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1  Introduction

The liquidity flow in the financial system will change 
rapidly in direction or/and volume in a very short 
time frame. This characteristic of liquidity flow could 
make risk management and supervision more difficult. 
A significant number of studies in the literature have 
attempted to research how the topology of complex 
financial networks contributes to the expanding and 
shrinking of liquidity in a system. These studies include 
work done on the topology of complex financial net-
works and their formation (e.g., Boss et al. 2004; Garratt 
et al. 2011; Silva et al. 2016), the robustness of systems 
and the importance of nodes under different network 
topologies (e.g., Iori et al. 2006; Soramäki et al. 2013; Liu 
et al. 2016), and the contagiousness of systemic risk in 
a financial network (e.g., Imakubo and Soejima 2010; 
Lenzu and Tedeschi 2012; Hoffman et al. 2015). In the 
field of intraday liquidity, recent papers focus mainly 
on settlement mechanisms and their involvement (e.g., 
Bech and Soramäki 2005; Martin and McAndrews 2010; 
Tsuchiya 2013), the behaviour of members (e.g., Bech and 
Garratt 2003; Mills and Nesmith 2008; Abbink et al. 2010; 
Galbiati and Soramäki 2013), systemic externality (e.g., 
Bedford et al. 2004; Bech and Garratt 2012) and policies 
of central banks (e.g., Ball et al. 2011; Zhang 2012; Munoz 
and Gonzalez 2013). However, there are few papers that 
attempt to investigate the implications of network topol-
ogy on the liquidity demand of individual members or 
on whole systems by analysing how the liquidity circu-
lates through a complex network.

This paper aims to contribute to this understanding 
by offering a model of intraday liquidity demand and 
circulation in a complex network, and then by studying 
how the topology of network affects the intraday liquid-
ity demand in an RTGS system through simulations. 
The paper is organized as follows. Section 2 provides a 
model to show how the liquidity of a member circulates 
through the network to settle the payments in one day. 
Section 3 describes the design of the network and the 
details of the simulation. Section 4 presents the results 
and Section 5 concludes.

2  A model of liquidity circulation 
in complex networks

In an RTGS system, the members settle their obligations 
using their intraday liquidity every trading day. Let 
the matrix ℙn×n denote this directed and weighted intr-
aday payment network, and let us suppose that every 
member in the system will have nonzero inflows or out-
flows or both in a trading day. Let the pij of ℙn×n denote 
the total value of payment from member i to j in day, 
and, namely, the directed and weighted linkage between 
node i and node j. This yields pij = 0,∀i ≠ j and pij ≥ 0,∀i ≠ j. 
Using the terms of a complex network, the out-strength 
and in-strength of i equals the total outflow and inflow if 
i in day, respectively, i.e., OSi = ∑ j pij and ISi = ∑ j pij. Thus, 
the total strength of the network is the total value of pay-
ments in the system, i.e., TS = ∑ i OSi = ∑ i ISi = ∑ i ∑ j pij.
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The real-time gross settlement is driven by the intr-
aday liquidity held by members. The initial liquidity 
held by members at the beginning of a day is denoted as 
the vector 𝕃n×1 (li ≥ 0∀i). We suppose that no additional 
liquidity can be acquired by any members during the 
day for settlement. 𝕃n×1 will be injected into the network 
through the settlement of payments by members, and 
will circulate in the network to settle yet more payments. 

From ℙn×n we can generate the transition matrix ℤn×n, 
the element of which is

𝑧𝑧𝑖𝑖𝑖𝑖 =  
𝑝𝑝𝑖𝑖𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖

 .

The transitional probability zij is the chance that a 
payment from i is paid to j exactly, such that zi: also shows 
the distribution of the total out-payment of i among other 
members (or nodes). Let d(𝕃) denote the function that 
transforms a liquidity vector to a diagonal matrix, with 
that vector as the main diagonal element. Let 𝕀n×n denote 
a n × n identity matrix. Thus, the process of circulation 
of liquidity in the payment network can be expressed as:

𝕏𝕏𝑛𝑛×𝑛𝑛0 = 𝑑𝑑(𝕃𝕃) 	 (1)

𝕏𝕏𝑛𝑛×𝑛𝑛1 = 𝑑𝑑(𝕃𝕃)ℤ 	 (2)

𝕏𝕏𝑛𝑛×𝑛𝑛𝑟𝑟 = 𝑑𝑑(𝕃𝕃)ℤ𝑟𝑟−1 	 (3)

𝕏𝕏𝑛𝑛×𝑛𝑛 =∑ 𝕏𝕏𝑛𝑛×𝑛𝑛𝑟𝑟
𝑟𝑟

= 𝑑𝑑(𝕃𝕃)(𝕀𝕀 + ℤ + ℤ2 +⋯+ ℤ𝑟𝑟−1 + ⋯) 𝕏𝕏𝑛𝑛×𝑛𝑛 =∑ 𝕏𝕏𝑛𝑛×𝑛𝑛𝑟𝑟
𝑟𝑟

= 𝑑𝑑(𝕃𝕃)(𝕀𝕀 + ℤ + ℤ2 +⋯+ ℤ𝑟𝑟−1 + ⋯)    (4)

where the element 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟   of matrix 𝕏𝕏𝑛𝑛×𝑛𝑛 =∑ 𝕏𝕏𝑛𝑛×𝑛𝑛𝑟𝑟
𝑟𝑟

= 𝑑𝑑(𝕃𝕃)(𝕀𝕀 + ℤ + ℤ2 +⋯+ ℤ𝑟𝑟−1 + ⋯)  is the amount 
of initial liquidity that has flowed from i to j in the r-th 
round of the liquidity circulation. By summing the flows 
of all rounds, matrix 𝕏 shows the final settlement situa-
tion.

The following insights or influencing factors can be 
obtained from the model:
1.	 Smooth Circulation. If there is no liquidity leakage 

or stopping mechanism, equation (4) will not con-
verge, i.e., every nonzero initial liquidity will circu-
late in the network forever, and therefore, an infini-
tive value of payments can be settled in the system.

2.	 Effect of Strength and Effect of Strength Distribu-
tion. The elements of matrix ℙ restrict the total value 
of the payment between every pair of nodes, i.e., 
xij ≤ pij and ∑ i,j xij ≤ ∑ i,j pij. If the value of the payment 

settled by the node equals its out-strength, the liquid-
ity of this node will not enter into the network and 
circulate again. This effect of strength exists at the 
member level and the system level. In addition, the 
distribution of total out-strength of a node may have 
systemic effect with the same total out-strength. This 
effect is called an effect of strength distribution and 
it exists only on the level of the system.

3.	 Effect of Leakage. If the network is asymmetric, 
i.e., there are some nodes with in-strengths greater 
than their out-strengths, or ISi > OSi, some liquidity 
will sink to these nodes and the circulation process 
will be broken. These kinds of nodes are called leak 
nodes for the purposes of this paper. Of course, 
must be spillover nodes with ISi < OSi, if there are 
any leak nodes in the network. While the leak nodes 
rely more on inflow to settle their out-payments and 
therefore have less demand for initial liquidity, they 
also provide less liquidity to the system. In contrast, 
spillover nodes have more demand for initial liquid-
ity, and provide more liquidity to the system in 
general. If there are liquidity leakages, equation (4) 
will converge. In particular, if there are some nodes 
with nonzero in-strength and zero out-strength1, 
equation (4) will converge to:

𝕏𝕏𝑛𝑛×𝑛𝑛 =∑ 𝕏𝕏𝑛𝑛×𝑛𝑛𝑟𝑟
𝑟𝑟

= 𝑑𝑑(𝕃𝕃)(𝕀𝕀 − ℤ)−1 .	 (5)

4.	 Effect of Gridlock. The problem of gridlock in the 
RTGS refers to the coexistence of available liquid-
ity and unsettled payments of a member due to 
the gross settlement mechanism. Even if only one 
member encounters a gridlock problem, it may have 
systemic effect by influencing liquidity circulation. 
In this case, both equations (4) and (5) will not hold.

5.	 Effect of Timing. The liquidity from one node arrives 
at other nodes concurrently, in equations (1) to (5). 
However, in practice, the payments are settled one 
by one. Thus, the timing of payments will also affect 
the liquidity circulation, especially when there are 
liquidity leakages or gridlocks.

6.	 Settlement and Real-Time Settlement. In contrast 
to normal settlement, real-time settlement requires 
matching the liquidity demand to supply not only 
in terms of total value, but also in terms of timing. 
Liquidity demand for real-time settlement cannot be 
described by equations (1) to (5), and must be calcu-
lated by simulations.

1   For example, in the case of default.
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Let ∄𝑞𝑞𝑖𝑖𝑖𝑖𝜐𝜐 ∈ 𝒬𝒬𝑖𝑖
𝑡𝑡, 𝜐𝜐 < 𝜏𝜏 ≤ 𝑡𝑡 ∈ 𝒯𝒯  = {0,1, ... , T} ∈ℕ be the set of trading time in a 

trading day, 𝒫𝒫𝑖𝑖
𝑡𝑡  be the set of payments of member i 

at the specific time t and let t∈∄𝑞𝑞𝑖𝑖𝑖𝑖𝜐𝜐 ∈ 𝒬𝒬𝑖𝑖
𝑡𝑡, 𝜐𝜐 < 𝜏𝜏 ≤ 𝑡𝑡 ∈ 𝒯𝒯  and 𝒫𝒫𝑡𝑡 = ∪𝑖𝑖=1

𝑛𝑛 𝒫𝒫𝑖𝑖
𝑡𝑡  

be the set of payments of the entire system. Similarly, 
let 𝒮𝒮𝑡𝑡 =∪𝑛𝑛=1

𝑛𝑛 𝒮𝒮𝑖𝑖𝑡𝑡 𝒮𝒮𝑡𝑡 =∪𝑛𝑛=1
𝑛𝑛 𝒮𝒮𝑖𝑖𝑡𝑡  be the set of settled payments and 

𝒬𝒬𝑡𝑡 = ∪𝑖𝑖=1
𝑛𝑛 𝒬𝒬𝑖𝑖

𝑡𝑡   be the queued payments of the system at 
time t. This gives us 𝒬𝒬𝑖𝑖𝑡𝑡 ∪ 𝒮𝒮𝑖𝑖𝑡𝑡 = 𝒫𝒫𝑖𝑖𝑡𝑡  . 

According to the general rules of RTGS, the set-
tlement of payment 𝑙𝑙𝑖𝑖𝑡𝑡 ≥ 𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡   will be attempted at time t fol-
lowing the time order, and will be settled successfully 
if and only if 𝑙𝑙𝑖𝑖𝑡𝑡 ≥ 𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡   and 𝒬𝒬𝑡𝑡 = ∪𝑖𝑖=1

𝑛𝑛 𝒬𝒬𝑖𝑖
𝑡𝑡   ≠ 𝒬𝒬𝑡𝑡 ≠  ∅ . Then the payment 

𝑠𝑠𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡   will be added to 𝒮𝒮𝑡𝑡 =∪𝑛𝑛=1
𝑛𝑛 𝒮𝒮𝑖𝑖𝑡𝑡 . Otherwise, if 𝑙𝑙𝑖𝑖𝑡𝑡 ≥ 𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡   < 𝑙𝑙𝑖𝑖𝑡𝑡 ≥ 𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡   or 

𝒬𝒬𝑡𝑡 = ∪𝑖𝑖=1
𝑛𝑛 𝒬𝒬𝑖𝑖

𝑡𝑡   = 𝒬𝒬𝑡𝑡 ≠  ∅ , 𝑙𝑙𝑖𝑖𝑡𝑡 ≥ 𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡   will be queued into 𝒬𝒬𝑡𝑡 = ∪𝑖𝑖=1
𝑛𝑛 𝒬𝒬𝑖𝑖

𝑡𝑡  , denoted by 𝑞𝑞𝑖𝑖𝑖𝑖
𝑡𝑡  . When 

𝑙𝑙𝑖𝑖𝑡𝑡 > 𝑙𝑙𝑖𝑖𝑡𝑡−1 , the orders in i’s queue will be settled accord-
ing to FIFO. The condition for which payment 𝑙𝑙𝑖𝑖𝑡𝑡 ≥ 𝑞𝑞𝑖𝑖𝑖𝑖𝜏𝜏 , ∃𝑞𝑞𝑖𝑖𝑖𝑖𝜏𝜏 ∈ 𝒬𝒬𝑖𝑖

𝑡𝑡   can be 
settled is 𝑙𝑙𝑖𝑖𝑡𝑡 ≥ 𝑞𝑞𝑖𝑖𝑖𝑖𝜏𝜏 , ∃𝑞𝑞𝑖𝑖𝑖𝑖𝜏𝜏 ∈ 𝒬𝒬𝑖𝑖

𝑡𝑡   and ∄𝑞𝑞𝑖𝑖𝑖𝑖𝜐𝜐 ∈ 𝒬𝒬𝑖𝑖
𝑡𝑡, 𝜐𝜐 < 𝜏𝜏 ≤ 𝑡𝑡 ∈ 𝒯𝒯 .

At the end of a day, T, member i has settled all his 
payments if 𝑙𝑙𝑖𝑖𝑡𝑡 ≥ 𝑞𝑞𝑖𝑖𝑖𝑖𝜏𝜏 , ∃𝑞𝑞𝑖𝑖𝑖𝑖𝜏𝜏 ∈ 𝒬𝒬𝑖𝑖

𝑡𝑡   ≠ 𝒬𝒬𝑡𝑡 ≠  ∅ , and has settled in real time only 
if 𝑙𝑙𝑖𝑖𝑡𝑡 ≥ 𝑞𝑞𝑖𝑖𝑖𝑖𝜏𝜏 , ∃𝑞𝑞𝑖𝑖𝑖𝑖𝜏𝜏 ∈ 𝒬𝒬𝑖𝑖

𝑡𝑡   = 𝒬𝒬𝑡𝑡 ≠  ∅ , ∀∄𝑞𝑞𝑖𝑖𝑖𝑖𝜐𝜐 ∈ 𝒬𝒬𝑖𝑖
𝑡𝑡, 𝜐𝜐 < 𝜏𝜏 ≤ 𝑡𝑡 ∈ 𝒯𝒯 . The minimum liquidity requirement 

to settle all payments of a member in real time is called 
upper bound liquidity (UBL) and is given by:

𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖 = max (max
𝑡𝑡

(𝑃𝑃𝑖𝑖:𝑡𝑡 − 𝑆𝑆:𝑖𝑖𝑡𝑡) , 0) 	 (6)

where 𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖 = max (max
𝑡𝑡

(𝑃𝑃𝑖𝑖:𝑡𝑡 − 𝑆𝑆:𝑖𝑖𝑡𝑡) , 0)  is the entire required payment value of i for 
unit of time t, and 𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖 = max (max

𝑡𝑡
(𝑃𝑃𝑖𝑖:𝑡𝑡 − 𝑆𝑆:𝑖𝑖𝑡𝑡) , 0)  is the whole settled payment value 

of i until time t, respectively. Similarly, the UBL of a 
system is defined by the sum of UBLs of all members as:

UBL = ∑i UBLi	 (7)

According to (6), we also have:

max(OSi – ISi, 0) ≤ UBLi ≤ OSi	 (8) 

∑i max(OSi – ISi, 0) ≤ UBL ≤ TS.	 (9)

The relative UBL of member or system (RUBL) is defined 
as:

0 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 =
𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖

≤ 1 	 (10)

0 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≤ 𝑈𝑈𝑈𝑈𝑈𝑈
𝑇𝑇𝑇𝑇 ≤ 1 .	 (11)

This paper intends to study how the structural effect, i.e., 
the effect of strength, strength distribution or leakage, 
will affect the intraday liquidity demand of the entire 
system or a member to settle the payments in real time. 

Other effects, such as the effect of gridlock or timing, 
will be controlled during the simulation.

3  Network topologies and 
simulations

at first, a directed and weighted globally coupled 
network with nodes is constructed as a bench network, 
denoted by FE. In FE, there is a direct link between 
every pair of nodes with equal weight w �. Thus, the total 
strength of FE is TS = n(n – 1)w �. In FE, there is no effect 
of strength distribution nor of leakage, because all nodes 
are homologous and their out-strength is equal to their 
in-strength. All other types of networks mentioned in 
this paper are derived from this bench network with an 
unchanged total strength of the system, TS, to eliminate 
the effect of strength in the system.
1.	 Distribution of total strength among the nodes. 

There are many complex financial networks for 
which the degree of distribution follows a power 
law. According to the BA model, we construct a 
scale-free network with the same number of nodes 
and total strength as the FE network, denoted by BS. 
The BS network is symmetric, i.e., the out-strength 
of every node is equal to its in-strength. In BS, there 
are not only effects of strength at the node level but 
also effects of strength distribution at the system 
level. The coefficient of variation of out-strength of 
all nodes, VOS, is calculated to denote the effect of 
strength distribution at the level of the system. OSi 
is used to denote the effect of strength at the level of 
nodes. 

2.	 Asymmetry. Based on the symmetric networks FE 
and BS, two types of asymmetric networks, ES and 
Ba, are constructed with equal total strength. At 
first, all nodes are sorted in descending order of 
strength. Then, the first j (j is a predefined param-
eter) columns of the matrix lower triangle are 
deducted by a random proportion. Finally, the 
deducted values are added to the corresponding 
elements of the matrix upper triangle. The asymme-
try of a network is denoted by the relative level of 
leakage of the network:

𝑇𝑇𝑇𝑇 =  
∑ max (𝐼𝐼𝐼𝐼𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑖𝑖, 0)𝑖𝑖

𝑇𝑇𝑇𝑇  .	 (12)
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And the level of leakage of a node is denoted by:

TSi = ISi – OSi.	 (13)

A node is a leak node if TLi is positive, and a spillo-
ver node if TLi is negative.

The networks are also transposed to study 
whether the distribution of leakage among nodes has 
a systemic effect. A superscript j is added to denote 
the network with a different j and a superscript T is 
added to denote the transposed network. The total 
strength of the nodes are the same in ES but they 
differ significantly in BA. To show this difference, 
the coefficient of variation of the total strength of all 
nodes, VTS, is also calculated for all networks.

3.	 Number of nodes. Two different number of nodes, 
n1 = 30 and n2 = 58, are set for every type of network 
(denoted by a subscript). The average weight of a 
link of the two types of networks is set to w1 = 38 and 
w2 = 10, respectively, to keep the total strength of the 
networks remain unchanged.

By setting j = 1,2, ... 10 and transposing the network, 
a total of 84 networks (2 FEs, 2 BSs, 40 ESs and 40 Bas) are 
constructed. The TL and VOS or VTS of these networks 
are depicted in Fig. 1, as a symmetric network with 
homogenous nodes, are located at origin. BSs without 
a leakage effect are located on the horizontal axis. ESs 
and BAs have effects of both strength distribution and 
leakage, but both effects are greater in the BAs. Further-
more, the ESs have nonzero VOSs but zero VTSs. 

At the level of nodes (Fig. 2), all nodes of FEs are 
located at the origin, as well. In ESs, the total strengths 
of all nodes are equal, and VOSi is negatively correlated 
to TLi. All nodes of BSs are located on the horizontal 

axis. BA nodes have greater differences in both VOSi and 
TLi and there is no linear relationship between them.

For every payment network, data of payment 
flows over 500 trading days are generated. The value 
per payment is generalized to one to control the grid-
lock effect. The timing of payments in one day is evenly 
distributed. The payment flows are the same among all 
days with the exception of timing. The simulations are 
based on the algorithm of unlimited real time gross set-
tlement to get the UBL of every day for every node and 
for the entire system. The UBL of 500 days is averaged to 
eliminate the effect of timing.

4  Results of the simulation

4.1  The effect of strength distribution

The distributions of UBL for two types of symmetric net-
works, FE and BS, are shown in Fig. 3. At the level of 
systems (in the left subplot of Fig. 3), the distributions 
of the system’s UBL of four networks are like a normal 
distribution. A network with a higher VOS has a lower 
average UBL, but higher volatility of UBL. In contrast, 
a network with more nodes has a higher average UBL, 
but lower volatility of UBL. At the level of nodes (in the 
right subplot of Fig.  3), the distribution of the UBL of 
FE is more like a normal distribution, but that of BS is 
more like a lognormal distribution. In general, the effect 
of strength distribution is significantly negative to the 
liquidity demand of a system in which there is no effect 
of leakage.

Fig. 1. TL and VOS or VTS of different networks
Source: Authors’ own calculations.

Fig. 2. TL and VOS or VTS of nodes in different networks
Source: Authors’ own calculations.
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Fig. 3. System and Member UBLs of Symmetric Networks
Source: Authors’ own calculations.

Fig. 4. Relationship between UBL or RUBL and TS of Members in Symmetric Networks
Source: Authors’ own calculations.
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According to the results of the simulation, the out-
strengths of nodes in symmetric networks are positively 
correlated to their UBLs in first-order correlation but 
negatively correlated in second-order correlation (in 
the left subplot of Fig. 4), and negatively correlated to 
their RUBL (in the right subplot of Fig. 4). Thus, a node 
with a higher out-strength in a symmetric network 
needs more intraday liquidity to settle payments in real 
time, but can use its liquidity more efficiently. This is 
why a network with a higher VOS needs less liquidity 
to settle payments, i.e., the negative effect of strength 
distribution.

In general, the number of possible orders of all 
in- and out-payments of a node with the out-strength 
of o or the total strength of 2o in a symmetric network 
is (2o)!/(o!)2. By calculating the mean UBL and RUBL 
of this node under all possible cases, the relationship 
between the out-strength of a node and its UBL or RUBL 
can be acquired. Let o be an integer in [1,12]. The result 
is shown in subplot 1 of Fig. 5, which is like that in Fig. 4. 
As the out-strength and in-strength of a node are simul-
taneously increased, it is helpful to coincide the inflow 
and outflow of liquidity for the node, and the efficiency 
of liquidity is therefore increased for the node and for 
the entire system. A decrease in the number of nodes 
will also increase the liquidity efficiency of the system.

We generalize the discussion to take into considera-
tion the constant level of leakage of a node (see subplot 2 

and 3 in Fig. 5). The subplots show that the relationship 
between the out-strength and UBL or out-strength and 
RUBL of nodes with some constant level of leakage, 
whether leak nodes or spillover nodes, is identical to that 
of nodes with zero leakage. However, the magnitude of 
the strength effect differs significantly across different 
levels of leakage. In general, the less the value of leakage 
level of a node is, the more is the effect of strength to 
liquidity demand of a node. Therefore, the liquidity 
efficiency of a system can be increased through taking 
payments from leak nodes to spillover nodes when the 
leakage level of the nodes is constant.

4.2  The effect of strength distribution and 
leakage in ES

We also get the UBL of the system and of the nodes for 
ES (an asymmetric network in which all nodes have 
equal total strength), and compare them with those of 
FE. The effects of leakage and strength distribution on 
the liquidity demand of the system in ES are depicted 
in Fig. 6.
1.	 Effect of Leakage. The system’s TL is significantly 

positively correlated with the UBL of the system. 
The intercept of the fitted line corresponds to FE 
with zero leakage.

Fig. 5: Relationship between Out-Strength and UBL or RUBL of a Node Given the Level of Leakage
Source: Authors’ own calculations.
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2.	 Distribution of Leakage. The locations of the trans-
posed networks are the same as those of the original 
networks in Fig. 6. The distribution of leakage does 
not influence the liquidity demand of the system, 
ceteris paribus.

3.	 Distribution of Strength. In contrast to the negative 
effect of strength distribution in symmetric net-
works, that in ES is positive.

4.	 The Number of Nodes. In contrast to networks with 
30 nodes, networks with 58 nodes have a fitted line 
with a lower slope. That is, the effect of leakage and 
that of strength distribution are stronger for ES, 
which has fewer nodes.

In summary, the liquidity demand of the system is posi-
tively correlated with the extent of leakage, but not with 
the distribution of leakage among nodes. The reason for 
the positive effect of strength distribution to the system 
may be that the leakage effect is more dominant and 
that increasing only the out-strength is not enough to 
increase the efficiency of coordinating inflows and out-
flows.

At the level of nodes (Fig. 7), the liquidity demand 
of every leak node is approaching zero, and that of every 
spillover node is mostly equivalent to the absolute value 
of the node’s TL. The above relationship is more signifi-
cant when the absolute value of the node’s TL is greater. 

Fig. 6: Relationship between the Liquidity Demand of the System and TL or VOS in ES
Source: Authors’ own calculations.

Fig. 7: Relationship between the Liquidity Demand of Nodes and TL or VOS in ES
Source: Authors’ own calculations.
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The relationship between the relative liquidity demand 
of nodes and the nodes’ TL is similar. This is why the 
effect of leakage on the liquidity efficiency of the system 
is negative. Moreover, the liquidity efficiency of nodes 
in networks with 58 nodes is lower than that in networks 
with 30 nodes, which accords with the results of the pre-
vious section.

In general, given a node with a total strength of z 
and an out-strength of o, 0 < o < z, the number of pos-
sible orders of all in- and out-payments of the node is 
given by z!/((z – o)!)o!). If z = 24, thenthe relationship 
between UBL or RUBL and TL or the out-strength of the 
node is shown in Fig. 8, and is similar to the relationship 
shown in Fig. 7. In networks with equal total strength of 

Fig. 8: Leakage Effect and Strength Effect on the Liquidity Demand of a Node given a TS
Source: Authors’ own calculations.

Fig. 9: Relationship between TL or VOS and the Liquidity Demand of the System in BA
Source: Authors’ own calculations.
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nodes, a node with a lower out-strength is a leak node, 
and its UBL and RUBL are approaching zero. The UBL 
and RUBL of a node increase at a greater rate when the 
node’s out-strength approaches its in-strength. When 
the node’s out-strength equals its in-strength, the node 
will be a spillover node, its UBL will be increased line-
arly and its RUBL will approach one.

4.3  The effect of strength distribution and 
leakage in BA

Finally, as shown in Fig. 9, there is significant difference 
between the effect of strength distribution and that of 
leakage in BA. As in networks with equal total strength 
of nodes, the effect of leakage on the liquidity demand 
of the system is also significantly positive, but with a 
greater slope and goodness of fit. Again, the distribu-
tion of leakage among nodes does not affect the liquid-

Fig. 10. The Effect of Leakage on the Liquidity Demand of Nodes in BA

Source: Authors’ own calculations.

Fig. 11. The Effect of Leakage on the Liquidity Demand of Nodes with a Given Out-Strength

Source: Authors’ own calculations.
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ity demand of the system. In BA, the effect of strength 
distribution is not significant, as only leakages have an 
effect.

At the level of nodes (Fig. 10), the results are like 
those in the networks with equal total strength of nodes, 
i.e., the TL or out-strength of nodes is positively corre-
lated with the liquidity demand of spillover nodes, but 
is uncorrelated with that of leak nodes. To distinguish 
the effect of leakage from that of strength, we use the 
method of a numerical simulation to study it with some 
given out-strength.

As shown in Fig. 11, the liquidity demand and rel-
ative liquidity demand of a node significantly increases 
with a decreasing level of leakage, as in Fig. 10. Given 
a certain level of leakage, the higher the out-strength 
of a node, the higher the liquidity demand of the node 
is, and the less the relative liquidity demand is, as in 
Fig. 5. Furthermore, the difference between the liquidity 
demands (or relative liquidity demands) of nodes with 
various out-strengths is decreasing (or increasing), as 
the leakage level of the node is decreasing. This reflects 
the effect of strength given a certain level of leakage.

5  Conclusions

In this paper, we analyse the different influencing 
factors of intraday liquidity demand by modelling the 
circulating mechanism of liquidity in a network, and by 
examining the different structural effects on the liquidity 
demand of real-time settlement of both a member and 
of the whole system using different simulation methods. 
We find the following robust results:
a.	 that there is a more efficient liquidity circulation 

in symmetric network compared to an asymmetric 
network;

b.	 that the higher the strength of a node, the more 
efficiently the node can use its inflow to finance its 
outflow, if the leakage level is constant and there are 
no gridlocks in the settlement process. This leads to 
a reduced liquidity demand on the entire network, 
although the nodes with higher strength need more 
liquidity in general;

c.	 that the liquidity demand of a leak node with higher 
in-strength is approaching zero as its in-strength 
become higher, and the liquidity demand of a spillo-
ver node with higher out-strength is mostly linearly 
correlated with its out-strength;

d.	 that in the case of constant total strength of nodes, 
the liquidity demand of a node or of the entire 
network is negative correlated with the out-strength 
of the node or the variance of the nodes’ out-strength 
of the network, and is positively correlated with the 
leakage level of the node or that of the entire network;

e.	 that the network’s liquidity demand is mostly line-
arly correlated to the leakage level of the network, 
but uncorrelated to the distribution of total leakage 
among all notes;

f.	 that the lower the leakage of a node, the higher its 
liquidity demand and the lower relative liquidity 
demand the node has. With reducing leakage levels, 
the differences between the liquidity demands of 
nodes with different out-strengths become smaller, 
and those between the relative liquidity demands of 
nodes become greater.
In light of previous findings, our results are useful 

for the management and supervision of short-term 
liquidity demand in complex financial systems, and for 
liquidity risk management and liquidity rescue policy-
making.
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