INTRODUCTION

One of the more informative, safe and affordable methods for diagnosing liver disease is the ultrasound test. This shows changes in the work of this organ and allows the diagnostician to analyze situations that deviate from the norm, as well as to assess the structure, size and manifestations of liver disease in the early stages of their development [19, 21]. It should be noted that diseases such as cirrhosis, portal hypertension, benign and malignant tumors require precise dynamic morphometric control during conservative surgery or chemo-radiation treatment [15].

In undertaking an ultrasound examination, the diagnostician measures the size of the liver and compares this with the standard parameters [5,21]. The performance and results of such research can differ to the norm, depending on the person age, sex and body mass [1,16,20,21]. Attention is drawn to the fact that the anatomical variability indices of ultrasound investigations of the liver are also determined by somatotype, and, accordingly, without the constitutional characteristics of the surveyed, variability can be seen as abnormal increase or decrease of organ [8]. Population studies of constitutional characteristics of liver in practically healthy individuals significantly complements the existing morphological data about regularities of growth and development of the inhabitants of a certain region at various stages of ontogeny. Moreover, these can serve as a scientific basis in the development of regional biomedical health promotion programs [13].

The aim of this study was to determine the features of sonographic parameters of the liver in healthy men of different somatotypes, from the Podilski region of Ukraine.

MATERIALS AND METHODS

The study was undertaken at the Scientific and Research Center of Vinnitsa National Medical University named after M.I. Pirogov, Vinnitsa, Ukraine, wherein, after an initial survey, 602 practically healthy men aged from 22 to 35 years were recruited. They were representatives of Slavic ethnic groups in the third generation who are residing in the Podilski region of Ukraine. After the secondary screening estimation of state of health, carried out using a special questionnaire and by psychophysiological and psychogigienic testing, as well as through careful clinical and laboratory studies, 93 healthy men served as the basis for the conducted anthropometric survey.

The Podilski region is located on the Ukrainian crystal line shield of granitic rock, and the population is exposed to...
the influence of local manifestations of natural radioactivity brought about by elevated concentrations of uranium in the crystalline rocks. The structure of Podilski region includes three regions (Ternopil, Khmelnytsky and Vinnytsia) with a total area of 60.9 thousand square km and a population of 4.6 million people evenly distributed rurally and urbaneiy. The peculiarity of the area is that it contains the highest proportion (90%) of the Ukrainian population. This regional population belongs to the Danubian anthropological type and displays European features. According to F. Vovk [22], the Podilski Ukrainian, as an anthropological type, only slightly differs from the general type. Hence, research results of anthropometric characteristics can be applied to the population of other regions of Ukraine.

Echometric indicators of the liver were measured utilizing the ultrasound diagnostic system “CAPASEE” SSA-220A (Toshiba, Japan), and a convex detector with a working frequency of 3.75 MHz, under conventional methods [18]. We defined the oblique vertical size of the right lobe of the liver on exhalation and inhalation; the thickness of the right lobe of liver during inhalation and on exhalation; the cranio-caudal size of the left lobe of the liver during inhalation and on exhalation; the thickness of the left lobe of the liver on exhalation and on inhalation; the length of the caudate part of the liver; the width of the caudate part of the liver; the densitometry of the right lobe of the liver parenchyma during inhalation and on exhalation; as well as the densitometry of the left lobe of the liver parenchyma during inhalation and on exhalation.

Anthropometric examination was conducted in accordance with the scheme of V.V. Bunak, but as modified by P.P. Shaparenko [17]. To evaluate the somatotype, we used the mathematical scheme of J.L. Carter and B.H. Heath [7].

Statistical analysis of the results was conducted by way of the package “STATISTICA 6.1” (license № AXXR910 A374605FA), employing nonparametric methods of evaluation of the result.

The study was approved by the Bioethics Committee Vinnytsia National Medical University named after M.I. Pirogov (protocol number 7 of 08.06.2015), and the study corresponds to the bioethical and moral-legal requirements of the Helsinki Declaration, the European Convention on Human Rights and Biomedicine (1977), the relevant provisions of the WHO and the laws of Ukraine.

RESULTS

The results of the study of sonographic parameters of the liver in healthy men of different somatotypes are given in Table 1.

In this comparison, we identified the following significant differences: Value 1: thickness of the right lobe of the liver during inhalation, of men of the endo-mesomorphic somatotype. This was significantly greater (p < 0.01) when compared to that of men of the ecto-mesomorphic somatotype; Value 2: width of the caudate lobe of the liver, of men of the endo-mesomorphic somatotype. This was significantly less (p < 0.05) when compared to that of men of the mesomorphic somatotype; Value 3: The densitometry of the left lobe of the liver parenchyma on exhalation, in men of the mesomorphic somatotype. This was significantly less (p < 0.05), when compared with that of men of the ecto-mesomorphic somatotype; Value 4: The densitometry value of the parenchyma of the left lobe of the liver on inhalation, of men of the mesomorphic somatotype. This was significantly less (p < 0.05-0.01) when compared with that of men of the ecto-mesomorphic and endo-mesomorphic somatotypes.

Thus, among several number parameters of liver ultrasound, only the thickness of the right lobe of the liver during inhalation, the width of the caudate lobe of the liver, and densitometry indicators of the left lobe of the liver parenchyma on exhalation and on inhalation revealed somatotype differences.

Table 1. Percentile scope of sonographic parameters of liver in healthy men with different somatotypes, from the Podilski region of Ukraine

<table>
<thead>
<tr>
<th>Sonographic sizes</th>
<th>Mesomorph (n = 42)</th>
<th>Ecto-mesomorph (n = 12)</th>
<th>Endo-mesomorph (n = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVSRL (mm)</td>
<td>142.0-155.0</td>
<td>139.5-149.0</td>
<td>144.0-160.0</td>
</tr>
<tr>
<td>OVSRLB (mm)</td>
<td>109.0-131.0</td>
<td>110.5-123.0</td>
<td>113.5-128.5</td>
</tr>
<tr>
<td>TRL (mm)</td>
<td>134.0-145.0</td>
<td>130.5-140.5</td>
<td>130.0-146.0</td>
</tr>
<tr>
<td>TRLB (mm)</td>
<td>111.0-128.0</td>
<td>109.5-117.0</td>
<td>117.0-129.0</td>
</tr>
<tr>
<td>CCSLLE (mm)</td>
<td>97.5-108.0</td>
<td>93.5-113.0</td>
<td>96.4-107.0</td>
</tr>
<tr>
<td>CSSLB (mm)</td>
<td>100.0-113.0</td>
<td>100.5-114.0</td>
<td>100.0-107.0</td>
</tr>
<tr>
<td>TLLE (mm)</td>
<td>59.5-67.0</td>
<td>57.0-65.3</td>
<td>59.0-71.0</td>
</tr>
<tr>
<td>TLLB (mm)</td>
<td>60.0-68.0</td>
<td>57.5-69.0</td>
<td>61.3-73.6</td>
</tr>
<tr>
<td>LCP (mm)</td>
<td>40.5-51.0</td>
<td>45.0-51.5</td>
<td>36.4-45.0</td>
</tr>
<tr>
<td>WCP (mm)</td>
<td>18.4-24.0</td>
<td>17.8-21.3</td>
<td>13.9-19.7</td>
</tr>
<tr>
<td>DRLPE (db)</td>
<td>8.6-11.9</td>
<td>8.8-12.1</td>
<td>8.0-12.0</td>
</tr>
<tr>
<td>DRLPB (db)</td>
<td>8.6-11.1</td>
<td>9.7-13.1</td>
<td>9.2-13.4</td>
</tr>
<tr>
<td>DLLPE (db)</td>
<td>9.1-11.8</td>
<td>10.4-13.2</td>
<td>10.1-12.6</td>
</tr>
<tr>
<td>DILLPB (db)</td>
<td>8.7-11.4</td>
<td>10.0-13.1</td>
<td>9.7-13.5</td>
</tr>
</tbody>
</table>

Footnote: OVSRL and OVSRLB – oblique vertical size of the right lobe of the liver on inhalation and on exhalation; TRL and TRLB – the thickness of the right lobe of the liver on inhalation and on exhalation; CCSLLE and CSSLB – cranio-caudal size of the left lobe of the liver on inhalation and on exhalation; TLLE and TLLB – the thickness of the left lobe of the liver on inhalation and on exhalation; LCP – the length part the caudate of the liver; WCP – the width of the caudate part of the liver; DRLPE and DRLPB – densitometry of the right lobe of the liver parenchyma on inhalation and on exhalation; DLLPE and DILLPB – densitometry of the left lobe of the liver parenchyma on inhalation and on exhalation.

DISCUSSION

Current literature mostly lists averages data about the size of the liver, pancreas and gall bladder, and this is not accompanied by additional information on the type of constitution [5,20]. What is more, previous studies often are only of the children-adolescent and youth ages [3,4,21]. It is known that changes can occur in the constitutive parts of the liver in disease situations. For example, with cirrhosis, a size increase can be seen in the caudate that is concurrent with a reduction in size of the left lobe and right lobe [12]. In the liver, the right lobe is the most functionally active, thus, at pathology, its size (especially thickness) can vary considerably [15]. Still, a number of authors also point to the autonomy of the caudate lobe of the liver, which has been confirmed by changes in certain pathological conditions. For example, with Budd-Chiari disease, the blood flow from the liver is sent through the caudate lobe, which then significantly increases in size [12,15]. What is more,
the densitometry of the liver parenchyma is important in the diagnosis of acute and chronic hepatitis, cirrhosis, metabolic disorders, calcifications and others diseases that, in addition to determining the type and severity, need long-term control of "positive response" to therapy [19].

In a number of studies, anatomical variability in the liver was found via ultrasound of individual of different ages that had been determined by somatotype and by anthropometric parameters such as height and weight [1,12]. Indeed, according to A.V. Kondrashev et al. [11] and O.V. Chaplygin [8], in individuals at time of puberty, except for the diameter of the portal vein, significant differences can be seen in liver ultrasounds of individuals of different somatotypes, the value of each tending to increase in the number from microsomal to macroosomal type of constitution. In contrast to the above, there are works in which variations in liver sizes, in infants, children and adolescents, is influenced by age and gender differences more than by constitution [16, 20,21]. Such differences can be significant, in contrast to that of adults, wherein, constitution brings about greater differences [16,20,21]. The above is easily explained, because, in teenagers and youth, there is a natural increased growth of soma and internal organs [14], and this is most evident in the liver [10,21].

When analyzing the data derived through ultrasound examination of the pancreas and gallbladder of individuals of different somatotypes, several researchers have noted that the average value of all the studied parameters in subjects belonging to different somatotypes were significantly different from the average "good" values of these indices, hence, there is a somatotypical predetermination of the studied sizes [3,9].

According to data of N.V. Belik [2], in practically healthy boys of the ecomorphic somatotype, the gallbladder size is the smallest, while in mesomorphs, it is the largest. Our results are, however, closer to the data obtained by A.V. Kondrashev et al. [11], wherein all the studied indicators of gallbladder also significantly differ among representatives of different somatotypes and tend to increase in the number of micro-macrosomia. This should be considered when interpreting the data of ultrasound examination of the abdomen. Thus, in deciding the question, is there an increase or decrease of the investigated organs that is related to somatotype, diagnosticians at first must pay attention not to the average standards of their size, but at the features of their configuration and the dimensional characteristics in the representatives of various constitutional types. These results bring us closer to understanding the concept of «population norm» for the above parameters and enable diagnosis pathologies of these organs, which are accompanied by changes in their size, even at the preclinical stage of the disease.

CONCLUSIONS

In almost healthy men of the endo-mesomorphic somatotype, significantly greater (p < 0.01) thicknesses of the right lobe of the liver are evident during inhalation, when compared to that of the ecto-mesomorphic somatotype, while significant lower values (p < 0.05) were seen in the width of the caudate lobe of the liver, when compared with that of the mesomorphic somatotype. Moreover, in men of the mesomorphic somatotype, a significant lower (p < 0.05-0.01) value of densitometry was noted in the left lobe of the liver parenchyma on exhalation, when compared with that of the ecto-mesomorphic somatotype, while a significantly less value of densitometry of the left lobe of the liver parenchyma was seen during inhalation, when compared with that of the ecto-mesomorphic and endo-mesomorphic somatotypes.

REFERENCES