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Abstract: This study investigates the profitability of an algorithmic trading strategy based on training SVM model 
to identify cryptocurrencies with high or low predicted returns. A tail set is defined to be a group of coins whose 
volatility-adjusted returns are in the highest or the lowest quintile. Each cryptocurrency is represented by a set of 
six technical features. SVM is trained on historical tail sets and tested on the current data. The classifier is chosen to 
be a nonlinear support vector machine. The portfolio is formed by ranking coins using the SVM output. The highest 
ranked coins are used for long positions to be included in the portfolio for one reallocation period. The following 
metrics were used to estimate the portfolio profitability: %ARC (the annualized rate of change), %ASD (the annu-
alized standard deviation of daily returns), MDD (the maximum drawdown coefficient), IR1, IR2 (the information 
ratio coefficients). The performance of the SVM portfolio is compared to the performance of the four benchmark 
strategies based on the values of the information ratio coefficient IR1, which quantifies the risk-weighted gain. 
The question of how sensitive the portfolio performance is to the parameters set in the SVM model is also addressed 
in this study.

Keywords: Machine learning, support vector machines, investment algorithm, algorithmic trading, strategy, opti-
mization, cross-validation, overfitting, cryptocurrency market, technical analysis, meta parameters.
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1  Introduction

The method of support vectors was developed by 
Vladimir Vapnik in 1995 and was first applied to the task 
of classification of texts by Joachims in 1998. In its orig-
inal form, the algorithm solved the problem of distin-
guishing objects of two classes. The method has gained 
immense popularity due to its high efficiency. Many 
researchers used it in their work in the classification of 
texts. The approach proposed by Vapnik to determine to 
which of the two predefined classes the sample should 
belong adheres to the principle of structural minimiza-
tion of risk.

The results of the classification of texts using 
the support vector method are among the best, in 
comparison with other machine learning approaches. 
However, the learning speed of this algorithm is one of 
the lowest. The method of SVM requires a large amount 
of memory and exercises a significant computational 
load for the computer to perform the training. Summing 
up, the simplicity combined with state of the art per-
formance on many learning problems (classification, 
regression, and novelty detection) has contributed to 
the popularity of SVM.

SVM is also quite a popular algorithm for building 
trading systems. It was used mostly to predict stock or 
index price movement whether it will go up or down. 
However, hardly any papers reveal how SVM performs 
on the cryptocurrency market where the asset price vol-
atility is much higher than on traditional markets.

The goal of this paper is to apply the SVM algorithm 
to build an investment strategy for the cryptocurrency 
market and investigate its profitability. The research 
hypothesis is that the strategy based on the SVM algo-
rithm is able to outperform the benchmark strategies 
in terms of return-risk relation. Similar to Ślepaczuk 
et al. (2018), we will use the following metrics to esti-
mate the portfolio profitability: %ARC (the annualized 
rate of change), %ASD (the annualized standard devia-
tion of daily returns), MDD (the maximum drawdown 
coefficient), IR1, IR2 (the information ratio coefficients). 
The assessment of the research hypothesis will be based 
on the value of the IR1, which quantifies the return-risk 
ratio. The research questions addressed in this study 
are formulated around the sensitivity analysis results, 
namely what the sensitivity of the portfolio performance 
to the main parameters set is in the SVM model. Four 
parameters were selected in the sensitivity analysis. 
These parameters are the number of cryptocurrencies 
kept in the portfolio, the reallocation period, the per-

centage value of the transaction costs, and training data 
size TS. The parameters that were set as fixed are the fol-
lowing: length of historical data taken to calculate tech-
nical features, lambda λ used to calculate exponential 
moving average for returns, meta parameters C and γ, 
length of training data and long positions only assump-
tion.

The main idea and methodology concepts were 
adopted from the research paper ‘Nonlinear support 
vector machines can systematically identify stocks with 
high and low future returns’ by Huerta et al. (2013) and 
‘Momentum and contrarian effects on the cryptocur-
rency market’ by Kość et al. (2018).

SVM is implemented to build a trading strategy in 
the following way. The training set is basically a tail set, 
which is defined to be a group of coins whose volatili-
ty-adjusted price change is in the highest or the lowest 
quintile, for example, the highest and the lowest 25 coins. 
Each coin is represented by a set of technical features. 
A classifier is trained on historical tail sets and tested on 
the current data. The classifier is chosen to be a nonlin-
ear support vector machine. The SVM is trained once per 
reallocation period. If the portfolio is reallocated once 
per week, the SVM is trained once per week accord-
ingly. The portfolio is formed by ranking coins using 
the classifier output. The highest ranked coins are used 
for long positions and the lowest ranked potentially can 
be used for short sales. The data cover the period from 
01/01/2015 to 08/01/2018.

The structure of the paper can be summarized as 
follows. After the literature review in the theoretical part, 
a short introduction to support vector machines is pro-
vided. There are three concepts such that the maximal 
margin classifier, the support vector classifier, and 
the support vector machine. The second section focuses 
on data, methodology and strategy implementation. 
The third part provides empirical results in comparison 
with benchmark investment strategies. Sensitivity anal-
ysis is the final part of the thesis.

1.1  Literature review

The theoretical background for SVM is based mainly 
on James et al. (2017) and Hastie et al. (2017). The non-
linear SVM classifier was chosen to run the strategy in 
this paper because it worked well in multiple previous 
applications. Additionally, it was proven to be conven-
ient to use and fast to train (Vapnik [1999] and Muller 
et al. [2001]).
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There are many methods in machine learning 
(e.g., neural networks) that might work as good as 
SVM, but the simplicity of the mathematical functions 
and the theory that guides the training of the model 
as a convex optimization problem (Boyd and Vanden-
berghe, 2004) make SVMs a good option. An important 
trait of convex optimization problems is a guarantee that 
there is only an optimal model to fit the data.

In the previous literature, the application of SVMs 
to financial data has been mostly dedicated to the pre-
diction of the future direction of the stock price index. 
For example, the study of Kim (2003) examines the fea-
sibility of applying SVM in financial forecasting by com-
paring it with back-propagation neural networks and 
case-based reasoning. The experimental results proved 
that SVM provides a promising alternative to stock 
market prediction.

Another example is the paper of Van Gestel et al. 
(2001), where SVM was used for one step ahead pre-
diction of the 90-day T-bill rate in secondary markets 
and predict the daily closing price return of the German 
DAX30 index. The SVMs were used for regression instead 
of classification, and the feature vector was based on 
lagged returns of the index, bond rates, S&P500, FTSE, 
and CAC40. That paper also showed that a rolling 
approach to select the most optimal meta parameters 
demonstrated better performance. The rolling approach 
is based on the selection of the meta parameters via 
using all historical information so far available.

Additional examples of SVM regression for futures 
index prediction are found in Tay and Cao (2001, 2002) 
and Cao and Tay (2003), where also was proven that 
SVMs provide a promising alternative to the neural 
network for financial time series forecasting. As demon-
strated in the experiment, the SVMs forecast signifi-
cantly outperformed the BP network in the CME-SP, 
CBOT-US, CBOT-BO and MATIF-CAC40 futures and 
slightly better in the EUREX-BUND.

In the work of Huang et al. (2005), they investigated 
the predictability of financial movement direction with 
SVM by forecasting the weekly movement direction of 
NIKKEI 225 index. The empirical results showed that 
SVM outperforms the other classification methods such 
as Linear Discriminant Analysis, Quadratic Discrimi-
nant Analysis, and Elman Backpropagation Neural Net-
works.

Kim (2003) also used SVM as a classification method 
to predict the direction of the market’s movement. 
The paper emphasized the importance of the meta 
parameter assumptions and how the prediction per-

formances of SVMs are sensitive to the value of these 
parameters.

Huang et al. (2004) developed an interesting 
approach, which uses fundamental data to predict 
credit rating. SVMs are applied as a successful classifier 
of the ratings for the companies. The research revealed 
the fact that different markets and sectors possess dis-
tinct factors for classification.

The most related work that contributed to the idea 
of this paper is Huerta et al. (2013), which investigates 
the profitability of a trading strategy based on train-
ing SVMs to identify stocks with high or low predicted 
returns. This is the only paper found in the open internet 
space which applies SVMs for running an investment 
strategy for the stock market. Even though our paper is 
dedicated to testing SVMs in an investment strategy for 
cryptocurrencies, many recommendations and assump-
tions from Huerta et al. (2013) had been adopted.

Another paper that contributed to the methodo-
logical and strategy implementation part is the work 
of Kość et al. (2018), which investigates the momen-
tum and contrarian effects on cryptocurrency markets. 
The performance of investment portfolios was bench-
marked against (1) equally weighted and (2) market-cap 
weighted investments as well as against the B&H strat-
egies based on (3) S&P500 index and (4) BTCUSD price. 
According to the results, the cryptocurrency market 
clearly demonstrates the existence of a strong contrarian 
effect.

Regarding the application of SVMs on the cryp-
tocurrency market, there is no such extensive research 
that has been conducted if compared to the research for 
the stock market. For example, Chen et al. (2018) checked 
the accuracy of predictor models for price changes 
in ethereum, and the performance of SVMs has not 
turned to be the best.

Many of the published papers using SVMs for finan-
cial data mention the influence of meta-parameter selec-
tion on the performance of the model. It is a key issue to 
make sure that the selection of meta parameters is free 
from forward-looking bias. In order to avoid this wide-
spread problem, the meta parameters must be chosen 
based only on historical information.

There was always an important point for discussion 
concerning the choice of the type of SVM: linear versus 
nonlinear. Linear SVMs are fast to train and run, but 
these types of SVMs tend to underperform on complex 
datasets with many training examples. As was proven 
in Huerta et al. (2013), linear SVMs resulted in inferior 
returns if compared to those yielded by nonlinear SVMs.
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2  Theoretical background 
regarding SVM

Support Vector Machines (SVM) is one of the most 
popular algorithms for classification. It is based on 
the assumption that in a multidimensional space, there 
exists a hyperplane that may separate the data into 
classes.

SVM can be generalized out of a simple classifier, 
which is called the maximal margin classifier. It is only 
feasible to apply the linear classifier to the data sets, 
which are linearly separable. Unfortunately, most of 
the data sets have classes that cannot be separated by 
a linear boundary. The maximal margin classifier was 
extended to the support vector classifier, which in turn 
can be applied to a wider range of data sets. Support 
vector machines are a further extension of the support 
vector classifier, which already can be applied for fitting 
data with non-linear class boundaries.

If we deal with non-linear class boundaries, 
the problem can be solved by extending the dimen-
sion via using quadratic, cubic or higher-order poly-
nomial functions of the features. For example, rather 
than applying a support vector classifier with p features 
space, there can be used a support vector classifier fit via 
using 2p features space:

𝑋𝑋1, 𝑋𝑋1 
2 ,  𝑋𝑋2 ,  𝑋𝑋2

2, … , 𝑋𝑋𝑝𝑝 ,  𝑋𝑋𝑝𝑝 
2 .  (2.1)

The optimization problem takes the following form:
Maximize M
β0, β11, β12. . . , βp1, βp2, ε1, …, εn, M
subject to 

yi 𝑦𝑦𝑖𝑖(𝛽𝛽0 +∑ 𝛽𝛽𝑗𝑗1𝑥𝑥𝑖𝑖𝑗𝑗 +∑ 𝛽𝛽𝑗𝑗2𝑥𝑥𝑖𝑖𝑗𝑗2 ) ≥ 𝑀𝑀
𝑝𝑝

𝑗𝑗=1

𝑝𝑝

𝑗𝑗=1
(1 − 𝜀𝜀𝑖𝑖)  

(2.2)

𝜀𝜀𝑖𝑖 ≥ 0,∑ 𝜀𝜀𝑖𝑖 ≤ 𝐶𝐶,
𝑛𝑛

𝑖𝑖=1
∑ ∑ 𝛽𝛽𝑗𝑗𝑗𝑗2 = 1

2

𝑗𝑗=1

𝑝𝑝

𝑗𝑗=1
  

So, SVM is an enlargement of the support vector 
classifier that realizes through extending the feature 
space via using kernels that are considered to be a spe-
cific efficient computational approach. A kernel is a kind 
of a function that is able to quantify the similarity of 
a pair of observations. For example, one may consider 
the following expression:

  𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖) = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 𝑖𝑖
𝑝𝑝
𝑖𝑖=1  , (2.3)

that will just return the support vector classifier. 
The equation (2.3) is called a linear kernel due to the fact 
that the support vector classifier is linear in the pre-
dictors; the linear kernel basically quantifies the simi-
larity of two observations applying the Pearson corre-
lation. However, it is possible to choose another form 
for (2.3). For example, one may substitute every output 
of   𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖 𝑗𝑗) = (1 + ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 𝑗𝑗

𝑝𝑝
𝑗𝑗=1 )𝑑𝑑  with the instance obtained via the follow-

ing expression:

  𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖 𝑗𝑗) = (1 + ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 𝑗𝑗
𝑝𝑝
𝑗𝑗=1 )𝑑𝑑 . (2.4)

The expression stated above is a polynomial kernel 
with degree d, where d is a positive integer. Applying 
such a kernel instead of the linear kernel as shown in 
(2.4), the algorithm demonstrates a much more flexible 
decision boundary. Rather than in the initial feature 
space, it basically results in running a support vector 
classifier with a higher-dimensional space using pol-
ynomials of degree d. The resulting classifier is called 
a support vector machine when a non-linear kernel is 
applied such as shown in (2.4). So, the non-linear func-
tion takes the form of the following equation:

  𝑓𝑓(𝑥𝑥) = 𝛽𝛽0 ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖)   𝑓𝑓(𝑥𝑥) = 𝛽𝛽0 ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖) , (2.5)

where
 – xi is all the vectors of the training set.
 – N is the number of training examples used to fit 

the SVM parameters.
 – αi is a scalar, that is, a real number that takes values 

between 0 and C. C may be deemed as a budget 
defined by the number allowing the margin to be 
violated by the n observations. If C equals zero, 
it means that there is no budget for violations to 
the margin.

 – yi identifies whether the feature vector   𝑓𝑓(𝑥𝑥) = 𝛽𝛽0 ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖)  of the object 

i belongs to the tail set with class + or class −.
 – β0 is obtained by training the SVM and is a scalar 

that shifts the output of the SVM by a constant.
 –  𝑓𝑓(𝑥𝑥) = 𝛽𝛽0 ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁

𝑖𝑖=1 𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖)   𝑓𝑓(𝑥𝑥) = 𝛽𝛽0 ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖)  is the kernel function, that takes two vectors 

as inputs and produces a single scalar value, which 
is positive.

The polynomial kernel that was outlined in (2.4) serves 
as just one instance of a possible non-linear kernel. There 
exist ample alternatives. One very wide-spread alterna-
tive is the radial kernel, that has the following form:

  𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖) = exp(−𝛾𝛾 ∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖)2)𝑝𝑝
𝑖𝑖=1  . (2.6)
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In (2.6), γ (gamma) is a tuning meta parameter that 
is a positive constant. Intuitively, the gamma parameter 
defines how far the influence of a single training example 
reaches, with low values meaning ‘far’ and high values 
meaning ‘close’.

Fig. 2.1 demonstrates two examples for non-linear 
data where SVM is run with a polynomial kernel. So, 
looking at Fig. 2.1, in both cases, either kernel is able 
to capture the decision boundary; however, SVM with 
a radial kernel demonstrates far better fitting.

Advantages of SVM model are such that: it is very 
efficient when groups are fully or almost fully sepa-
rable, can work very well when there are more inde-
pendent variables than observations, can be adjusted 
to work well with unbalanced datasets, has only just 
several parameters to tune and is partially immune 
to outliers. Disadvantages are as follows: SVM is very 
slow for a large number of observations and it is not 
the most efficient when separation is low. To conclude, 
the type of SVMs used in the paper is the non-linear 
radial kernel.

3  Data, methodology, and strategy 
implementation

3.1  Data and filtering

The data were downloaded from coinmarketcap.com. 
As of 05/08/2018, there were 1732 coins listed on 
the website. Data include OHLC prices, Volume, and 
MarketCap starting from 27/12/2013 and ending by 
05/08/2018, as decided by the authors.

As of 05/08/2018, the number of all listed cryptos 
totals 1732, while as of 01/12/2017 there were 
~ 1500 cryptos. In such a way, despite the current down-
turn in the cryptocurrency market, the number of cryp-
tocurrencies is constantly growing.

The total market capitalization of the cryptocur-
rency market reached its peak in January 2018, totalling 
almost 800 billion USD, which is equal ~ 2.5% of S&P 500 
Total Market Cap.1 Nowadays, the total market cap of 
the cryptocurrency market is undergoing 4 times decline 

1 Estimates based on the data provided by: www.coinmarketcap and 
World Bank: data.worldbank.org/indicator/CM.MKT.TRAD.CD. USA 
stock market cap for 2017 equals 32.121 trillion USD.

 

Fig. 2.1. Left panel: non-linear data divided by an SVM with a polynomial kernel of degree 3. Right panel: the same non-linear data 
divided by an SVM with a radial kernel 

Source: James, G., Witten, D., Hastie, T., Tibshirani, R. An Introduction to Statistical Learning with Applications in R.
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if compared to the peak at the end of the year. The recent 
decreasing trend may reflect investors’ sentiment, which 
has been impacted by negative news concerning new 
market regulations and ICOs frauds. Additionally, there 
are some claims that the highs of 2017 may have been 
manipulated and artificially inflated.

As can be noticed in Fig. 3.1, till March 2017, 
the market was dominated by Bitcoin (90% of the total 
market cap of cryptocurrency market). In 2017–2018, 
Bitcoin lost its position and allowed other assets to share 
the market. As of 05/08/2018, the share of Bitcoin com-
prised of 47.44% of the total market, Ethereum – 16.21%, 
Ripple – 6.66%, and Others – 19.69%.

The 14-day moving average of the volume was 
calculated for each asset, and those which do not meet 
the filter threshold of 100 USD are excluded from 
further usage. Such application of filtering ensures that 
the investment portfolio meets the minimum liquidity 
requirement. An additional filter is applied regarding 
the price history of an asset. Only those cryptocurrencies 
that have 91 days and more of history for the close price 
are qualified to constitute the data set.

After that, there was created a ranked set of 
100 cryptocurrencies by the largest market cap. This set 

of 100 cryptocurrencies with the largest market cap will 
be referred to further in the thesis as the Top100.

The starting date for the simulation period was taken 
as 01/10/2014 so to ensure the availability of at least 
3-month historical data to create a training set and start 
running the strategy on 01/01/2015. The ranking with 
100 largest cryptocurrencies (Top100) was calculated for 
each day of the simulation. From the set of 1438 unique 
assets, only 475 have been qualified to enter the Top100 
ranking for at least one day, as well as having taken 
into consideration the condition of the 14-day moving 
average of the daily volume being higher than 100 USD.

3.2  Performance statistics

The following measures were used to provide descrip-
tive statistics for the data and further these measures 
were applied in the evaluation of portfolios’ efficiency:

 – ARC (the annualized rate of change):

ARC = (1 +  𝑃𝑃𝑇𝑇
𝑃𝑃0

)
365

𝑇𝑇
− 1  (3.1)

where PT stands for the portfolio value after the T-th 
period.

Fig. 3.1. Percentage of total market capitalization by dominance
Source: https://coinmarketcap.com/charts/
Note: the chart presents the dominance of the cryptocurrencies with the largest market capitalization over the period from 28/04/2013 
to 05/08/2018.
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 – ASD (the annualized standard deviation of daily 
returns):

ASD = √365
𝑇𝑇  ∑ (𝑟𝑟1 − 𝑟𝑟 )2

𝑇𝑇

𝑡𝑡=1
  (3.2)

where rt = 
𝑃𝑃𝑡𝑡

𝑃𝑃𝑡𝑡−1  − 1  

and √365
𝑇𝑇  ∑ (𝑟𝑟1 − 𝑟𝑟 )2

𝑇𝑇

𝑡𝑡=1
  is an average return calculated as the simple math-

ematical average of a series of returns generated over 
one year.

 – MDD (the maximum drawdown coefficient):

MDD(T) = maxτ∈[0,T] (maxτ∈[0,T] Pt − Pτ) (3.3)

 – IR1, IR2 (the information ratio coefficients) quantify 
the risk-weighted gain:

IR1 = 
𝐴𝐴𝐴𝐴𝐴𝐴 
𝐴𝐴𝐴𝐴𝐴𝐴   (3.4)

IR2 = 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴)𝐴𝐴𝐴𝐴𝐴𝐴2

ASD ∗ MDD   (3.5)

Tab. 3.1 presents descriptive statistics for 
the 10 largest and 10 smallest cryptocurrencies as of 
01/01/2018. As can be seen from Tab. 3.1, the values of 
%ARC, %ASD, IR, and IR2 have huge differences across 
the cryptocurrencies. Quite a lot of new assets such as 
loom-network, cybermiles, nuls bibox-token, and odem 
appeared just a couple of months ago, but already took 
the position in Top100. For example, odem behaves as 

Tab. 3.1. Descriptive statistics for 10 largest and 10 smallest cryptocurrencies by MarketCap in TOP100 as of date 01-08-2018

The largest 10 cryptocurrencies in TOP100 as of 01-08-2018

Name %ARC %ASD %MDD IR1 IR2 Date of start Volume, mUSD MarketCap, USD

bitcoin 118 75.8 69.7 1.6 2.6 01-10-2014 1888 43839225862

ethereum 437.7 145.2 84.3 3 15.7 20-08-2015 323 17124399552

ripple 226.7 164.6 87.1 1.4 3.6 01-10-2014 499 13468236361

bitcoin-cash 83.5 198.5 84.4 0.4 0.4 05-08-2017 699 6672807179

eos 516 253 87.9 2 12 14-07-2017 78 5220519698

stellar 228.6 178.8 82.6 1.3 3.5 01-10-2014 301 4634665748

litecoin 111.1 119.2 79.1 0.9 1.3 01-10-2014 80 3709789644

cardano 698.6 263.8 89.3 2.6 20.7 14-10-2017 32 2624893338

iota 48.4 188.4 82.9 0.3 0.1 26-06-2017 3059 2460207729

tether -5.4 45.7 49.9 -0.1 0 15-03-2015 140 2233258238

The smallest 10 cryptocurrencies in TOP100 as of 01-08-2018

Name %ARC %ASD %MDD IR1 IR2 Date of start Volume, mUSD MarketCap, USD

loom-network 649.7 217.4 80 3 24.3 21-04-2018 2.8 98040413

gas 365.8 265.4 89.6 1.4 5.6 09-08-2017 2.6 91875052

tenx -97.6 247 99.2 -0.4 -0.4 10-07-2017 8.1 91154578

nxt 34.2 158.1 95.6 0.2 0.1 01-10-2014 2.8 90165499

cybermiles -44.8 202.2 87.4 -0.2 -0.1 04-05-2018 7.1 88375828

nuls 5083.5 382.2 79.1 13.3 854.8 22-03-2018 4.1 88067102

byteball 160 236.8 91.2 0.7 1.2 09-01-2017 0.56 86950232

bibox-token 53.2 265.7 87.9 0.2 0.1 08-06-2018 67.5 83456610

odem 89471 229.6 40.7 389.7 856638 01-08-2018 0.135 82906522

electroneum -92.5 243 95.3 -0.4 -0.4 15-11-2017 0.552 81946739

Legend: %ARC − annualized rate of return as in (3.1), %ASD − annualized standard deviation in percent as in (3.2), %MDD − maximum 
drawdown of capital in percent as in (3.3), IR1, IR2 − information ratios as in (3.4) and (3.5) accordingly, ‘Date of Start’ − date of first 
appearance in Top100.
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an investment ‘star’ demonstrating abnormal return 
and the lowest drawdown. This crypto was built on 
the Ethereum blockchain and stands for On-Demand 
Education Marketplace.

The values for the maximum drawdown are also 
relatively large. If odem is not taken into considera-
tion, other cryptocurrencies in the set have %MDD 
in the range from 50% to 99%. For comparison pur-
poses, the S&P500 index has noted only ~ 14% draw-
down in the same simulation horizon (see Tab. 4.1 in 
the next section).

3.3  Construction of the training data

One of the key issues in this investigation is how to 
form the tail sets that constitute the positive and nega-
tive classes of the training data. As a metric, there were 
chosen returns divided by a volatility estimate. This 
option creates an ordered list of coins with volatility-ad-
justed returns. The volatility is estimated here by an 
exponential moving average:
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The volatility-adjusted return is the ratio of the daily 

return and the estimation of the volatility according to 
formula 3.6:
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 is a daily return, 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅 𝑡𝑡 =  𝑅𝑅𝑡𝑡
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 is the exponential moving 

average estimate of the volatility calculated as shown 
in (3.6) with λ set to 0.94.

It was shown in Huffman et al. (2011) that com-
putational load is higher when the volatility is calcu-
lated using standard deviations. Moreover, the results 
revealed no significant difference between these two 
methods for volatility estimation. Therefore, the way 
to calculate the volatility-adjusted return as presented 
in (3.7) is the preferred option.

In order to run calculations for each reallocation 
period, the volatility-adjusted returns for the 3-month 
period (91 days) for the assets in Top100 for each day 

were calculated. Long data were filtered by the condi-
tion to ensure the presence of 91 days of history. Then 
for each day in the range of these 91 days, there were cal-
culated discrete daily returns. Using these daily returns, 
the estimate of the volatility (an exponential moving 
average) was calculated according to the algorithm pre-
sented in (3.6).

As can be seen, the first sigma is 0. Lambda was set to 
0.94 by default as a value more frequently used for expo-
nential moving average computations. Then the volatil-
ity adjusted returns are calculated according to (3.7). As 
a result, for each day for each coin in Top100, the vol-
atility-adjusted returns are calculated for the 3-month 
period (91 days).

For illustration purposes, the distribution of vol-
atility-adjusted returns with 3-month history from 
01/10/2014 to 12/31/2014 is shown in Fig. 3.2. As an 
example, the positive tail sets are the B most positive 
volatility-adjusted returns, and the negative tail sets 
are the B most negative. B can be 5, 10 or 15 coins in 
the data set. The values for the training size will be pro-
vided later in this chapter in terms of sensitivity anal-
ysis. The vertical lines represent the cut-off indicating 
how many assets will be used for SVM training. The + 
and − regions are the ones used for that. In such a way, 
to train SVM for 01/01/2015, there will be used 3-month 

Fig. 3.2. Distribution of volatility-adjusted returns with 3-month 
history from 01/10/2014 to 12/31/2014 with cut-off lines to iden-
tify the number (training size) of the assets with the highest 
(green) and the lowest (red) volatility-adjusted returns to use for 
SVM training

Source: own work.
Note: the distribution of 91-days volatility-adjusted returns 
where the positive tail sets are the most positive volatility-ad-
justed returns, and the negative tail sets are the most negative. 
The vertical dotted lines represent the cut-off. The + and – 
regions are the ones used for SVM training.
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data from 01/10/2014 to 12/31/2014 with volatility-ad-
justed returns, for 01/02/2015 − data from 02/10/2014 
to 01/01/2015.

Further, in the paper, TS will be denoted as the length 
for the training set, or in other words, the number of vol-
atility-adjusted returns used in designing the training 
data sets.

3.4  Selection of technical features

Each coin on day t should be characterized by a vector 
of technical features xi(t). Features are chosen based on 
their popularity in the academic literature. The list of 

features used is presented in Tab. 3.2.
Momentum has been one of the well-recognized 

phenomenon described in the academic literature; see 
Jegadeesh et al. (2012) and Rouwenhorst (2002). They 
stated that stocks with high (low) returns over periods 
of three to 12 months keep having high (low) returns 
over subsequent three to 12 month periods. So, momen-
tum for close prices of cryptocurrencies was included in 
the feature set.

Another feature, the volume change, is an indica-
tor catching underreactions and overreactions in stock 
price movements. If a price movement happens with 
large volume, the price change is more significant than 
if it occurs with low volume; see Chordia et al. (2002). 
To capture this effect, a percentage change of the daily 
trading volume was included in the feature data set.

RSI is a momentum indicator that captures the mag-
nitude of the latest price changes in order to estimate 
whether the market is overbought or oversold. Thus, it is 
predominantly used to identify overbought or oversold 
market conditions. RSI is calculated as follows:

RSI = 100 – 100 / (1 + RS) (3.8)

where RS is an average gain of up-trending periods 
during a certain time period divided by an average 
loss of down-trending periods during the defined time 
period. In such a way, RSI provides a relative estimation 
of the strength of an asset’s recent price performance. 
RSI outcomes range from 0 to 100. The default time 
period for relating up-trending periods to down-trend-
ing periods is 2 weeks. The traditional interpretation of 
RSI is that RSI outcomes of 70 or above show that an 
asset is getting overbought or overvalued. RSI being 30 
or below interpreted as pointing out oversold or under-
valued conditions. Sudden significant price changes 
may provide false buy or sell signals. Therefore, it is 
better to use it with amendments to its application or 
together with other reliable technical indicators.

FI captures the market power behind the change 
in the asset price. FI’s value may be either positive or 
negative, that depends on the upward or downward 
change in the asset price. The three inputs required for 
the formula are: close price, open price, and trading 
volume. Analysts often use FI along with the moving 
average to make predictions for an asset’s future perfor-
mance. The formula for FI is as follows:

FI = (Close price – Open price) * Volume (3.9)

Williams%R is a type of momentum indicator that 
ranges between 0 and –100 and measures overbought 
and oversold market conditions. The Williams%R is 
commonly applied to define entry and exit points for 
trading. It can be treated as a technical analysis oscil-
lator. It compares an asset’s close price to the high-low 
range over a specific period, by default over 14 days. 
The formula to calculate this indicator is as follows:

%R = (highest high – close price) / 

(highest high – lowest low) * (–100) 
(3.10)

The Williams%R became popular as an indicator 
because of its ability to signal for market swings at least 
one or two points in the future. Predictions of market 
reversals are very valuable for market participants; so an 

Tab. 3.2. Technical indicators used for the creation of feature set to 
train SVMs

Feature Full name Parameters

MOM, n days Momentum for close 
prices, n days

n = 10 days

∆V, n days Volume change n days n = 10 days

RSI Relative Strength Index n = 10 days 

FI Force Index N/A

Williams %R Williams Percent Range n = 10 days

PSAR Parabolic stop and 
reversal system

Acceleration factor by default 
set to 2% increasing by 2% 
with a maximum of 20%

Note: the table contains the list of six technical features used for 
running SVM and parameters set for calculations purposes.
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asset is overbought when the indicator is above –20, and 
is oversold when the indicator is below –80. Overbought 
and oversold periods can persist, should the price keep 
on rising or falling.

The parabolic SAR is a technical indicator applied 
to define the price direction of an asset, as well as to 
measure how the price direction is changing. It is gen-
erally used to put trailing price stops; thus, it may be 
treated as a stop-loss system.

PSAR is calculated independently for each trend in 
the price. When the price is in an uptrend, PSAR goes 
below the price and converges upwards towards it. 
By the same logic, on a downtrend, PSAR goes above 
the price and converges downwards. At each step within 
a trend, PSAR is calculated one period in advance. PSAR 
value for tomorrow is calculated using data available 
today. PSAR values are calculated as follows:

PSAR = PSARn+1 = PSARn + (AF * (EP − PSARn))     (3.11)

where EP is the highest high for a long-term trend and 
the lowest low for a short-term trend, which is updated 
each time a new EP is achieved; AF is the default of 2% 
increasing by 2% each time a new EP is achieved, with a 
maximum of 20%.

In the work of Pistole (2010), moving average rules, 
RSI method and PSAR technique were compared with 
the buy&hold strategy for the S&P500 index. Inter-
estingly, the PSAR indicator is far more successful in 
positioning long or short on the S&P500 index. Results 
revealed that by applying PSAR as the buy and sell 
signal, the strategy significantly outperforms the market, 
as well as buy&hold and other strategies discussed in 
that paper.

The above mentioned six technical indicators were 
considered and included in the feature set mostly based 
on the academic literature. All the indicators were cal-
culated in R. RSI, SAR, and Williams%R were imple-
mented using the corresponding built-in functions from 
the TTR package.

3.5  Portfolio construction and training 
protocol

The data sets that should be prepared in advance are 
long data containing all the information available and 
the Top100 market cap ranking. These data sets will be 
used for running the SVM strategy. A step-by-step loop 
was written in R to implement the strategy.

Volatility-adjusted returns were calculated for 
the assets in Top100 for the 3 previous months for each 
day, more specifically, over the period from date[t]–92 to 
date[t]–1. Then, these returns were ranked in descending 
order. For each day, there should be 100 coins with vola-
tility-adjusted returns. These volatility-adjusted returns 
are serving as a class for SVMs.

The length of the training set is introduced as 
the parameter TS. To construct the training set, TS is used 
to denote the number of volatility-adjusted returns. For 
example, TS on the level of 25 means that 25 coins with 
the highest values and 25 coins with the lowest values of 
volatility-adjusted returns are taken to form the training 
data. The assets with the highest values form the class + 
and the assets with the lowest values form the class −. 
Then, for these 50 coins, the six technical features are cal-
culated (MOM, V, IF, PSAR, Will%R, RSI) for each day 
for the period of the last 91 days. The period over which 
the training set is constructed to perform one SVM test 
on the reallocation day (date[t]) is from the date[t]–92 to 
date[t]–1.

When the training set is ready, SVM is applied 
in order to tune the meta parameters C (cost) and γ 
(gamma). The best C and γ are used later to test SVM for 
the assets on the reallocation day. The choice of meta-pa-
rameters is explained in section 3.7.

The first reallocation day is assumed to be 
01/01/2015. The reallocation day is the day on which 
the portfolio composition is changed. The change 
depends on the SVM output. The assets with the greatest 
values of the SVM output are included in the portfolio 
on the reallocation day. SVM output is the value pro-
vided by the function as in (2.5).

On the reallocation day, we liquidate the assets that 
are not recommended by SVM output and they leave 
the portfolio. The assets that remain in the portfolio 
have their weights reallocated. The time period which 
is between two sequential reallocation days is called 
the reallocation period (RE).

Then testing set is prepared. SVM is tested on 
the data on the date[t]. Even though the system is trained 
for a particular train data size TS, all the assets which 
are on the list of Top100 on the reallocation day are con-
sidered for testing. The technical features are calculated 
for them and SVM is tested on the whole data set. SVM 
output provides the function value for each asset in 
the range varying around –1 and 1 (due to assigning 1 
for positive class and –1 for negative class). The output is 
ranked and those assets with the highest values are qual-
ified to become ‘buy’ candidates and to be included in 
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the portfolio. In such a way, every time as a portfolio is 
reconsidered on the reallocation day, a fresh SVM model 
is trained and tested in order to capture the changes on 
the market. It is worth noting that the function svm() 
scales the data by default.

To summarize, the training protocol is such that 
SVM is trained over tail sets for the period of time 
[t − 92, t −1] and tested for the period [t]. As the data 
from coinmarketcap.com are available on a daily basis 
and without breaks for weekends, the above-mentioned 
protocol is applied over the whole simulation period 
from 01/01/2015 to 08/01/2018.

In order to estimate the portfolio performance, 
the following methodology was used. The gross rate 
of return  𝑅𝑅0,𝑇𝑇

(𝑃𝑃) =  П𝑡𝑡=0 
𝑇𝑇 (1 + ∑ 𝑤𝑤𝑖𝑖,𝑡𝑡

𝑁𝑁

𝑖𝑖=1
𝑟𝑟𝑖𝑖,𝑡𝑡 −  ∆𝑊𝑊𝑡𝑡

𝑅𝑅 ∗ 𝑇𝑇𝑇𝑇) − 1  for a given portfolio P in the period 
t∈[0, …, T] is calculated as:

 𝑅𝑅0,𝑇𝑇
(𝑃𝑃) =  П𝑡𝑡=0 

𝑇𝑇 (1 + ∑ 𝑤𝑤𝑖𝑖,𝑡𝑡
𝑁𝑁

𝑖𝑖=1
𝑟𝑟𝑖𝑖,𝑡𝑡 −  ∆𝑊𝑊𝑡𝑡

𝑅𝑅 ∗ 𝑇𝑇𝑇𝑇) − 1 
 

(3.12)

where N is the total number of cryptos; T is total time 
horizon for the investment; ri,t is the accruing daily rate 
of return of the i-th asset on day t; wi,t is the weight of 
the i-th asset in the whole portfolio Π on day t;  𝑅𝑅0,𝑇𝑇

(𝑃𝑃) =  П𝑡𝑡=0 
𝑇𝑇 (1 + ∑ 𝑤𝑤𝑖𝑖,𝑡𝑡

𝑁𝑁

𝑖𝑖=1
𝑟𝑟𝑖𝑖,𝑡𝑡 −  ∆𝑊𝑊𝑡𝑡

𝑅𝑅 ∗ 𝑇𝑇𝑇𝑇) − 1  is 
the total portfolio turnover rate in percent on day t; TC 
is the total transaction costs in percent.

The weights are being calculated according to 
the following formula

wi,t = (1 + ri,t)wi,t − 1  (3.13)

It is assumed that wi,t sums up to unity for each reallo-
cation day. On each reallocation day t = tR, the weights are 
reallocated in the following way:

   →  weights for SVM equally 
weighted portfolio

   →  weights for market-cap 
weighted portfolio

 𝑤𝑤𝑖𝑖,𝑡𝑡𝑅𝑅  =  
{
 

 
1
𝑁𝑁

𝑀𝑀𝑀𝑀𝑖𝑖,𝑡𝑡
∑ 𝑀𝑀𝑀𝑀𝑖𝑖,𝑡𝑡𝑁𝑁
𝑖𝑖

   

 (3.14)

The portfolio composition changes on the realloca-
tion day.

In order to understand the logic of the formula for 
calculation of the turnover ratio of the portfolio, three 
cases were taken into consideration. The first one is that 
assets leave the ranking. The second one is that assets 
enter the portfolio, and the third one, assets keep staying 
in the portfolio, just with new weights. To account for 
this change in the portfolio composition, the turnover 
ratio of the portfolio was calculated as follows:

∆ 𝑊𝑊𝑡𝑡𝑅𝑅 
𝑅𝑅 =  ∑ ⃒ 𝑤𝑤𝑖𝑖,𝑡𝑡 −   𝑤𝑤𝑖𝑖,𝑡𝑡𝑅𝑅|

𝑁𝑁

𝑖𝑖=1
  (3.15)

The above value can be of any in the range from 
zero (the composition of the portfolio is not changed 
if compared to the previous reallocation day) to 200% 
(the composition of the portfolio is entirely changed; all 
assets left the portfolio and new ones entered).

The values of transaction costs on the cryptocurrency 
markets can be between 0.2% and 2.0% of the transaction 
value depending on the asset’s type and the liquidity. 
Transaction costs for the base and the benchmark portfo-
lios were assumed to be 1%. To provide the fair calcula-
tion for the total portfolio reallocation cost, the product 
of the portfolio turnover ratio  𝑅𝑅0,𝑇𝑇

(𝑃𝑃) =  П𝑡𝑡=0 
𝑇𝑇 (1 + ∑ 𝑤𝑤𝑖𝑖,𝑡𝑡

𝑁𝑁

𝑖𝑖=1
𝑟𝑟𝑖𝑖,𝑡𝑡 −  ∆𝑊𝑊𝑡𝑡

𝑅𝑅 ∗ 𝑇𝑇𝑇𝑇) − 1  and the total percent 
transaction cost TC is taken.

The implementation of a portfolio loop in R was 
done with the package Performance Analytics. That 
vignette gives some simple examples of computing port-
folio returns using asset prices as well as weights frame-
work.

3.6  Benchmark portfolios

To construct the benchmark portfolios, the Top100 
market cap ranking was used. To estimate the efficiency 
of the main SVM strategy, similarly as in Kość et al. 
(2018), the benchmark portfolios were chosen as follows:

 – The benchmark equally weighted portfolio (further 
denoted as EqW) is constructed as an investment 
with equal weights in all cryptocurrencies, which 
are qualified for Top100 on the reallocation day. As 
for a base case, the reallocation period is set to one 
week. Transaction costs constitute 1% of the port-
folio value. These assumptions are the same as for 
the SVM strategy.

 – The benchmark market-cap weighted portfolio 
(further denoted as McW) is built as an investment 
with market-cap weights in cryptocurrencies, which 
are qualified for Top100 on the reallocation day. It 
means that on reallocation day, the investment in an 
asset takes the weight as the ratio of the market cap-
italization of an asset to the whole market capitali-
zation for all the assets in Top100. The reallocation 
period and the transaction costs are the same as for 
the equally-weighted portfolio.

 – The buy&hold strategy is also considered as 
a benchmark portfolio. Just to get the full insight on 
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the performance of all the portfolios, two buy&hold 
strategies were run, one for bitcoin (BTC B&H), and 
the second for S&P500 index (S&P B&H). It is worth 
noting that buy&hold strategy on S&P500 index is a 
widely used benchmark to compare the portfolios. 
Both buy&hold strategies have the same simulation 
period as the former benchmark strategies.

3.7  Selection of meta-parameters

The C (cost) and γ (gamma) values are the meta-pa-
rameters of the SVM model. One of the problems that 
frequently arises is overfitting, which is quite common 
in machine learning (Cawley et al. 2010). That is why, 
the question of choice of meta-parameters is a major 
one. The meaning of meta-parameters was described 
in the theoretical part in section 2. As a short reminder, 
the general meaning of the C (cost) and γ (gamma) is as 
follows.

High values for C causes the cost of misclassifica-
tion to be large; therefore, SVMs are forced to classify 
the input data more severely and the problem of overfit-
ting may arise. Small values for C mean lower variance 
and higher bias. Small values for C makes the cost of 
misclassification low; thus, providing more ‘space’ for 
the model to make a mistake by misclassifying the case. 
The objective is to find the balance between ‘not too 
severe’ and ‘not too relaxed’.

When the value for gamma is small, the constraint 
for the model is too high and it cannot catch the com-
plexity or curvature of the input data. In other words, 
gamma explains how strong the influence of a single 
training observation is.

As in a standard classification problem, the dataset 
is divided into training and testing sets, which are mutu-
ally exclusive sets. Further, in order to perform tuning 
of meta-parameters, the training set is separated again 
into training set and validation set. The visualization of 
the data set splits is presented in Fig. 3.3. Therefore, in 
order to perform the tuning, only second training and 
validation sets are used.

The partition of the training set again into training 
and validation sets is performed with the help of certain 
sampling method. Potentially, there can be a number of 
partitions into validation and training sets over which 
tuning is performed.

In the package e1071 tune.control(), option available 
within built-in function tune.svm() is presented. Tune.
control offers three sampling methods on how the train 

data set may be split. These methods are ‘cross’, ‘fix’ and 
‘bootstrap’. Due to the fact that performing cross-vali-
dation or bootstrap over the full data set has very high 
computational load and takes an unreasonably long 
time for the user to get the results, sampling method 
‘fix’ was used to tune the parameters. So, the sampling 
method set to ‘fix’ means that a single split into train/
validation set is used and the train set contains a fixed 
part of the supplied data. By default, the proportion of 
the train set is 2/3.

As the algorithm of SVM is a standard classification 
task, which has only two parameters, the grid search 
method is considered quite effective. To conduct grid 
search over the parameters, function tune.svm() from 
the package e1071 was used. A sequence of param-
eters for cost and gamma was created as the vector 
(0.5, 1, 2, 4). Each pair of the parameters from that 
sequence is tested and those values of cost and gamma 
providing the lowest prediction error for the model on 
the validation subsets are chosen.

In such a way, every time SVM is tested on the real-
location date[t], first the training set is used to tune 
the parameters and chose the optimal ones. Then, these 
best cost and gamma are used for testing SVM. In such 
a way, there can be a different set of optimal parameters 
for each reallocation period. So, there is its own set of 
optimal parameters for each reallocation period.

3.8  Summary for strategy implementation: 
step-by-step actions

This section summarizes step-by-step actions to imple-
ment the SVM strategy.

Here are the one-time actions conducted before 
running the loop to generate strategy results:
1. Web-scraping: the data were scrapped from 

the website coinmarketcap.com starting from 
27/12/2013 and ending by 05/08/2018. They were 
not provided in any ‘friendly’ format, so we had to 
scrap them from HTML source of the website.

Fig. 3.3. Visualization of the data set splits and their proportions
Note: the figure represents in what proportion data is split to 
run the tuning of the meta parameters.
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2. Filtering: 14-day moving average of the volume was 
calculated for each asset, and those that did not meet 
the filter threshold of 100 USD were excluded from 
further usage. Additionally, only those cryptocur-
rencies that have 91 days and more of history for 
the open price were qualified to constitute the long 
data set.

3. Top100 ranking: a ranked set of 100 cryptocurren-
cies by the largest market cap was created for each 
day for the whole long data set.

A step-by-step loop written in R to implement the strat-
egy is run as many times as the number of reallocation 
days in the period from 01/01/2015 to 01/08/2018. 
Step-by-step actions in the loop are as follows:
1. Preparation of the training set: class for SVM. On 

date[t] volatility-adjusted returns are calculated for 
the assets in Top100 for the 3 previous months for 
each day, more specifically over the period from 
date[t]–92 to date[t]–1. The returns are further ranked 
in descending order. For each day, there should be 
100 coins with volatility-adjusted returns calculated 
for them. Volatility-adjusted returns are serving as 
a class for SVMs. The assets with the positive values 
of volatility-adjusted returns are assigned the class + 
and the assets with the negative values are assigned 
the class −.

2. Preparation of the training set: technical features. We 
select the assets with the highest and the lowest vol-
atility-adjusted returns from the spectrum defined 
by %TS assumption and then calculate for them six 
technical features (MOM, V, IF, PSAR, Will%R, RSI) 
for each day for the period of the last 91 days.

3. Meta-parameters tuning: SVM is applied to 
the training set in order to tune the meta parameters 
C (cost) and γ (gamma). The best C and γ are used 
later to test SVM to predict the class for the assets in 
the testing set on the reallocation day.

4. Preparation of the testing set: On date[t], all the assets 
that are on the list of Top100 on the reallocation day 
are considered for testing. Six technical features are 
calculated (MOM, V, IF, PSAR, Will%R, RSI) for 100 
cryptocurrencies from Top100 on the date[t].

5. SVM is run using prepared training and testing sets. 
The output of the SVM for 100 assets from Top100 on 
the date[t] is ranked, and those assets with the highest 
values are qualified to become ‘buy’ candidates.

6. ‘Buy’ candidates are then kept in the portfolio for 
the reallocation period (for example, it is 1 week for 
the base case).

7. Calculation of the net portfolio value for one reallo-
cation period taking into consideration transaction 
costs.

Once the loop is finished, performance statistics are cal-
culated for the net value of the portfolio. In such a way, in 
every reallocation period, a fresh SVM model is trained 
and tested with its own optimal meta parameters.

The parameters that are deemed to be fixed in 
the model are as follows:

 – the number of periods for volatility-adjusted returns 
calculated as daily returns

 – lambda λ (set to 0.94) used to calculate exponential 
moving average for returns

 – length of historical data taken to calculate technical 
features described in Tab. 3.2

 – meta parameters C and γ
 – length of training data set to 91 days
 – long positions only assumptions.

Four parameters were chosen to participate in the sensi-
tivity analysis. These parameters are:

 – the number of cryptocurrencies kept in the portfo-
lio (N)

 – reallocation period (RE)
 – the percentage value of the transaction costs (%TC)
 – training data size (%TS).

4  Empirical results

4.1  Performance of the svm strategy in 
comparison to the benchmark strategies

The performance statistics for SVM and benchmark 
strategies are presented in Tab. 4.1.

Buy&hold strategy on bitcoin (BTC B&H) demon-
strates more than 10 times larger %ARC than buy&hold 
on S&P500 index (S&P B&H); however, both the risk and 
maximum drawdown in terms of %ASD and %MDD are 
approximately 5 times larger. The resulting values of IR1 
and IR2 are 2 and 5 times larger for BTC B&H, respec-
tively.

%ARC of BTC B&H is higher than the market cap 
weighted strategy (McW), although the difference is not 
relatively high. It can be explained intuitively as the pre-
dominant part of the McW portfolio consists of bitcoin. 
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The values of information ratios IR1/IR2 are also com-
parable, which means that the amount of return per unit 
of risk is the same as bitcoin dominates the McW port-
folio.

EqW outperforms all the benchmark strategies 
and also the SVM strategy. It gives the highest values 
of ARC and IR1/IR2 demonstrating abnormal returns. 
Therefore, sorting the performance of portfolios accord-
ing to IR1, the strategy with the highest value is EqW. 
EqW outperforms SVM more than two times as well as 
the other benchmark strategies. The sequence of other 
strategies according to IR1 is as follows: BTC B&H, McW 
and SVM, which is on the fourth place outperforming 
only S&P B&H.

The main hypothesis that the investment strategy 
based on SVMs algorithm outperforms benchmark 
strategies can be rejected based on these results. SVM 
portfolio with the long positions only gained the fourth 
result according to IR1 after EqW, McW and BTC B&H. 
Additionally, it is the riskiest one according to the value 
of %ASD and %MDD, meaning that SVMs algorithm 
selects the cryptocurrencies that are relatively volatile. 
Additionally, the mean portfolio turnover for SVM strat-
egy is 14 times larger than for EqW strategy, which is 
the reason for high transaction costs, and consequently, 
lower portfolio net value. Overall, one may invest equal 
weights into Top100 cryptocurrencies, incur no addi-
tional costs of implementing more sophisticated strat-
egy and yet get abnormal returns on the cryptocurrency 
market in comparison to simple B&H or more sophisti-
cated strategies.

Plots of the equity lines and drawdowns for the SVM 
strategy in comparison to the benchmark strategies can 
be found in Fig. 4.1 and Fig. 4.2, respectively.

As can be seen in Fig. 4.2, SVM and EqW strategies 
reach the ‘deepest’ drawdown if compared to other 
strategies. Conversely, S&P B&H demonstrates the most 
stable returns.

Tab. 4.1. Descriptive statistics of the SVM strategy compared with the benchmark strategies

 N RE %TC V %ARC %ASD %MDD IR1 IR2 %MT

S&P B&H - - - - 13.6 15.5 14.2 0.9 0.8 -

BTC B&H - - - - 147.4 76.8 69.7 1.9 4.1 -

EqW 100 1 w 1 100 425.8 96.2 81.7 4.4 23.1 10.8

McW 100 1 w 1 100 141.9 74.9 73.1 1.9 3.7 6.3

SVM 25 1 w 1 100 173.6 103.1 83.1 1.7 3.5 143.7

Legend: McW – market cap weighted strategy, EqW – equally weighted strategy, N – number of currencies to be invested/used to 
construct portfolio, RE – the width of the reallocation period between the portfolio reallocation days, %TC – the total transaction costs 
taken as the percentage of the total transaction value of the portfolio, V – the threshold value (USD) of the 14-day moving average of 
daily volume, %ARC − annualized rate of return, %ASD − annualized standard deviation in percent, %MDD − maximum drawdown of 
capital in percent, IR1, IR2 − information ratios, %MT – the mean portfolio turnover ratio in percent.

Fig. 4.1. The equity line of the SVM strategy in comparison with 
the benchmark strategies

Note: the graph shows equity lines of the SVM strategy and 
four benchmark strategies over the period from 01/01/2015 to 
01/08/2018. EqW with equity line drawn in black outperforms all 
the benchmark strategies and also SVM strategy.

Fig 4.2. Drawdowns of the SVM strategy in comparison with 
the benchmark strategies

Note: the graph shows the drawdown lines for SVM strategy 
and four benchmark strategies over the period from 01/01/2015 
to 01/08/2018. SVM strategy drawn in green reaches the ‘deepest’ 
drawdown line if compared to the other benchmark strategies.
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4.2  Sensitivity Analysis

The research questions of this study were formulated 
around the sensitivity analysis, namely how sensitive 
are the results of portfolio performance to the model 
parameters. The sensitivity analysis of SVM strategy is 
performed for the following four parameters:

 – Number of cryptocurrencies kept in the portfo-
lio N = 5, 10, 15, 20, 25, VAR. VAR means that any 
number (between 0 and 100) of cryptocurrencies 
selected by SVM output for buying are included in 
the portfolio. This number varies from one realloca-
tion period to another.

 – Reallocation period RE: 3d (3 days), 1w (7 days), 1m 
(30 days).

 – Percentage value of the transaction costs TC: 0.5%, 
1.0%, 2.0%.

 – Training data size TS: ~ 25%, ~ 50%, ~100%.

The parameters that were set as fixed are the following:
 – Length of historical data taken to calculate technical 

features: 10d (10 days).
 – Lambda λ used to calculate exponential moving 

average for returns: 0.94.
 – Meta-parameters C and γ are being chosen for each 

reallocation period via the tuning algorithm. These 
parameters are sequenced as follows: (0.5, 1, 2, 4). 
There can be a different set of optimal parameters 
for each reallocation day and it is not overseen. 
The choice of meta-parameters is described in 
section 2.6.

 – Length of training data: 3 months (91 days).
 – Long positions only assumptions.

The fixed parameters are kept constant according to 
the assumptions of the author. Only four parameters are 
chosen to participate in the sensitivity analysis: realloca-
tion period RE, the percentage value of the transaction 
costs TC, number of cryptocurrencies kept in the portfo-
lio N and training data size TS. Descriptive statistics for 
SVM strategy and the performance of the portfolios are 
presented in Tab. 4.2. At the end of this table, we addi-
tionally attach the best-selected set of parameters for 
the SVM strategy, which demonstrated the performance 
of the strategy with the highest IR1.

The base case for the SVM strategy is presented 
in Tab. 4.2 together with benchmark strategies. As 
a reminder, the parameters for the base case are as 
follows: N = 25, RE = 1w, TC = 1%, TS ~ 50%.

If reallocation period is changed from 1 week to 
3 days, the performance becomes much worse, IR1 
and %ARC drops several times. Such poor perfor-
mance can be explained by high transaction costs, even 
though %MT is lower for RE 3d. This can be explained 
by the fact that when the reallocation period is 3 days, 
the change of assets in the portfolio is more dynamic if 
compared to the 7-day reallocation. The transaction costs 
for 3-day reallocation are higher because we reallocate 
the portfolio 1.87 (= 2.33*115.3/143.7) times more often. 
Similar situation, but in the opposite direction occurs 
when we change the reallocation period from 1w to 1m. 
the results significantly improve in terms of %ARC, IR, 
and IR2. So, the length of the reallocation period signifi-
cantly impacts the portfolio performance.

Analysing the sensitivity to parameter N, we can 
see that the worst performance is noticed when we 
keep only 5 coins in the portfolio during a reallocation 
period. The lower the number of coins in the portfo-
lio, the higher is the portfolio turnover. Consequently, 
with N changing from VAR to 5, and accordingly higher 
%MT, the statistics demonstrate decreasing figures for 
%ARC, IR1 and IR1 and increasing values of %ASD 
and %MD. The best results are observed for the varying 
number of cryptocurrencies in the portfolio (meaning 
any number advised by SVM output for buying are kept 
in the portfolio). Additionally, statistics are very sensi-
tive to the parameter N.

If we change the training size (%TS) through 25%, 
50% and 100% (for example, for 50%, it is 25 coins from 
class + and 25 coins from class −), it does not exercise 
significant impact on the performance of our strategies, 
but we still observe that the best results are observed for 
the smallest training size.

Performance of the portfolios heavily depends 
on the magnitude of transaction costs but it is rather 
straightforward. For %TC equalled 0.5, the annual 
return is substantially higher than for %TC equalled 1.

Therefore, the common feature for the sensitivity 
analysis is that the shorter the reallocation period and 
the lower the number of cryptocurrencies, the lower is 
the performance for the strategy measured by IR1 and 
IR2. The performance of the portfolios heavily depends 
on the magnitude of transaction costs and relatively to 
a lesser extent depends on the change of training size. 
Addressing the research questions stated in the begin-
ning, the strategy results are significantly sensitive to 
the three out of four chosen parameters. So, the model 
does not provide robust results.
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Tab. 4.2. Descriptive statistics for SVM strategy (sensitivity analysis). Descriptive statistics for the benchmark strategies have been 
placed above for convenient comparison. 

Benchmark Strategies

Name %ARC %ASD %MDD IR1 IR2 %MT

S&P B&H 13.6 15.5 14.2 0.9 0.8

BTC B&H 147.4 76.8 69.7 1.9 4.1 6.3

EqW 425.8 96.2 81.7 4.4 23.1 10.8

McW 141.9 74.9 73.1 1.9 3.7 6.3

SVM 173.6 103.1 83.1 1.7 3.5 143.7

Parameters SVM Strategy

N Position %TS RE %TC %ARC %ASD %MDD IR1 IR2 %MT

25 long only 50 3d 1 19.4 108.7 90.6 0.2 0.0 115.3

25 long only 50 1w 1 173.6 103.1 83.1 1.7 3.5 143.7

25 long only 50 1m 1 224.2 101.5 86.0 2.2 5.8 148.8

5 long only 50 1w 1 -21.8 142.2 95.1 -0.2 0.0 189.3

10 long only 50 1w 1 89.3 131.7 85.0 0.7 0.7 176.8

15 long only 50 1w 1 207.2 115.7 82.0 1.8 4.5 166.2

20 long only 50 1w 1 215.9 110.0 82.3 2.0 5.1 154.3

25 long only 50 1w 1 173.6 103.1 83.1 1.7 3.5 143.7

VAR long only 50 1w 1 326.4 92.6 57.6 3.5 20.0 105.6

25 long only 100 1w 1 177.9 103.3 85.1 1.7 3.6 144.3

25 long only 50 1w 1 173.6 103.1 83.1 1.7 3.5 143.7

25 long only 25 1w 1 210.6 103.6 85.5 2.0 5.0 160.5

25 long only 50 1w 0,5 368.8 110.2 76.5 3.3 16.1 155.4

25 long only 50 1w 1 173.6 103.1 83.1 1.7 3,5 143.7

25 long only 50 1w 2 29.6 110.9 88,1 0.3 0,1 154.9

Best performance of SVM strategy with a selected set of parameters

N Position %TS RE %TC %ARC %ASD %MDD IR1 IR2 %MT

VAR long only 50 1m 1 392.43 88.97 53.45 4.41 32.38 105.9

Legend: McW – market cap weighted strategy, EqW – equally weighted strategy, N – number of currencies to be invested/used to 
construct portfolio, %TS – training data size, RE – the width of the reallocation period between the portfolio reallocation days, %TC – 
the total transaction costs taken as the percentage of the total transaction value of the portfolio, %ARC − annualized rate of return, 
%ASD − annualized standard deviation in percent, %MDD − maximum drawdown of capital in percent, IR1, IR2 − information ratios, 
%MT – the mean portfolio turnover ratio in percent.
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Fig. 4.3 and Fig. 4.4 presents respectively the equity 
lines for the SVM strategies with the varying parameters 
such as reallocation period RE and number of assets N 
kept in the portfolio.

Equity lines with the varying parameters such as 
transaction costs %TC and length of training set TS are 
presented in Fig. 4.5 and Fig. 4.6, respectively.

5  Conclusions

The main aim of this paper was to apply the SVM 
algorithm to build an investment strategy for the cryp-
tocurrency market and investigate its profitability. 
The research hypothesis was that the strategy based on 
the SVM algorithm is able to outperform the benchmark 
strategies in terms of return-risk relation. The results of 
this investigation were reported for the period between 
2015-01-01 and 2018-08-01. The main hypothesis that 
the investment strategy based on the SVMs algorithm 
outperforms benchmark strategies is rejected based on 
the IR1 values.

The main methodology concepts were based on 
the research paper ‘Nonlinear support vector machines 
can systematically identify stocks with high and low 
future returns’ by Huerta et al. (2013) and ‘Momentum 
and contrarian effects on the cryptocurrency market’ by 
Kość et al. (2018).

SVM was implemented to build a trading strategy 
in the following way. The training set is a tail set that is 
defined to be a group of coins whose volatility-adjusted 
price change is in the highest and lowest quintile. Each 

Fig. 4.3. Equity lines of the SVM strategy with changing reallo-
cation period RE: 1 week (base case), 1 month and 3 days

Note: the graph shows the equity lines of the SVM strategy with 
changing reallocation period RE over the period from 01/01/2015 
to 01/08/2018. The length of the reallocation period significantly 
impacts the portfolio performance.

Fig. 4.4. Equity lines of the SVM strategy with changing number 
of assets N in the portfolio: 25, 20, 15, 10, 5 and VAR

Note: the graph shows the equity lines of the SVM strategy with 
changing number of assets N in the portfolio over the period 
from 01/01/2015 to 01/08/2018. The worst performance is noticed 
when only 5 coins are kept in the portfolio during a realloca-
tion period. The lower the number of coins in the portfolio, 
the higher is the portfolio turnover.

Fig. 4.5. Equity lines of the SVM strategy with various transac-
tion costs (%TC equalled 2%, 1% and 0.5%)

Note: the graph shows the equity lines of the SVM strategy with 
changing transaction costs %TC in the portfolio over the period 
from 01/01/2015 to 01/08/2018. Performance of the portfolios 
heavily depends on the magnitude of transaction costs, which 
can be obviously seen from the behaviour of the equity lines.

Fig. 4.6. Equity lines of the SVM strategy with changing length 
of the training set TS: 25%, 50%, and 100%

Note: the graph shows the equity lines of the SVM strategy 
with changing length of training set %TS in the portfolio over 
the period from 01/01/2015 to 01/08/2018. As lines are evolving 
very close to each other, one may conclude that the change of 
the parameter %TS does not exercise a significant impact on 
the portfolio statistics.
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asset is presented by a set of six technical features. SVM 
is trained on historical tail sets and tested on current 
data. The classifier is chosen to be a nonlinear support 
vector machine. The SVM is trained and tested once per 
reallocation period. The portfolio is formed by ranking 
coins using the SVM output. The highest ranked coins 
are used for long positions.

Our results show that EqW portfolio outperforms all 
the benchmark strategies and also the SVM strategy. It 
gives the highest values of IR1 and IR2 demonstrating 
abnormal returns. The performance of the SVM strat-
egy was ranked the fourth being better only from S&P 
B&H strategy. Therefore, the main hypothesis stated at 
the beginning of this paper was rejected based on the IR1 
values.

The SVM strategy has not demonstrated abnor-
mal returns. Moreover, the results are not stable and 
the algorithm itself does not provide robust outcomes. 
The performance of the portfolio is extremely sensi-
tive to the parameters. In this study, only the influence 
of the four parameters has been checked. The perfor-
mance is highly sensitive to the number of assets kept 
in the portfolio. If we include only these assets recom-
mended by the SVM function output in the portfolio 
(N = VAR), the results get closer to the best EqW strat-
egy. The magnitude of transaction costs and the length 
of the reallocation period heavily impact the perfor-
mance statistics as well. Only the size of the training set 
does not have any significant impact on the outcome.

It is important that quite a large number of param-
eters that are deemed to be fixed in our analysis might 
influence the final results of the portfolio performance. 
Especially, the choice of the meta parameters C and γ 
play a very important role. Actually, the strategy pro-
duces notably different figures due to the fact that 
the method of choice of meta-parameters is greed search 
with fixed sampling. The computer power does not 
allow estimating the optimal parameters for the whole 
training set and it is the reason why the cost and gamma 
can be different if we run the analysis for a broader set 
of possible values. As an application of SVM implies 
setting of quite a large number of parameters, this makes 
the model very prone to the problem of overfitting. 
Therefore, length of historical data taken to calculate 
technical features, lambda λ used to calculate exponen-
tial moving average for returns, length of training data 
which were fixed parameters in the model can influence 
the final results of our analysis.

‘Buy’ candidates for the portfolio are defined by 
the SVM output based on the rule that assets are included 

in the portfolio, if their returns are predicted to grow. 
It implies that the decision is guided mainly by momen-
tum rule. We invest in those assets whose returns are 
predicted to grow. As was shown in the paper by Kość 
et al. (2018) that there is a lack of momentum effect on 
the cryptocurrency market. In the opposite, the results 
proved the existence of strong contrarian effects. There-
fore, it is worth checking the performance of the con-
trarian portfolio, that is, if we select as long positions 
the assets whose returns were assumed to decrease in 
the past, and therefore, were predicted by SVM to fall 
in the future. As one more potential continuation of this 
study, the sensitivity analysis can be carried out for these 
parameters, which were deemed fixed in the model. 
Moreover, it will be interesting to run the market neutral 
strategy including both long and short positions, so that 
there will be hedging for long positions.
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