The Pegs can be powered from batteries at acceptable (in such circumstances) energy

budget.

581 Production engineering

at home, thoroughly testing them and debugging before flashing the programs into the

physical devices.

REFERENCES

Adame, T., Bel, A., Carreras, A., Melia-Segui, J., Oliver, M. i Pous, R., 2018.

CUIDATS: An RFID--WSN hybrid monitoring system for smart health care

environments. Future Generation Computer Systems, 602-615.

Akhmetshina, E., Gburzyński, P., & Vizeacoumar, F., 2003. PicOS: A Tiny Operating

System for Extremely Small Embedded Platforms. Proceedings of ESA'03,

(pp. 116-122). Las Vegas.

Boers, N. M., Chodos, D., Gburzyński, P., Guirguis, L., Huang, J., Lederer, R.,

Stroulia, E., 2010. The smart condo project: services for independent living. E-

Health, assistive technologies and applications for assisted living: challenges and

solutions. IGI Global.

Boers, N. M., Gburzyński, P., Nikolaidis, I., Olesiński, W., 2010. Developing wireless

sensor network applications in a virtual environment. Telecommunication

Systems, 45, 165-176. doi:10.1007/s11235-009-9246-x

Boers, N., Nikolaidis, I., Gburzyński, P., & Olesiński, W., 2012. PICOS & VNETI:

Enabling Real Life Layer-less WSN Applications. Proceedings of Sensornets'12.

Rome.

Dobosiewicz, W., Gburzyński, P., 1993. SMURPH: An Object Oriented Simulator for

Communication Networks and Protocols. Proceedings of MASCOTS'93, Tools

Fair Presentation, (strony 351-352).

Gburzyński, P., Nikolaidis, I., 2006. Wireless Network Simulation Extensions in

SMURPH/SIDE. Proceedings of the 2006 Winter Simulation Conference

(WSC'06). Monetery, CA.

Gburzyński, P., Olesiński, W., 2008. On a practical approach to low-cost ad hoc

wireless networking. Journal of Telecommunications and Information Technology,

2008, 29-42.

Gburzyński, P., Kaminska, B., Olesiński, W., 2007. A Tiny and Efficient Wireless Ad-

hoc Protocol for Low-cost Sensor Networks. Proceedings of DATE'07, (pp. 1562-

1567). Nice.

Gburzynski, P., Olesinski, W., Van Vooren, J., 2016. A WSN-based, RSS-driven,

Real-time Location Tracking System for Independent Living Facilities. 13-th

International Joint Conference on e-Business and Telecommunications. Lisbon.

Haque, I., Nikolaidis, I., Gburzyński, P., 2009. A Scheme for Indoor Localization

through RF Profiling. ICC'09. Dresden.

Levis, P., others, 2005. TinyOS: An Operating System for Sensor Networks. W W.

Weber, J. M. Rabaey, E. Aarts (Editors), Ambient Intelligence (pp. 115-148).

Springer.

Olesiński, W., Rahman, A., Gburzyński, P., 2003. TARP: a tiny ad-hoc routing

protocol for wireless networks. Australian Telecommunication, Networks and

Applications Conference ({ATNAC}). Melbourne.

Regehr, J., Reid, A., Webb, K., 2005. Eliminating stack overflow by abstract

interpretation. ACM Transactions on Embedded Computing Systems (TECS), 4,

751-778.

Texas Instruments, 2013. CC430 User's Guide. Available at:

http://www.ti.com/lit/ug/slau259e/slau259e.pdf.

SYSTEM SAFETY: HUMAN -TECHNICAL FACILITY - ENVIRONMENT, CzOTO vol. 1, Iss.1, 2019 582

Wang, C., Xing, L., Vokkarane, V. M., Sun, Y. L., 2016. Infrastructure communication

sensitivity analysis of wireless sensor networks. Quality and Reliability

Engineering International, 32, 581-594.

Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim, S., Jeong, J., Culler, D., 2006.

Marionette: using RPC for interactive development and debugging of wireless

embedded networks. Proceedings of the 5th international conference on

Information processing in sensor networks, (pp. 416-423).

