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Abstract: The paper shows how the original semi endogenous and balanced growth model of Phelps (1966), and 
my extended version of it (Gomulka, 1990), could be useful in explaining the key ‘stylized facts’ of global long-term 
growth so far, and in predicting its dynamics in the future. During the last two centuries the sector of R&D and 
education, producing qualitative changes, has been expanding in the world’s most developed countries much faster 
than the sector producing conventional goods. The extended model is used to explore and evaluate. the consequ-
ences for the global long-term growth of the end of this unbalanced growth, of the completion of the catching up 
by most of the world’s less developed countries, and of the expected eventual stabilization of the size of the world 
population. The theory yields a thesis, new in the literature, that the rate of global per capita GDP growth will even-
tually return to the historically standard very low level, thus implying that the world’s technological revolution is 
going to be an innovation super-fluctuation.
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1  Introduction

Angus Maddison in his Contours of the World Economy, 
I-2030 AD (2007) shows that there was a high stability in 
the global per capita GDP trend growth rate in the Middle 
Ages 1000-1500, at a very low level of 0.05% per year, to 
be followed by only slightly higher rate of 0.07% a year 
in the protocapitalistic epoch 1500-1820. But during the 
capitalistic epoch 1820-2000 the trend rate exploded to a 
level about 17 times higher than in the preceding period. 
Under the two assumptions economists now usually 
make, constant returns to scale and labour-augmenting 
technological (and other qualitative) changes, the 
growth rate of GDP per unit of labour is, in the long 
term, determined fully by qualitative changes. These 
changes are produced by the R&D inventive activity, the 
educational activity, and by institutional reforms.

The key stylized fact of the long-term growth of the 
world economy is, therefore, that about two centuries 
ago a remarkably large acceleration in the percentage 
rate of technological and other qualitative changes 
started, and the new exceptionally high rate of these 
changes has since continued.

Following the empirical studies by economic 
historians and development economists, in my earlier 
publications Gomulka (1970, 1971, 1990), I accepted that 
the mechanisms of technological progress in the most 
developed countries, forming the technology frontier area 
(TFA), are quite different than in non-TFA countries, 
known also as emerging economies.

For the purposes in hand it will be useful to regard 
the TFA as a single economy. I shall also assume that 
the inventive activity of that imagined economy is the 
only factor capable of moving the world technological 
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frontier outwards. The inventive activity of the firms 
operating behind the frontier will thus be ignored. As 
an approximation we can think of the United Kingdom 
and parts of continental Europe as the TFA for most of 
the nineteenth century, and of the United States, parts 
of Western Europe and Japan as the TFA for most of the 
twentieth century.

A family of macroeconomic models of innovation 
and growth, the so-called endogenous growth theory, 
was created in the second half of last century. Their 
primary purpose was to explain changes in the joint 
factor productivity, and to find the rates of GDP growth 
which would obtain when resources of labour and 
capital are distributed in an optimal manner between 
sector I, of conventional production, and sector II, mainly 
R&D and education, producing qualitative changes. As 
interpreted by Grossman and Helpman (1991) and noted 
by Jones (1995), in many initial models of that theory, 
and the model discussed in this paper does not belong 
to that category, permanent changes in certain policy 
variables have permanent effects on the rate of economic 
growth. According to Jones, such permanent changes 
have taken place, but „growth rates of GDP per capita 
show little or no persistent increase”(p. 495). During 
the last 20-25 years a second generation of endogenous 
growth models were developed, beginning with, among 
others, Peretto (IER 1996, JEG Dec 1998), Dinopoulos 
and Thompson (JEG 1998), Young (JPE 1998) and Howitt 
(JPE 1999). These models appear to perform better in 
empirical tests. Still, it remains to explain the causes 
and the consequences of the central feature of the world 
economy in general, and of its TFA part in particular, 
namely that during the last two centuries there has been 
an unbalanced growth: an expansion of sector II. much 
faster than that of sector I.

Two centuries is a relatively short period of time 
by historical standards. The unusually high innovation 
rate, supported by an unusually high growth rate of 
the world population during that period, is therefore 
still an exception in the history of humanity. Since 
the growth of the world population and much faster 
growth of sector II than sector I must eventually both 
come to an end, probably in the course of this century, 
there is a possibility that the exceptionally high rate 
of technological innovations, and of other qualitative 
changes, of the last two centuries will be followed by 

a declining rate. Such an innovation slowdown would 
have rendered the technological revolution to be at once 
a transitory phenomenon and one which would forever 
be seen as a huge innovation outburst or an innovation 
super-fluctuation.

The primary purpose of this paper is to investigate 
this prospect in order to identify the key assumptions 
and parameters which are to affect its likelihood and 
the time-scale. The analysis represents a development 
of the ideas by Edmund Phelps (1966). This in three 
directions. One is to strengthen the theoretical and 
empirical foundations of the model. The second is to 
consider the dynamics of growth in the TFA over the 
last two centuries, when sector II has been and still is 
expanding (much) faster than sector I. And the third 
is to note the future implications for the global growth 
rate of the per capita GDP of the expected stabilization of 
the size of the world population and of the substantial 
disappearance of the presently still strong duality of the 
world economy, as the per capita GDP and wealth in the 
TFA countries are yet much higher than in the non-TFA 
countries.

2 The key stylized facts of 
economic growth

The statistical data on global long-term economic 
growth have certain fundamental characteristics, termed 
‘stylized facts’, which the growth theory must explain 
first and foremost. Possibly the best known such ‘facts’ 
were originally those of Kaldor (1961). Now we have 
also five ‘facts’ of Easterly and Levine (2001) and six of 
Jones and Romer (2009). In Gomulka (2017) I present 
and discuss these much different two lists, adding to 
them one of my own Gomulka (2009). This particular list 
consists of seven ‘facts’. These are as follows:

With respect to all countries:
1.	 The great acceleration in the growth rate of world 

GDP per capita, and still more per working hour, 
took place some two centuries ago, and a historically 
exceptionally high growth rate has since continued;

2.	 Over the past two centuries there has been a large 
variation in the rate of per capita growth between 
countries, leading to the very high degree of duality 
of the world economy by the end of the 20th century.



177    CEEJ 6(53) ● 2019 ● pp. 174-188 ● ISSN 2543-6821 ● DOI: 10.2478/ceej-2019-0009                                                                                       

With respect to the TFA countries:
3.	 During the past two to three centuries, there has 

been a far more rapid growth of inputs of labour and 
capital in the sector producing qualitative changes 
than the growth of inputs in the sector producing 
conventional goods;

4.	 The growth rates of inputs in both sectors have been 
stable over time. Likewise, the growth rate of the ratio 
Y/L, output per manhour, has been stable, although 
very much higher (an order of magnitude greater) 
than during the many centuries that preceded it;

5.	 The rate of growth of the ratio Y/L has been and is 
relatively stable over time, differs to a small extent 
between countries, and depends weakly on the ratio 
of investment to the gross domestic product (GDP).

With respect to non-TFA countries:
6.	 The rate of growth of Y/L varies strongly over time 

and between countries;
7.	 The growth rate of Y/L is strongly dependent on the 

level of investment as a fraction of the GDP.

At the level of firms in the TFA countries we observe 
a huge variation in the ratio of R&D expenditures 
to sales and a huge variation in the rate of return on 
such expenditures. This makes it difficult to provide 
microeconomic foundations to a macro growth theory. 
However,, as noted in facts 3 to 5, during the last two 
centuries there has been little variation over time and 
across countries in respect to some key macro variables. 
This suggests that a macroeconomic approach to a theory 
of long- term growth for the TFA should be successfully 
attempted. In non-TFA countries we have a completely 
different set of data: a large variation over time and 
across countries in respect to key macro variables and a 
marginal contribution of their own inventive activity to 
the world inventive output. This suggests a fundamental 
role there of factors determining international 
technology transfer from the TFA, hence the key role in 
those countries of institutions and economic policy, to 
explain economic growth.

Since Phelps’s model is a point of departure for this 
analysis, I shall begin by presenting it in some detail. 
However, it should be stressed from the outset that that 
model and its optimal growth path apply only to the TFA, 
and only to a future target situation of balanced growth. 
The model does not say anything about the growth path 

for the global economy during the transitional period 
of some probably three-four centuries, during which 
a gradual adjustment takes place of the distribution of 
global resources of capital and labour between sectors 
I and II, from their very low, highly suboptimal levels 
in sector II about two centuries ago to much higher, 
optimal ones, in a century or two.

The pace of this redistribution of resources has been 
so far quite stable (stylized facts 3 and 4). The purpose 
of my extended model is to study the growth dynamics 
during the adjustment period, assuming that the pace of 
redistribution will continue unchanged. As no attempt 
is made to explain this pace of redistribution, the model 
is not fully endogenous. Phelps’s model of the end-point 
economy is neoclassical, but my growth model of the 
transition to that endpoint state is, using the Nelson-
Winter terminology, evolutionary. Still, I assume in my 
extended model that the technology function which 
Phelps proposed applies during the entire adjustment 
process.

3 The Phelps model of innovation 
and balanced growth

The key equations of the model are as follows:

( ),Y F K TN= 	 (1)

( ),T H E T= 	 (2)

E M R Lb m g= 	 (3)

( )0L N R L exp nt= + = 	 (4)

According to (1), the net output Y of the conventional 
sector is dependent on the capital stock K and the 
‘effective’ labour TN, where T represents an index of the 
quality of capital and labour, and N represents labour 
input in terms of man-hours. Qualitative changes are 
thus assumed to be purely labour-saving (or labour-
augmenting). Equations (2) and (3) represent an 
embedded two-level production function for the output 
of sector II, where in (2) the dot over T denotes the time 
derivative. In the original model, sector II is limited to 
the production of new technology, E is the amount of 
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research produced when researchers R are equipped 
with capital M and selected from a total labour force L. 
This research, in turn, brings new technology ∆T, and in 
(2) this addition is assumed to be influenced positively 
by T itself. The reason is that innovation also builds on 
accumulated past research.

In this paper I shall continue to use the term 
„technology” for the index of all qualitative changes, 
which apart from technological innovations include 
also improvements in human capital and in institutions. 
Therefore, persons R shall include also teachers.

In (1) and (2) constant returns to scale are assumed, 
but the elasticities of substitution between K and N and 
between E and T need be neither unitary nor constant. In 
(3) the partial elasticities with respect to inputs R and M 
are constant and, to be consistent with the optimal macro 
conditions (8) and (9) implied by the model, the sum of 
these elasticities need be less than 1 (See also equation 
(15) and the comment on that equation). This particular 
feature of the theory means that the productivities of 
these two inputs decline as their size increases. The 
empirical evidence reported and discussed recently 
in a paper by Bloom et al. (2017), fully supports this 
important feature.

The elasticity of substitution between any two of 
the three ‘factors’ in (3) was assumed by Phelps to be 
unitary. This assumption is highly restrictive and it will 
be dispensed with later in the paper.

Let the partial elasticity of the function F with 
respect to K be denoted by a, and the partial elasticity of 
the function H with respect to E by b. The assumption of 
constant returns to scale implies that:

a = a (K / TN), b = b (E / T), and 0 < a, b < 1

The Phelps technology production function has two 
important and intuitively appealing properties. One is 
that the same research effort will be more productive if 
it is spread evenly over a longer period of time rather 
than being concentrated in a short period. To see this, 
consider a variable period ∆t, a steady research flow E, 
and a constant total research effort E∆t. Denoting the 
latter by c, we have that E = c/Δ t and Δ T = H(c/Δ t, T)Δ t.  
Hence ( )/ 1 0T t b H∂D ∂ = − >�ΔT/ ( )/ 1 0T t b H∂D ∂ = − >�∆t = (1 - b) H > 0, which confirms that 
∆T increases with ∆t, given c. An implication of this 
property is that research effort allocated evenly over a 

period of time is assumed to be more productive than 
an equivalent total research effort which proceeds in fits 
and starts.

Another important property of the Phelps 
technology function is that it attempts to capture the 
inherent heterogeneity of people with respect to their 
inventive ability. If we assume that in the inventive 
activity most inventive persons are employed first, the 
research capability of a given number of such persons 
can be expected to increase as the total pool from which 
they are selected increases. This is the reason why L is 
an argument in the E function. Specification (3) is rather 
ad hoc, but we shall provide its theoretical justification.

3.1 The optimum research intensity and 
the equilibrium innovation rate

‘Empirical evidence tells us that in the past two centuries 
or so the technology-producing sector has usually been 
expanding much faster than the conventional sector. 
It is instructive, however, to consider first the case of 
balanced growth. Accordingly, suppose that Y, K, and 
M all change at a common constant growth rate, to be 
denoted by g, and that L, N, and R change at another 
constant rate n. From (1) we have:

g na= + 	 (5)

where, 'Ta =  the growth rate of all qualitative changes. 
in short the innovation rate. Thus indeed in the long run 
the per capita GDP growth rate is determined fully by 
this innovation rate.

Important notation: Here and throughout the paper 
the upper-case comma denotes the time derivative of the 
indicated variable divided by the variable itself, or the 
growth rate of that variable.

Given the assumption of constant returns to scale, it 
follows from (2) that ( )/ ,1H E Ta = . Thus the rate a is 
constant, a requirement of balanced growth, only if T is 
proportional to E, say T  = hE.

We also note that under balanced growth, 
gross investment in fixed capital equals 

( )( ),  K K M M or g K Md d d+ + + + +  , where d is the 
depreciation rate. Therefore the level of consumption is 
as follows:
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( ){ } ( )( ), , , ,C F K E M L N L N g K Mh d= − − + +( ){ } ( )( ), , , ,C F K E M L N L N g K Mh d= − − + + 	 (6)

This level is at a maximum if the inputs K, M, and N are 
chosen to meet these first-order optimality conditions:

KF g d= + 	 (7)

1M a
K a

b−
= 	 (8)

R
N

m= 	 (9)

Condition (7) gives the optimal capital intensity in the 
conventional sector, while (8) and (9) give the optimal 
sectoral distribution of the two resources, capital 
and labour. Using these conditions we can find gross 
capital investment in each sector. We can also find the 
optimal (balanced-growth) research intensity, i.e. the 
expenditure on wages and investment in the technology 
sector as a proportion of the conventional output. Gross 
investment is, in the conventional sector:

( ) K K
Kg K F K F Y aY
Y

d  + = = = 
 

and, in the technology sector:

( ) ( ) ( )1Mg M g K a Y
K

d d b+ = + = −

Subtracting total investment from output gives 
consumption. Now, suppose that consumption is the 
same as the total wage income and that wage rates are 
the same in both sectors. Condition (9) enables us to find 
the wage income in each sector. Thus we have obtained 
both the investment and the wage element of the R&D 
expenditure. The research intensity i - the share of total 
conventional output devoted to the technology sector - 
is in this case:

( ) ( )1 1
1

i a mb b
m

 
= − + − + 

	 (10)

Since, in this model, a is the share of gross investment 
in the conventional sector, it can be expected to be less 

than 0.5. If presently observed values of M/K and R/N in 
the TFA are any indication of their optimal values, then 
by (8) and (9) both m and b are small and, consequently, 
both 1+m and 1−b are close to unity. The optimal research 
intensity can therefore be approximated as follows:

( )( )1i a b m≈ − +

Of central interest, however, is the magnitude of the 
equilibrium innovation rate a. We obtain it by recalling 
that T Eh= , from which it follows that 'T Ea = ′ = .  
From (3) we have in turn that ( )E M nb m g= + +′ ′ .  
However, according to (5), M na′ = + . Therefore 

( ) ( )n na b a m g= + + +  which gives:

*

1
nb m ga a

b
+ +

= =
−

	 (11)

The asterisk indicates that this is the equilibrium rate.
Two important implications of the result (11) can be 

noted immediately. One is that if b and m are significantly 
less than unity, and there are indeed good grounds to place 
them between zero and 0.1, then the heterogeneity of the 
labour force with respect to inventive ability, represented 
by g, may be a key factor determining the innovation rate. 
The other implication is that if the population of the TFA 
ceases to grow, so that n = 0, the innovation rate would 
be still positive at any finite time, but it would be falling 
continuously and be zero in plus infinity. So, in this case a 
long-term equilibrium does not exist.

4 Human inventive and 
innovative heterogeneity and 
technological progress in the 
technology sector itself: two 
generalizations

Inventive ability is known to differ substantially between 
individuals. Figure 1 shows a possible distribution of the 
working population with respect to this ability v. What 
matters for us is not the innate or natural inventive 
ability but the actual inventive ability, given possible 
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environmental influences such as quality of schooling, 
family circumstances, and attitudes to learning, as well 
as the system of incentives and values encouraging 
potential inventors to make use of their potential. If the 
‘screening methods’ of the ‘appointments committees’ 
are appropriate, the research workers would be 
represented by the shaded area in Figure 1 below the 
upper tail of the distribution Lr(v).

Our first substantial modification of the Phelps 
model is to assume that this tail is a Pareto-type function, 
an assumption often adopted in economics (for example, 
to describe the upper tail of the distribution of income or 
wealth). In this case, R/L = prob(v>vmin) = C1(vmin)-λ where 
l > 1 and Cl is a positive constant. It follows that, for v > 
vmin, the underlying density distribution is r(v) = lC1v-λ-1. 
The total inventive ability of our R researchers can now 
be calculated:

( ) 1 1/ 1/
2

v

v v  v
min

V L d C R Ll lr
∞

−= =∫ 	 (12)

where ( ) 1/
2 1{ / 1 }C C ll l= − . This result justifies 

specification (3). Moreover, writing (3) as vE C M Vm b= ,  
we have that ( )í 1 1/m l= −*

1 1
n ne b na

e b n
+

= =
− − −

( )í 1 1/m l= −  and í /g l=*

1 1
n ne b na

e b n
+

= =
− − −

í /g l= . 
Consequently, in this case m g+  in expression (11) for 

*a  would be equal to *

1 1
n ne b na

e b n
+

= =
− − −

; the innovation rate *a  would 
thus be independent of the ability variation parameter l.

Our second modification of the Phelps model is to 
regard T as an index of quality of the standard inputs, 
labour and capital, and to extend the R&D sector by 

the educational activities, to form a Q sector. When 
the labour input in the quality producing sector II is 
expressed in units of ability-hours, as in (12), rather 
than in man-hours, as in the original Phelps model, then 
the E function need not be of the very restrictive Cobb-
Douglas form to permit balanced growth. The least 
restrictive specification that would still be satisfactory is:

( ),E E M TV= 	 (13)

where V is multiplied by T to account for technological 
change also enhancing the research and education 
capability of the researchers and teachers themselves. 
Equation (13) is our third modification of the model. 
Specifications (1) and (13) are now symmetric. 
Consequently, the elasticity of substitution between M 
and V, as between K and L in (1), need be neither unitary 
nor constant. Parameter b continues to be the elasticity of 
E with respect to M, and *

1 1
n ne b na

e b n
+

= =
− − −

 now stands for the elasticity 
of E with respect to TV.

It is interesting to note the implication of replacing 
(3) by (13) for the magnitude of *a , the key variable of 
the model. Let e be the scale elasticity, assumed constant, 
of the E function. Hence:

( ) ( )/ ,1E T V E M TV T V e me e e e= = 	 (14)

Where /m M TV= . On a balanced growth path m is a 
constant and therefore ( )E T Ve′ ′ + ′= . However, E′ = T′ 
and V′ = n. Hence the balanced growth innovation rate 
would be:

*

1 1
n ne b na

e b n
+

= =
− − −

	 (15)

This result is similar to (11) where, incidentally, 
b m g+ +  is the same as e in (15). In particular, despite 
allowing for (labour-saving) technological change in the 
Q sector, the equilibrium innovation rate still remains 
proportional to the population growth rate. Conditions 
(7)-(9) for the optimal distribution of capital and labour 
between the two sectors, conventional production and 
quality enhancing, also remain unchanged. However, 
for (15) to make economic sense, research activity must 
be subject to diminishing returns to scale (e < 1).

v (Inventive ability)

Fig. 1: The Distribution of the total working population N and R 
with respect to inventive ability v.
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5 Price’s two laws and the 
‘technological revolution’: the 
case of unbalanced growth

The term ‘technological revolution’ is one of those 
which are used often without being defined precisely. 
The term seems intuitively clear enough; it means a 
period of ‘unusually’ rapid innovation in a particular 
sector, country, or the world as a whole. Some authors 
distinguish major bursts of world innovative activity, 
such as that based on the steam engine and consequent 
mechanization, or electrical power and its applications, 
or inventions in electronics and telecommunication, or, 
recently, microelectronics and the use of robots. They 
refer to these bursts of innovations as technological 
revolutions - first, second, and so forth - in their own 
right. Such distinctions are sometimes useful to a social 
scientist by their virtue as indicators of the changing 
content of the innovation flow, with its implications 
for changes in the skills required, social stratification, 
social mobility, and the rate of spread of information 
and ideas. However, for the economist it is the rate of 
innovation flow as such, rather than the flow’s specific 
content, which is of central interest.

What is meant, then, by an ‘unusually’ high rate of 
innovation? It must be a rate which cannot be sustained 
‘forever’, i.e. an innovation rate which is greater than the 
balanced-growth innovation rate, or *a  in (15). In terms 
of our two-sector economy, technological revolution can 
therefore be defined as a prolonged period of economic 
growth in which the technology sector is expanding 
faster than the conventional sector. Such unbalanced 
growth cannot be sustained for ever, but as long as it 
lasts it does give rise to *a a> .

A convenient measure of the expansion of any sector 
of economic activity is a weighted sum of the growth 
rates of the inputs employed in that sector - labour and 
capital in the case of our present model. The data on the 
growth rates of these two inputs in the technology sector 
vary in quality among countries and between different 
periods. However, such records as we have indicate that, 
over the last two to three centuries, the world Q sector 
II has been expanding (i) nearly exponentially and (ii) 
much faster than the conventional sector I. The empirical 
propositions (i) and (ii) are among the key stylized facts 

concerning technological change and long-term growth 
that have been (relatively) well established. According 
to the science historian, Derek de Solla Price:

“many numerical indicators of the various fields and 
aspects of science... show with impressive consistency and 
regularity that if any sufficiently large segment of science 
is measured in any reasonable way, the normal mode of 
growth is exponential.” (Price 1963: 4-5)

Price suggests that this steady exponential growth of the 
size of world science has been maintained for the past 
two to three centuries. Because of this long period of 
validity, he calls it the ‘fundamental law of any analysis of 
science’ (Price 1963: 5). We shall refer to it as Price’s first 
empirical law. His second empirical law is as follows:

“depending on what one measures and how, the crude 
size of science in manpower or in publications tends to 
double within a period of 10 to 15  years. The 10-year 
period emerges from the catchall measures that do not 
distinguish low-grade work from high but adopts a basic, 
minimal definition of science; the 15- year period results 
when one is more selective, counting only on some more 
stringent definition of published scientific work and those 
who produce it.” (Price 1963: 6)

The steady doubling every 10 to 15  years gives the 
growth rate of the world scientific membership as 
between 4.7 and 7.2 per cent per annum. Judging from 
the detailed country data for the past 50 years or so, the 
total labour input in both research and development 
has been increasing about as rapidly as the number 
of scientists alone. These data also indicate that the 
non-personnel (real) expenditure on R&D has been 
expanding somewhat faster than the R&D personnel. 
These two growth rates in the period 1750-1975 have 
apparently been much higher than the growth rates of 
labour and capital in the conventional sector, which 
were roughly 0.7 per cent (the growth rate of the world 
population) and 1.7 per cent (the growth rate of the 
world GDP) respectively. It is this wide disparity in 
the sectoral growth rates, in favour of the technology 
sector, which above all underlines the phenomenon 
of ‘technological revolution’. Such a disparity cannot 
be maintained for ever; in fact there has already been 
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a significant slow-down in world R&D growth since 
about 1970. The balanced-growth solution of the 
previous section is relevant only with reference to an 
equilibrium configuration that was present in the distant 
past and will emerge in the (possibly less distant) future. 
However, the past two or three centuries represent a 
period of highly unbalanced growth that needs separate 
consideration. We shall do this in this section.

We retain the model specifications (1)-(4) of the 
previous section, except that (3) is replaced by (13). We 
also retain the assumption that the capital-to-output 
ratio in the conventional sector is constant. However, 
neither the savings ratio nor the growth rates of total 
output and its components need be constant. Let N 
with subscript 1 be the number of workers engaged 
in producing capital goods for the quality enhancing 
sector. The assumption that the capital- to-output ratio 
is constant implies that, as in the previous section, the 
productivity of these workers is proportional to the 
aggregate level of technology T. Hence the growth rate 
of capital employed in the quality enhancing sector is

1M na′ = + 	 (16)

The growth rate of the labour input in the quality 
enhancing sector is

2R n′ = 	 (17)

Price’s two empirical laws are
(i)	 that n1 and n2 have both been significantly 

greater than n, and
(ii)	 that they have been approximately constant.
Given n1 and n2, we can now obtain the innovation 

rate from equations (2) and (13).
Assume ( ) 1, b bH E T E T −=  and ( ) ( ),E M TV M TV nb=  

where V is given by (12) and the elasticities b, b, and 
n are all constant. With these specifications the system 
determining a is as follows:

'b bEa a =′+ 	 (18)

( )E M Vb n a= +′ +′ ′ 	 (19)

1 1V R nl
l l

′ ′−
= + 	 (20)

The growth rate of research effort is, in (18), the 
propelling force that determines the dynamics of the 
innovation rate. This growth rate is in turn determined 
by the growth rates of Q inputs, the measure of the labour 
input taking due account of the variation in inventive 
ability, and the effect of innovation on efficiency in the 
Q sector itself.

Superimposing the stylized facts (16) and (17) on 
the system (18)-(20) yields the following differential 
equation for ( )ta :

( ) 1 2
1 1 11 1n n n
b

b n a a b n
l l

  − − + = + + −  
  

′ 	 (21)

Hence

( ) 1 2
1 1 11 1n n n
b

b n a a b n
l l

  − − + = + + −  
  

′ ( )( )*1 TRba b n a a= − − − 	 (22)

where

( ) ( ){ }1 2* 1/ 1 1/
1TR

n n nb n l l
a

b n
+ + −

=
− − 	 (23)

From (22) it follows that ( )ta  approaches *
TRa  with 

time. This *
TRa  stands for the ‘equilibrium’ component 

of the innovation rate in the course of the technological 
revolution. Equation (22) can be solved numerically to 
give a as a function of time:

( ) ( )( ) ( )( )* *0 1TR TRt exp b ta a a a b n= + − − − − increaseing if ( )ta< *
TRa  and declining if ( )ta> *

TRa 	 (24)

A growth slow-down in Q activity has taken place 
in the TFA during the last half a century. If the slow-
down means that the optimal ratios of R/N and M/K are 
about to be or have already been achieved in the TFA, 
we can use the optimality conditions (8) and (9) for 
estimating the values of the parameters that appear in 
(23). These conditions are that ( )1 1/ /R Nn l− =  and 
( )1/ 1 /a M Kb − = . Guided by empirical evidence we 

also assume that R/N = M/K and n1 = n2. Consequently, 
the following relationship can be obtained:

( ) ( )
( )( ) ( ) ( )

1* 1 1
1 1 ( / ) 1 1TR

n a n
a N R a a
l

a
l l l

− + −
=

− − − − − − 	 (25)
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It should be noted that the higher is the value of l the 
lower would be the proportion of highly innovative 
individuals; the case of l = ∞  is the limiting situation 
where no very innovative talent is present.

According to Price, the rate n1 has been somewhere 
in the range 4-8 per cent. Given this range, it is instructive 
to find the values of l for which the rate *

TRa , as given 
by (25), would be approximately equal to the innovation 
rate actually observed. These values are presented in 
Table 1. Since our knowledge of the optimal ratio R/N is 
uncertain, the table provides the values of l for a range 
of R/N from 1 to 5 per cent.

6 A consistency test of the model 
and Lotka’s law

The instructive point of this numerical example is the 
result that, for the probable values of aTR and R/N, the 
model we discuss predicts l to be only somewhat greater 
than unity. If there was independent evidence indicating 
that the l actually observed is in fact not far from unity, 
the model would pass an important empirical test.

The trend growth rate of GDP per man-hour, which 
can be taken as a measure of a, was 2.3 per cent per annum 
in the United States in the period 1870-1970 (Maddison, 
1979). Since the growth rate was fairly stable during that 
period, it can also be taken as a measure of a* TR .

An indication of the value of l is provided by studies 
of the frequency distribution of scientific productivity. 
A pioneer investigation of this type was made by Lotka 
(1926). The result of his investigation, later repeated 
and confirmed by several others, is the finding that the 
number of scientists producing m papers within their 
lifetime is approximately proportional to 1/m2. The 
number of publications or the number of inventions 
is, of course, only one of several possible measures of 
inventive power. The measure may be a poor guide 
for judging the weight of the contribution to science 
or technology of any particular individual, but a good 
guide for the ‘representative’ scientist (inventor).

If we take m as a measure of the inventive ability, 
denoted by v in equation (12), Lotka’s law asserts that our 
frequency distribution r(n), the distribution specified 
in (12) as C1 v−λ−1, is proportional to v-2, implying that  
l = 1. Several other investigators have since repeated 
such publication counts. According to Price, they all 
confirm Lotka’s result, ‘which does not seem to depend 
upon the type of science or the date of the index volume’ 
(Price 1963: 43). Moreover, Lotka’s law is known to 
overestimate somewhat the proportion of researchers 
with a high m (Price 1963: 46-9). This in turn implies 
that the ‘true empirical’ l is in fact somewhat greater 
than unity. It is interesting, indeed remarkable, that 
such values of l also happen to be the requirement of 
the theoretical model discussed in the previous section. 
Lotka’s law thus seems to provide empirical support 

Tab. 1: The values of l as implied by (25), given a* TR, n1, and R/N, and assuming that a =0. 2 and n = 0.7 per cent

α* TR  (%)
n1 (%)

λ
R/N = 0.01 R/N = 0.02 R/N = 0.03 R/N = 0.04 R/N = 0.05

1 4 1.02 1.04 1.06 1.09 1.13

6 1.02 1.04 1.07 1.11 1.15

8 1.02 1.04 1.07 1.12 1.19

2 4 1.01 1.03 1.05 1.06 1.08

6 1.01 1.03 1.05 1.07 1.08

8 1.01 1.03 1.05 1.07 1.10

3 4 1.01 1.02 1.04 1.05 1.07

6 1.01 1.02 1.04 1.06 1.08

8 1.01 1.02 1.04 1.06 1.09

Note: The values of l are rounded to two decimal places.
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for this particular theory of technological change and 
economic growth.

7 The Hat-Shape Relationship 
and the hypothesis of innovation 
limits to growth

The story of technological change and growth that is told 
by the theory of this paper is one in which the technological 
revolution is a phenomenon of the TFA when the key 
resource ratios R/N and M/K are rising fairly fast to 
reach their optimum levels, and when the key growth 
rates n1, n2 and a are temporarily significantly higher 
than their balanced growth magnitudes n and *a . The 
last two centuries are not the only ones when inventive 
activity, in terms of the inputs used, has been expanding 
faster than conventional activity. The history of science 
and technology provides ample evidence of significant 
bursts of inventive and innovative work in Europe in the 
Middle Ages, as well as in the ancient civilizations of the 
Middle East, China, and the Mediterranean. However, 
what makes the present technological revolution 
qualitatively quite unique is the circumstance that the 
growth rates n, n1, and n2 have apparently all been much 
higher than ever before over a prolonged period, giving 
rise to a correspondingly much higher innovation rate 
with profound implications for the pace of economic and 
social change in much of the world.

In the past century or two the relative size of sector II 
has been rising rapidly, but this change of size apparently 
did not influence the innovation rate very much, which 
remained fairly stable in the TFA. This stylized empirical 
fact agrees well with our equations (22) and (23), since 
the growth rates of inputs in that sector, rather than 
their levels, influence the innovation rate. In equation 
(23), these levels could influence a only through the 
parameters b and *

1 1
n ne b na

e b n
+

= =
− − −

. Therefore, we can deduce that these 
parameters have been almost independent of the ratios 
M/K and R/N respectively and that the actual a was near 
to * .TRa

Given the apparent stability of b and n so far, it is fair 
to assume that the two parameters will remain in future 
about the same as they were in the past. However, the 
future will bring about two important new phenomena: 

(i) an inevitable fall in the employment growth rates 
n1 and n2 to about n, as the technology sector ceases to 
claim an increasing share of resources, and (ii) an equally 
inevitable fall of the rate n itself to about zero as the size 
of the world population must eventually stabilize. It is 
interesting, in the light of our theory, to find what the 
impact of these two phenomena on the innovation rate 
in the TFA will be.

7.1 Case (i): end of the faster growth of the 
technology sector

From (23) it follows that for n1 = n2 = n the target 
innovation rate would be

*

1
nb na

b n
+

=
− −

	 (26)

The actual rate a(t) would be falling from a* TR  to a*. Let 
us express a* in terms of a* TR :

( )
{ }

* *

1 2(1/ ) (1 1/ ) TR

n
n n n

b n
a a

n l l
+

=
+ + − 	 (27)

To illustrate the possible size of the fall, suppose that 
on a balanced growth path M/K = R/N= constant. 
Suppose also that in the past n1 = n2, n = 0.7 per cent, 
and a = 0.2. On using the optimality conditions, namely 
that ( ){ }/ 1 /a a M Kb = −  and ( ){ }/ 1 /R Nn l l= − , 
expression (27) implies that:

( ) ( ){ }
( ) ( ){ }

* *

1

1 / 1
1 1 / 1 / TR

a an
a n n

l l
a a

l
+ − −

=
+ − −

	 (28)

Lotka’s law suggests that the value of l is not much 
greater than unity; suppose that it is at most 1.2. The ratio 
n1/n is unlikely to have been greater than 10. Substituting 
these two numbers into (28) gives the lower limit for a*, 
which turns out to be about 0.35 *

TRa . Thus, the upper 
limit for the innovation slow-down is from *

TRa  down 
to 0.35 *

TRa . The size of the slow-down is sensitive to the 
value of l. Taking l = 1.1 and retaining the values of the 
other parameters gives * *0.49 TRa a= .
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7.2 Case (ii): end of the world population 
growth

Should the population of the TFA cease to grow, the model 
predicts that while the innovation rate would be positive at 
any finite time, it would be falling continuously from *

TRa   
to near zero after a sufficiently long period. This is 
clearly an interesting prediction, especially since an end 
to population growth in the TFA, and eventually in the 
whole world, may not be far off. It is therefore important 
to discuss the model’s implications for the innovation 
rate and economic growth in this case.

If the population is constant and a constant 
proportion of it is engaged in Q-type activities, our 
variable V, denoting the total number of researchers and 
teachers corrected for their inventive and educational 
ability, is also constant. The index of quality is 
nevertheless increasing. This is because technological 
progress still takes place, increasing not only the output 
of the conventional sector, and therefore investment M, 
but also the productivity of inputs M and V in the Q 
sector. Both M and TV are in fact rising at a common 
rate equal to a. However, the scale elasticity b + n of the 
E function must be less than unity if equation (23) is to 
make economic sense. However, if 1b n+ < , the research 
output would grow at a rate less than a. The ratio E/T 
would therefore be declining. Hence ( )/H E Ta =  
would also be declining.

It should be noted that absolute annual additions 
to the technology level, if following the rule that  
D ( ),T H E T=� , would continue to be increasing with 
time. However, these additions would be increasing at 
a falling percentage rate, to become eventually nearly 
constant. Total conventional output, capital stock, 
and consumption would all also continue to increase. 
However, instead of increasing at a nearly geometric 
rate, as they did when the technology sector II itself 
had been expanding nearly exponentially, they would 
be increasing at a nearly arithmetic rate. The innovation 
limits to growth should therefore be understood to mean 
a very long-term growth slow-down, both technological 
and economic, but not necessarily an end to economic 
growth. The model does not imply that there is any finite 
upper limit to the level of technology or conventional 
output; such a limit is known to arise if some essential 
inputs were both non-reproducible and difficult to 

substitute for by reproducible inputs, with the relevant 
elasticities of substitution being less than unity. In our 
model the labour input is the only natural resource, 
but it is one which is reproducing itself; it is not non-
reproducible.

It seems obvious, or at least possible, that if the world 
is finite, everything is finite, including the scientific and 
technological knowledge that is still to be discovered. 
In the model the innovation limits of this ultimate kind 
are implicitly assumed to be so distant as to have no 
impact on the inventive productivity of our researchers. 
However, this factor may be expected to reinforce the 
innovation slow-down in due course.

7.3 The Hat-Shape Relationship

In (Gomulka, 1990) I discussed the variation of innovation 
rates among countries at different levels of development 
in any relatively short period of time, such as a decade. 
I noted that such a cross-country variation tends to 
form a hat-shaped pattern, with the medium-developed 
countries tending to experience faster innovation than 
both the least and the most developed countries.

Our discussion in this paper is limited to the TFA 
of the world. The central question is how the area’s 
innovation rate changes over time in the course of 
centuries. This is thus ‘one-country’ dynamic analysis. 
This analysis indicates that the pattern of change of the 
innovation rate over time may also be eventually hat-
shaped. The First Hat-Shape Relationship is an empirical 
law that is given a theoretical interpretation. The Second 
Hat-Shape Relationship seen in Figure 2 is in part a 
prediction based on a particular model of innovation 
and growth. Its acceleration and steady growth 
segments correspond well to the past reality. However, 
its slowdown part is yet to be tested.

The five periods distinguished in Figure 2 have the 
following characteristics:
(i)	 The growth rates n1, n2, and n are all very low, close 

to zero. Consequently the innovation rate is also 
low.

(ii)	 (n1, n2) » n, and the population growth rate n is high. 
The actual innovation rate increases from the very 
low level of the previous period, approaching the 
target innovation rate *

TRa  at the end of period (ii).
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(iii)	(n1, n2) » n and *
TRa a= : This is a period of balanced 

growth in the sense that the trend growth rate of per 
capita GDP is fairly stable, but it is unbalanced in 
the sense that the sector upgrading the quality of the 
labour and producible material inputs is expanding 
much faster than the conventional sector.

(iv)	n1 = n2 = n, but n is still high. In those circumstances 
the target innovation rate may continue to be 
high, though lower than in periods (ii) and (iii). 
The actual rate is higher than the target rate, but 
approaches gradually the latter, triggering off a 
global innovational slowdown.

(v)	 n1 = n2 = n = 0: The target rate drops to zero, 
strengthening the slowdown.

In periods (ii) and (iii) the sector producing qualitative 
changes is expanding much faster than does the 
conventional sector. This is the time of the technological 
revolution. In period (iv) the two sectors expand at a 
common growth rate, which is itself falling. Period (v) 
is the same as period (iv), except that the labour force 
ceases to grow.

8 The plausibility of the 
innovation slow-down hypothesis

Econometric estimates of production functions for 
national economies and major conventional sectors 
suggest that slower growth of inputs virtually always 
causes slower growth of outputs. A slowdown in the 
trend growth of research inputs, especially labour, is 
clearly inevitable. Since the late 1960s there has been 
a marked fall in growth rates of the industrial R&D 
expenditure and the employment of labour in OECD 
countries. But is the link between the growth rates of 
inputs and outputs in the technology sector similar to 
that apparently observed in the conventional sector? 
Moreover, even if some innovation slowdown already 
occurs or will occur, how plausible is it that it will be 
of the kind suggested by the theory discussed in this 
paper?

The answer to the second question cannot be 
definitive. Our growth data and econometric estimates 
are not precise enough to be otherwise.. But it is interesting 
that the proposed model is capable of generating the type 
of innovation and growth pattern that has been observed 

Fig. 2: The target and actual innovation rates over time in the TFA. The dates and magnitudes are chosen for illustrative purposes.
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in the past. In particular, the model appears consistent 
with Price’s two laws of growth of science, Lotka’s law 
concerning the distribution of inventive ability, and the 
stylized facts of economic growth in the TFA. Such a 
broad agreement with key facts relating to innovation 
and growth over a period of centuries suggests that the 
theory has passed a test important enough to be taken 
seriously both as a plausible interpretation of economic 
growth in the past and as a useful vehicle for making 
predictions about the growth in the future. The recent 
evidence discussed by Bloom et al. (2017), provides 
additional support for this theory.

9 Remarks concerning 21st c. 
growth

Recently, ten economists attempted to answer the 
question related to the global economy in the 21st c., will 
the trends of the 20th c. continue? Their answers were 
published in a book edited by Ignacio Huerta (2013) 
Among the five trends of the 20th c. which I discuss 
elsewhere (Gomulka, 2017), there are three those of 
Daron Acemoglu (2013), one of the ten economists. To 
these I added two. One concerns the dynamics of the 
sector II producing qualitative changes. By the end of 
the 20th c. the most developed economies have already 
(nearly) fully employed their potential innovation pool, 
so their strongly unbalanced growth during the 19th and 
20th centuries- sector II expanding much faster than the 
conventional sector I, came essentially to an end.

A situation typical to the early 20th c. in the TFA 
can be observed now in the emerging economies, 
which are still far from full use of their innovative 
potential. According to the theory presented in this 
paper, increasing engagement of that resource has the 
potential to underpin the global GDP per capita growth 
rate close to its current level for the better part of 21st 
c. The growing divergence in terms of the per capita 
GDP (PPP) between the TFA countries and the non-TFA 
countries, observed during the 20 c., has started to be 
replaced by a growing convergence. This dramatic new 
trend gives support to this prediction. The key players in 
that process are China and India.
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