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Abstract: We present a software platform for designing and testing wireless networks 

of sensors and actuators (WSNs). The platform consists of three components: an 

operating system for small-footprint microcontrollers (dubbed PicOS), a software 

development kit (SDK) amounting to a C-based, event-oriented (reactive) 

programming language, and a virtual execution platform (VUE2) capable of emulating 

complete deployment environments for WSNs and thus facilitating their rapid 

development.1 Its most recent incarnation introduced in the present paper is a 

component of the WSN lab being currently set up at Vistula in collaboration with 

Olsonet Communications Corporation.2 We highlight the platform’s most interesting 

features within the context of a production WSN installed at independent-living 

facilities. 

Keywords: wireless sensor networks, people and asset tracking, monitoring, reactive 
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1. INTRODUCTION 

A substantial part of our research culminating in the system discussed in the present 

paper took part in the academe (Akhmetshina et al., 2003; Haque et al., 2009; Boers 

et al., 2010; Boers et al., 2012); however, our efforts were primary oriented towards 

the industry within the framework of specific commercial projects, e.g., (Gburzynski et 

al., 2016), with the objective to effectively, reliably, and quickly build custom WSN 

applications. 

By a WSN we mean a distributed cohort of wirelessly connected nodes processing 

information acquired from sensors and forwarding that information, or its collectively 

preprocessed derivatives, to one or more data collection points. The definition covers 

the obvious class of applications where simple sensor readings, e.g., periodic 

                                            
1
 Note that the superscript in VUE

2
 is part of the name. The abbreviation stands for “Virtual 

Underlay Execution Engine,” i.e., the “E” is “squared.” 
2
 http://www.olsonet.com 
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readouts, are passed to a central computer for logging and/or presentation, as well as 

unforeseen in advance, distributed sensing systems where the network processes the 

sensor data in a way that exploits the distributed and possibly mobile nature of its 

nodes. For example, the traffic patterns in our WSN need not be constrained to the 

unidirectional sensor-to-sink flow, naturally allowing for actuators. Also, some sensors 

can be virtual, i.e., their “readings” may arise from some internal and distributed 

processing (see Section 4). What we mean is not a simple re-interpretation of a 

sensor value (like unit conversion or visualization), but some “value added” 

transformation where the network is an essential enabler. 

The primary, generic class of applications envisioned for our networks is monitoring 

appertaining to people, assets, or the environment, e.g., for security or generally 

interpreted well-being. In contrast to some monitoring systems, e.g., ones involving 

surveillance cameras, the amount of data carried by our networks is small. A typical 

sensor reading involves a few bytes. A typical readout frequency of a sensor 

(translating into the ballpark report frequency of a node) is of order 1Hz (or less). 

Having started in a competitive industrial environment, we strived from the very 

beginning to base our networks on the cheapest (smallest-footprint) hardware 

available. The nodes of our networks are built around microcontrollers with 1-10 KB of 

RAM and 20-48 KB of flash ROM outfitted with RF modules operating in the ISM (sub-

1GB) RF band at the nominal transmission rate between 4.5 and 200 kbps. They do 

not adhere to the popular standards, like Bluetooth or IEEE 805.15-4, for internal RF 

communication, although they can be easily interfaced to sensing and peripheral 

equipment compatible with those standards.   

1.1. Network structure and terminology 

In its general view, a WSN constitutes a mesh where all nodes are peers from the 

viewpoint of communication. The ad-hoc forwarding scheme, known as TARP 

(Gburzyński et al., 2007; Olesiński et al., 2003), automatically (or semi-automatically)3 

adapts to all reasonable communication patterns required by the application. One can 

often see two types of nodes: Tags implementing the (possibly mobile) leaf devices, 

typically equipped with sensors, and Pegs acting as (mostly sensor-less) access 

points for the Tags. Such a model, dubbed Tags & Pegs (T&P), would naturally apply 

to a network deployed within a facility (a building or a campus) with the Pegs acting as 

a semi-infrastructure. One can also think of a spontaneous network deployed entirely 

on demand. For example, a (supervised) group of people traveling together, or a set 

of related goods transported together, might form a network to keep track of the 

group’s well-being. A network built according to this model would be comprised 

exclusively of Tags assuming both roles, i.e., end devices as well as routers; hence 

the model’s name: Routing Tags (RT). In our approach, models like that become so-

called application blueprints, i.e., actual, albeit virtual, networks with open-ended 

functionality and smart parametrization. The idea is to abstract from many application-

level details, like the assortment of physical sensors and the functions of the external 

programs, while fully implementing the network framework. In Section 3, we explain 

how it is possible to fully implement a sensor network without completely specifying its 

hardware. 

                                            
3
 In a way controlled by parameters than can be set dynamically by the network manager. 
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A complete (target) application of a WSN is separated from its blueprint by one more 

intermediate entity called the praxis by which we mean the full collection of programs 

implementing the logical functionality of a given sensor system. In addition to the 

blueprint WSN, the praxis includes external software interfacing the network to the 

users (which may be software agents). That software is referred to as the operational 

support system (OSS). The identification of the praxis as an instance of the blueprint 

makes it possible, e.g., to develop and test the OSS with the real-life, physical 

network being yet unavailable.  

 

1.2. The challenges 

Targeting low-end devices for the network nodes, we wanted to be able to program 

them comfortably and efficiently, to harness their minuscule resources in the best 

possible way. Contrary to the popular opinion, especially in the academe, the demand 

for tiny-footprint microcontrollers is not subsiding, and is not likely to be eliminated 

soon by the decreasing prices of the larger ones. For illustration, the success of one 

of our commercial projects hinged on being able to use a microcontroller equipped 

with 2 KB of RAM instead of its marginally more expensive 4 KB variant. A small-

footprint device capable of achieving the same feat as a large one will always win, not 

only by being cheaper, but also in terms of energy demands and reliability. The 

problem of maximizing the yield from a tiny microcontroller equipped with an RF 

module should be viewed holistically because of the multiple facets of the tradeoffs. 

For example, minimizing the energy usage of a microcontroller (critical from the 

viewpoint of a battery-powered wireless sensor node) requires a careful approach to 

programming where the duty cycling utilizing deep-sleep states of the CPU is 

achieved by a structured collection of multiple reactive threads. One problem is thus 

fitting those threads into the limited RAM without sacrificing their flexibility. For that we 

needed a programming environment that would allow us to apply high-level 

techniques to produce flexible software with a tiny footprint. 

The concepts of blueprints and praxes, coming before applications, is critical from the 

viewpoint of rapid, effective, and reliable development. A blueprint and a praxis can 

be procured and tested in advance with the intention to be used as the engines of 

multiple actual application. Having an environment where this kind of development 

process can be carried out virtually and authoritatively, with the deployment of 

physical devices only happening as its final, crowning step, is a paramount 

advantage, not only in industrial projects but also in education. 

2. THE PROGRAMMING ENVIRONMENT 

The most serious problem with multithreaded programming in a tiny-RAM 

environment is the stack space which tends to fragment the scarce memory. With the 

traditional approach to multithreading, every thread needs a private and comfortably-

sized chunk of stack to be able to execute functions and preserve context. One 

popular approach in tackling this issue, e.g., adopted in TinyOS (Levis & others, 

2005), is to drastically limit the number of threads (e.g., to one) delegating the 

concurrency to the interrupt service functions. This is restrictive from the 

programmer’s viewpoint as well as prone to reliability problems (Regehr et al., 2005). 
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2.1. The programming languge 

The programming language of our platform has been designed and implemented as 

an extension of C and integrated with the operating system. As the two are 

inseparable, it is common for them to be referred to by the same name: PicOS.  

Fig. 1 shows a sample PicOS thread. The opening keyword fsm stands for “finite state 

machine.” A thread typically consists of a number of states interpreted as entry points. 

A thread declares its willingness to respond to an event by indicating the state to be 

assumed upon the event’s occurrence. For example, by invoking delay in its first state 

(HR_INIT), the thread in Fig. 1 indicates that it wants to be run in state HR_SEND 

after the specified delay. 

Any reason why a thread may not be able to run (which in a reactive system is the 

default state of affairs) translates into waiting for a transition to some specific state. A 

single thread may be waiting for several events at the same time: the first one to 

occur will trigger the respective transition. This mechanism also applies to thread 

blocking on I/O or (temporary) unavailability of resources. For illustration, in its second 

state, the thread attempts to send out a packet, which action consists of acquiring a 

packet buffer for output (operation tcv_wnp), filling it with data, and finally releasing 

the buffer (with tcv_endp). The first step may block on the lack of buffer space. In 

such a case, the function will not return, and the thread will end up waiting for an 

event, to be resumed in the same state HR_SEND when the buffer space becomes 

available. 

While waiting for an event, to enter or re-enter one of its states, a thread uses no 

stack space. The only context information needed to continue its execution is the 

state identifier. This approach strikes a compromise between the preemption 

opportunities (a thread can only lose the CPU at a boundary between states) and the 

amount of RAM needed for multithreading. Any “local” variables declared by the 

thread after the opening keyword, e.g., HeartRate in Fig. 1, are in fact static, i.e., they 

are not allocated on the stack (say, as in plain C). A truly local (automatic, in C 

parlance) variable, exemplified by cr in Fig. 1, must be declared within the scope of 

one state, and it does not survive state transitions. This way, all threads can share the 

same stack which is also safely used by the interrupt service functions of the 

fsm hrate { 

  byte HeartRate; 
  state HR_INIT: 
    delay (3 * 1024, HR_SEND); 
    release; 
  state HR_SEND: 

    byte cr; 
    if ((cr = hrc_get ()) != 255) 
      HeartRate = cr; 
    if (XWS == 0) { 
  address packet; 
      packet = tcv_wnp (HR_SEND, BSFD, 2); 
      put1 (packet, PT_HRATE); 
      put1 (packet, HeartRate); 
      tcv_endp (packet); 
    } 
    proceed HR_INIT; 
} 

Fig. 1. A sample thread in PicOS 
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operating system. This compromise appears to nicely fit the reactive paradigm of 

threads running in a wireless mote. 

2.2. The operating system 

The OS layout is shown in Fig. 2. The system features a holistic I/O API (dubbed 

VNETI) where drivers are implemented as plugins supplementing a blanket default 

functionality. New plugins can affect (modify, complement) other plugins, which 

makes it easy to safely and structurally re-parameterize blueprints and praxes to 

slightly different requirements and expectations of specific applications. 

3. VIRTUAL EXECUTION 

The FSM-based programming paradigm was inspired by SMURPH (Dobosiewicz et 

al., 1993) (Gburzyński and Nikolaidis, 2006) which is a specification system and low-

level simulator for communication networks and protocols. The closeness of the two 

programming environments made it possible to think of mechanically translating 
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PicOS programs into SMURPH code whereby the resulting SMURPH model 

describes a complete network whose detailed configuration is parameterized by 

additional data. This is shown schematically in Fig. 3 which, in confrontation with 

Fig. 2, identifies the demarcation point where the SMURPH model takes over from 

PicOS. In contrast to the popular approach of emulation at the microcontroller level, 

we take a bypass into the SMURPH model by recompiling the network part of the 

praxis into code acceptable by SMURPH. This is handled by the same PicOS 

compiler which, in its original guise, transforms PicOS programs into C. One 

advantage of this approach is its independence of the microcontroller. Another 

advantage is the immediate access of the model to the plethora of SMURPH tools for 

describing networks and (wireless) communication channels. In particular, the step 

where the set of programs intended for the different types of physical nodes are 

transformed into instances executed at multiple copies of their virtual counterparts is 

handled elegantly by encapsulating C code into C++ objects owned by instances of 

node classes. 

One can see now how the virtual execution in VUE2 naturally facilitates the praxis 

concept. In the model, it is quite natural to abstract from the physical idiosyncrasies of 

specific sensors and actuators, substituting for them some abstract objects generating 

the requisite data, e.g., handled directly by the developer (from a GUI) or by external 

agents that can be attached to the model via the interface server (Fig. 3). Most 

notably, the OSS programs for the complete application can be fully developed by 

interacting with the model. With an authoritative virtual replica of the network in the 

development loop, the OSS programs can be developed faster and tested much 

better than with the real network, by being easily exposed to extreme and abnormal 

conditions, which may be difficult to come by in the real (production) world. This is not 

entirely unlike using an aircraft simulator for testing exceptional (or physically 

dangerous) scenarios. 

4. A SAMPLE APPLICATION 

For a real-life implementation of the T&P blueprint, consider the network, dubbed 

Alphanet in the sequel, deployed at a number of independent living (IL) facilities in 

Belgium and France (Gburzynski et al., 2016). The network’s goal is to detect events 

(or alarms) and communicate them to the OSS. Typically, those events are indicative 

of anomalies requiring personnel’s attention. The Pegs jointly form the network fabric 

whereby alarms reported by the Tags propagate, possibly over multiple hops, towards 

the so-called master Peg directly connected to the OSS. Any Peg can pick up and 

forward any packet addressed to the master, be it an alarm packet directly issued by 

a (nearby) Tag or a report relayed by a nearby Peg. TARP (Gburzyński et al., 2007) 

dynamically and automatically adjusts the path redundancy in the mesh of Pegs to 

make sure that the events are delivered to the master with satisfying reliability. The 

praxis assumes that Tags never forward packets. Most of them are battery-powered, 

so their energy budget is critical. Pegs, on the other hand, are deployed at fixed 

(inconspicuous) locations and powered from outlets. Both node types are built around 

the same CC430F6137 microcontroller by Texas Instruments equipped with an ISM 

RF module (Texas Instruments, 2013). The nominal data rate of the wireless channel 

is 38,400 bps. 

In addition to obvious event triggers, like physical sensors and panic buttons, the 

system implements several types of virtual sensors whose role is to evaluate 
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distributed alarm predicates, e.g., resulting from the (sensed) proximity of Tags to 

other devices. The most interesting of them is the “location sensor,” i.e., a full 

lightweight location tracking system implemented as a relatively simple add-on to the 

network’s basic functionality. The tracking problem is defined as identifying the room 

(or area) when the Tag triggering a particular class of alarms is located, so the 

personnel can promptly locate the patient in need. The sole physical prerequisite is 

the RSS (received signal strength) measurement from packets received by the Pegs 

from the tracked Tag. The surprisingly high accuracy of the Alphanet location tracker, 

which from the perspective of heavy-weight systems (Adame et al., 2018) is based on 

trivial and cheap assumptions, results from a creative application of multiple power 

levels to a series of short packet bursts emitted by the Tag along with the alarm event. 

The creativity (and the resulting quality) is in the interpretation of the readings incurred 

by those bursts at the neighboring Pegs. 

5. SUMMARY 

The most interesting feature of our platform is its unique ability to execute complete 

WSN applications in a virtual environment. The execution is authoritative, i.e., the 

applications can be virtually deployed and tested without the need to install physical 

devices. This shortens the development cycle and makes the product more reliable by 

exposing it to possibly stressful and exhaustive tests that may be difficult (or 

impossible) to carry out in a production system. Note that testing and debugging a 

physically deployed network may be a tedious process calling for frequent code 

replacement in multiple devices possibly distributed over a large area, often in difficult 

to access places. Several tools have been proposed to assist debugging and code 

replacement in wireless nodes (Whitehouse et al., 2006), but they all pose tall 

demands on node resources, be it RAM or the energy budget for RF communication, 

which makes them inapplicable in our domain. Even with perfect tools, the comfort of 

armchair development of complete network applications on a laptop will always trump 

the limited malleability of the real system. 

Ad-hoc communication may not immediately appear as strikingly advantageous in an 

environment where solid infrastructure (Ethernet, WiFi) is a norm and the routing 

nodes are effectively nailed to the wall (Section 4). Note, however, that the ad-hoc 

communication paradigm makes the WSN independent of the infrastructure and thus 

more reliable, which means more than merely making the system less prone to power 

failures or disasters  (Wang et al., 2016). A more important advantage is in rendering 

the system portable, so, for example, it can be taken “on the road”' or quickly 

deployed (in an ad-hoc manner), e.g., for a special (external) event.4 Most importantly, 

being able to fully control all the communication nodes contributing to the WSN makes 

it easier to implement virtual sensors. The kind of accurate tracking system 

implemented in Alphanet could only be realized in a network whose infrastructure was 

in our full control. 

Last, but not least, the platform is useful for education. The WSN lab currently being 

set up at Vistula will play a two-fold role: enabling practical experiments with real-life 

wireless sensor networks (both for research and education) and equipping the 

researcher or student with a cozy environment for building such networks on a laptop 

                                            
4
 The Pegs can be powered from batteries at acceptable (in such circumstances) energy 

budget.  



581                                                                                                                                                    Production engineering 

at home, thoroughly testing them and debugging before flashing the programs into the 

physical devices. 
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