Experimental Determination of Natural Frequencies of Prestressed Suspension Bridge Model

Vadims Goremikins¹, Karlis Rocens², Dmitrijs Serdjuks³, Liga Gaile⁴, ¹–⁴ Riga Technical University

Abstract. A suspension bridge is the most suitable type for a long-span bridge. Increased kinematic displacements are the major disadvantages of suspension bridges. This problem can be solved by application of prestressed cable truss.

Dynamic approach is one of regulated bridge design parts. Determination of natural frequencies of a physical model of a prestressed suspension bridge is presented in this paper.

Natural frequencies, as mode shapes, of the model depending on a prestressing level were determined. It was shown that a mode shape with one half wave did not appear.

Experiments showed that dynamic characteristics of prestressed suspension bridge could be regulated by changing a prestressing level, which excluded possibility of resonance appearance.

Keywords: cable truss, prestressing level, physical model, acceleration sensor.

I. INTRODUCTION

Suspension bridges are structures, where the deck is continuously supported by stretched catenary cable [1]. Suspension bridges are the most important and attractive structures possessing a number of technical, economical and aesthetic advantages [2].

At the present moment, a suspension bridge is the most suitable type of structure for very long-span bridges. Suspension bridges represent 20 or more of the longest span bridges in the world. The bridge with the longest centre span of 1991 m is Akashi Kaikyō Bridge, Japan [3]. Such long spans can be achieved because main load carrying cables are subjected to tension, and distribution of normal stresses is close to uniform [4].

Increased deformability is one of the basic disadvantages of suspension bridges [5]. Increased deformability is conditioned by appearance of elastic and kinematic displacements. The elastic displacements are caused by large tensile inner forces. Elastic displacements are maximal at the centre of span in the case of symmetrical load application. Kinematic displacements are caused by initial parabolic shape change, resulting from non-symmetrical or local loads (Fig. 1) [6], [7]. These displacements are not related to cable elastic characteristics. Serviceability limit state dominates for suspension cable structures.

Elastic displacements can be reduced by applying low strength steel structural profiles, reinforced concrete and by increasing elastic modulus and cable camber [8].

The problem of increased kinematic displacements can be solved by increasing the relation of dead weight to imposed load, which is achieved by adding of cantilever [9]. However, this method causes the increase in material consumption. Stiffness of suspended structure can also be improved by increasing girder stiffness and main cable camber, by connecting a main cable and girder at the centre of span, by applying diagonal suspenders or inclined additional cables, two chain systems or stiff chains, and stress ribbons [10], [11]. Nevertheless, these systems are also characterized with material consumption, and system stiffness is not sufficient in many cases.

Usage of prestressed cable truss is another method of fixing the problem of increased kinematic displacements under the action of unsymmetrical load [12], [15]. Different types of cable trusses are known, such as convex cable trusses, convex-concave cable trusses, cable trusses with centre compression strut or parallel cable truss [14]. However, one of the most efficient and convenient for application is concave cable truss (Fig. 2) [15]. Cable truss usage allows for the development of bridges with reduced requirements for girder stiffness, but overall bridge rigidity will be ensured by prestressing of stabilization cable [8]. The deck can be made of light composite materials [16], [17].

Dynamic approach is one of the necessary bridge design parts after the collapse of Tacoma Narrows Bridge [18], [19]. At present, analyses of natural frequencies of prestressed suspension structures are performed with labour-intensive discrete methods [20], [21], [22].
The aim of this paper is to determine natural vibration frequencies and mode shapes of prestressed suspension bridge physical model depending on the prestressing level.

II. DESCRIPTION OF EXPERIMENTAL MODEL

Physical model was developed to determine natural frequencies of prestressed suspension structure (Fig. 3, 4). The span of the physical model of prestressed suspension structure was equal to 2.1 m. Main cable camber was equal to 0.275 m. The deck was connected to the main cable by suspensions in 15 points. Model width was equal to 0.4 m [23].

The elements of the model of prestressed suspension structure were made of steel cables with modulus of elasticity 60 000 MPa. Tensile strength of wires for cables was equal to 1770 MPa. The diameters and cable types of elements are shown in Table I [23].

<table>
<thead>
<tr>
<th>Elements</th>
<th>Cable type</th>
<th>Diameter</th>
<th>Breaking force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main cable</td>
<td>6x19+WSC</td>
<td>10.0 mm</td>
<td>63.0 kN</td>
</tr>
<tr>
<td>Stabilization cable</td>
<td>6x19+WSC</td>
<td>8.0 mm</td>
<td>40.3 kN</td>
</tr>
</tbody>
</table>

The deck of the model of prestressed suspension structure was made from oriented strand board (OSB). It did not have significant load bearing capacity. It only distributed load among suspensions due to deformability of OSB [23].

Prestressing was organized in a stabilization cable and developed by rotating a screw and moving a bar. To enable cable to move, it was supported by the block (Fig. 5). The tensile force in a stabilization cable was measured by electronic dynamometer Scaime IPB50 (Fig. 6). Electronic dynamometer work principle is based on changes in electrical bridge resistance. The precision of measurements for electronic dynamometers is 0.25 kg [24].

To connect a deck with the load bearing cable, adjustable suspensions were used that allowed levelling the deck. Suspensions were connected to the cables using U-bolt clips to prevent moving them along the cable (Fig. 7) [24].
Acceleration sensors were used to get natural frequencies of the model (Fig. 8).

Acceleration sensors were situated on points 3, 5, 7, 9, 11 and 13 of the model (Fig. 9). Acceleration sensors measured acceleration at a defined time interval with a step equal to 0.006255 s and saved it to internal memory. After experiment data could be loaded to a PC.

Vibration excitation in vertical direction was implemented by cutting suspended weight (20 kg) (Fig. 5). The weight was connected at point 13 to avoid losing some mode shape. Experiments were carried out for 6 prestressing levels: 0, 200, 400, 600, 800 and 1000 kg that corresponded to stresses in a stabilization cable equal to 0, 69.7, 139.4, 209.1, 278.7 and 348.4 MPa, respectively.

Vibration excitation in a horizontal direction was implemented by applying 20 kg load to point 13. The prestressing level was fixed at the level of 1000 kg (348.4 MPa) in this case.

III. EXPERIMENTAL DATA HANDLING

For data handling from acceleration sensors, ME’scopeVES software was used. The software transforms acceleration-time dependence into frequency-response function using the Fourier transformation algorithm (Fig. 10). Frequency-response function consists of real and imaginary parts, or of magnitude and phase. Natural frequencies were calculated by using magnitude-frequency dependence (Fig. 10). Mode shapes were calculated by connecting imaginary part peaks of each point for every natural frequency (Fig. 11) [25].
IV. EXPERIMENT RESULTS

Natural frequencies of prestressed suspension bridge physical model depending on prestressing level were determined. The first three experimentally calculated natural frequencies in vertical direction are generalized in Table II, Table III and Table IV, respectively. The first vertical natural frequency changed from 7.24 to 21.69 Hz, the second frequency changed from 14.55 to 32.61 Hz, and the third frequency changed from 21.78 to 40.53 Hz, while prestressing level changed from 0 to 1000 kg, respectively. Dependencies of natural frequencies on the prestressing level are shown as approximation curves in Fig. 12. Dependence of natural frequency on the prestressing level can be evaluated in the form of second order polynomial.

Natural frequencies in horizontal direction are generalized in Table V. Horizontal natural frequencies were 6.84, 8.56 and 27.59 Hz for the first, second and third mode shapes, respectively. Prestressing level was fixed at the level 1000 kg.

TABLE II
NATURAL FREQUENCIES IN A VERTICAL DIRECTION

<table>
<thead>
<tr>
<th>Prestressing level P, kg</th>
<th>1st natural frequency, Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GS 1</td>
</tr>
<tr>
<td>0</td>
<td>7.18</td>
</tr>
<tr>
<td>400</td>
<td>15.26</td>
</tr>
<tr>
<td>600</td>
<td>18.18</td>
</tr>
<tr>
<td>800</td>
<td>19.95</td>
</tr>
</tbody>
</table>

TABLE III
NATURAL FREQUENCIES IN A VERTICAL DIRECTION

<table>
<thead>
<tr>
<th>Prestressing level P, kg</th>
<th>2nd natural frequency, Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GS 1</td>
</tr>
<tr>
<td>400</td>
<td>24.63</td>
</tr>
<tr>
<td>600</td>
<td>28.19</td>
</tr>
<tr>
<td>800</td>
<td>30.42</td>
</tr>
<tr>
<td>1000</td>
<td>32.61</td>
</tr>
</tbody>
</table>

TABLE IV
NATURAL FREQUENCIES IN A VERTICAL DIRECTION

<table>
<thead>
<tr>
<th>Prestressing level P, kg</th>
<th>3rd natural frequency, Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GS 1</td>
</tr>
<tr>
<td>0</td>
<td>21.84</td>
</tr>
<tr>
<td>400</td>
<td>31.61</td>
</tr>
<tr>
<td>600</td>
<td>35.75</td>
</tr>
<tr>
<td>800</td>
<td>38.4</td>
</tr>
<tr>
<td>1000</td>
<td>40.59</td>
</tr>
</tbody>
</table>
TABLE V
NATURAL FREQUENCIES IN HORIZONTAL DIRECTION, Hz

<table>
<thead>
<tr>
<th>Natural Frequencies</th>
<th>GS 1</th>
<th>GS 2</th>
<th>GS 3</th>
<th>GS 4</th>
<th>GS 5</th>
<th>GS 6</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st frequency</td>
<td>6.86</td>
<td>6.81</td>
<td>6.89</td>
<td>6.83</td>
<td>6.82</td>
<td>6.82</td>
<td>6.84</td>
</tr>
<tr>
<td>2nd frequency</td>
<td>8.43</td>
<td>8.46</td>
<td>8.87</td>
<td>8.54</td>
<td>8.52</td>
<td>8.52</td>
<td>8.56</td>
</tr>
<tr>
<td>3rd frequency</td>
<td>27.23</td>
<td>27.48</td>
<td>27.92</td>
<td>27.68</td>
<td>27.69</td>
<td>27.54</td>
<td>27.59</td>
</tr>
</tbody>
</table>

Fig. 12. Dependence of natural frequencies on the prestressing level.

Mode shapes for the first two natural frequencies in vertical direction are shown in Fig. 13 and Fig. 14, respectively. Mode shape for the third natural frequency was not possible to detect precisely. As our model span was equal to 2.1 m and girder ends were not connected to supports, the first mode shape consisted of two half waves, the second and third mode shapes consisted of three and four half waves, respectively. Mode shapes are shown in Fig. 15.

Fig. 13. Mode shape of the 1st natural frequency.

Fig. 14. Mode shape of the 2nd natural frequency.

Fig. 15. Mode shapes of physical model natural frequencies.

V. CONCLUSIONS

Natural frequencies of the physical model of prestressed suspension bridge depending on prestressing level were determined. The first vertical natural frequency changed from 7.24 to 21.69 Hz, the second frequency changed from 14.55 to 32.61 Hz, and the third frequency changed from 21.78 to 40.53 Hz, while prestressing level changed from 0 to 1000 kg, respectively. Dependence of natural frequency on the prestressing level can be evaluated in the form of second order polynomial. Horizontal natural frequencies were 6.84, 8.56 and 27.59 Hz for the first, second and third mode shapes, respectively.

Mode shapes of natural frequencies of the model were determined. It was shown that the first natural frequency mode shape consisted of two half waves, the second mode shape consisted of three half waves, etc. Mode shape with one half wave did not appear.

Experiments showed that dynamic characteristics of prestressed suspension bridge could be regulated by changing the prestressing level. By increasing the prestressing level, it is possible to increase natural frequency and vice versa. This advantage of prestressed suspension bridge allows improving dynamic characteristics of the bridge and excluding possibility of resonance appearance.

ACKNOWLEDGMENTS

This research has been supported by the European Social Fund within the framework of the project “Support for the Implementation of Doctoral Studies at Riga Technical
University”. The authors are thankful to the Structural Analysis Department of RTU and especially to Prof. I.Radins for the opportunity to use acceleration sensors and for advice and consultations on sensor efficient use and data handling.

REFERENCES

Vadims Goremikins was born in Riga, Latvia on 6th February 1986.He is a doctoral student since 2009. He received his Professional Master Degree in Civil Engineering from Riga Technical University, Latvia in 2009. He holds a Professional Bachelor Degree in Civil Engineering from Riga Technical University in 2008.

He currently works as a Researcher at Riga Technical University, the Faculty of Civil Engineering, Building Science Centre. He was an Internal Control Specialist, Guarantee Repair Specialist, Civil Engineer Assistant. He is the author and co-author of more than 30 scientific papers and methodical instructions. His research interests include cable structures and long-span bridges.

Address: Azenes Str. 16-320, Riga, LV–1048, Latvia
E-mail: Goremikins@gmail.com

Karlis Rocens was born in Riga, Latvia on 3rd March 1939. He is a Professor of Structural Engineering and Head of the Institute of Structural Engineering and Reconstruction at Riga Technical University, Latvia. He is a full member of the Latvian Academy of Sciences and a participant from Latvia in COST C25 “Sustainability of Constructions: Integrated Approach to Life Time Structural Engineering”. He is the author of 5 monographs and more than 250 scientific articles. His research interests include modern structures, technological mechanics of wood and composite materials, and structural materials science.

Dmitrijs Serdjuks was born in Riga, Latvia on 23rd March 1971. He acquired a DoctoralDegree in 2001, Master Degree in 1997 fromRiga Technical University.

He is a Professor atthe Faculty of Building and Civil Engineering, Riga Technical University and a Certified Civil Engineer. He was an Associated Professor (2008–2012), Assistant Professor(2004–2008), Lecturer (2001–2004), Assistant (1998–2001) at Riga Technical University, the Department of Structural Engineering.

Investigations are carried out in the field of steel and composite structures and structural optimization. Publications: more than 50 scientific and methodological papers.

Liga Gaile was born in Riga, Latvia on 5th August 1977. She is a doctoral student. She acquired a Professional MasterDegree in Civil Engineering, as well as a Qualification ofEngineer in Civil Engineering fromRiga Technical University (RTU), the Department of Structural Engineering in 2006. She received a Bachelor Degree in Civil Engineering from RTU, the Department of Structural Engineering in 2003. Field of research: structural dynamics.

She currently works as a Lecturer at RTU, the Department of Structural Engineering, Latvia. She was a Structural Engineer at construction consultancy Stirling Maynard and Partners Ltd, UK.

Ms. Gaile is a Head of the Eurocode Technical Committee of Latvia, one of the founders of the Latvian Association of Structural Engineers and a member of the Latvian Association of Civil Engineers, chartered engineer in Latvia.