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1 Introduction 

 
Railways transportation plays a central role in the strategies [1] of European sustainable 

transport system development and the energy transition concept of Germany other European 
countries [2]. The role cannot be assured without high performance of railway operation, reduction of 
maintenance costs, and improving the availability of railway transportation. The availability and 
reliability of railway transportation depend first on the performance of railway infrastructure. The 
maintenance costs of railway infrastructure consist of the costs for the track superstructure, signaling 
devices, catenary and engineering constructions maintenance. The main cost driver of maintenance 
costs is the track superstructure that shares up to half of the overall maintenance costs [3]. Thereby, 
almost 33 % of the total maintenance costs of railway track are spent for the renewal and maintenance 
of switches and crossings (S&C) [4]. Therefore, S&C is one of the main cost drivers of track 
maintenance.  

A railway S&C structure consists of the following main parts: switch rails, common crossing with 
guardrails and sleepers. A common crossing, due to high dynamic loading of wheels, has 
disproportionately short lifecycle. The common crossings assembled from steel R350 have 5 - 10 
times lower than the lifecycle of the plain track [5, 6]. Furthermore, the crossing lifecycle is usually 
finished with rail contact fatigue (RCF) damages. Contrary to other crossing failures like rail wear, 
ballast settlements etc., the RCF failures are developing not evenly over the lifecycle. Therefore, the 
RCF failures are difficult to detect recently and predict their development with ordinary scheduled 
inspections. For that reason, the unexpected RCF failures on common crossing rails can require the 
unplanned maintenance works with long-term traffic interruption. According to the approximate 
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estimates [7], the 6 % of unplanned S&C faults in the railway network of the Netherlands, could cause 
55 % of train delays. Consequently, the S&C is a significant factor influencing the availability of railway 
transportation.  

The general reason of the high maintenance costs and at the same time, not satisfactory 
availability is the scheduled inspections. The conventional switch inspections are time-expensive and 
low automated, contrary to the plain track, where the inspection is carried out with high-effective 
measuring cars. Therefore, the way to improve the availability with more frequent scheduled 
inspections of crossings is inacceptable due to the explosion of already high inspection costs. The 
transition from the scheduled maintenance to the preventive or predictive maintenance with the 
concept of prognostics and health management (PHM), is increasingly taking place in the railway 
companies [8]. A growing number of national and international projects and publications confirm the 
interest of industry and researchers in the development of railway infrastructure PHM. The study [9] 
presents a wireless system for sleeper vibrations measurement, that is used to estimate sleeper 
deflection and the vertical track stiffness. A similar system [10] that is based on the sleeper 
acceleration measurements for S&C, is tested on the German (DB) and Switzerland (SBB) Railways. 
The specialty of the system is long-term up 2 years autonomous monitoring of sleeper deflections. 
Russian railways (RZhD) are testing the autonomous system stress and temperature control in 
continuous welded rails [11]. The system can detect the danger of track buckling of rail break and is 
integrated in the railway signaling system. Monitoring of railway ballast and sublayers on the high-
speed railways of SNCF is provided on test sections with 127 sensors that includes accelerometers, 
anchored displacement sensors, temperature and humidity probes, and extensometers [12]. The 
distributed acoustic sensor technology, that is based on optical fiber real-time monitoring and 
positioning, is tested on heavy-haul railways of China Railways [13]. A Sensor Platform Sensor4PRI 
for monitoring of slab track is developed in the context of the FASTRACK [14] project and is tested on 
Spanish railways. The system is based on wireless sensor networks that include acceleration, 
inclination and distance sensors that send the measurement data to the receiver in the rolling stock. A 
Vision Based Condition Monitoring Approach for S&C is introduced in [15]. A 3D reconstruction of a 
crossing nose cracks with X-ray tomography is proposed within the project INTELLISWITCH [16].  

The reviewed railway infrastructure monitoring methods have various work principle, provide 
diverse information types and amount of information. However, the sustained application of the 
monitoring method with railway companies depends also on the costs of the methods. The present 
paper deals with the portable monitoring system ESAH-M (Electronic Analysis System of Crossing – 
Portable), that is used for common crossing monitoring on German railways DB [17]. Fig. 1, right 
shows the system ESAH-M that is installed for measurement on a common crossing. 

The development of common crossing RCF (Fig.1, left) is accelerated over the lifetime and can 
be visually observed after about 75 % of the lifecycle. Therefore it is difficult with conventional 
scheduled visual inspection recently detect and predict RCF damages. Contrary to the visual 
inspections and other monitoring methods that asses the RCF symptoms, the system ESAH-M is 
monitoring the RCF reasons. The growth of dynamic loading causing the damages can be detected 
much earlier before the first visual crack appears. The main advantage of the ESAH-M system before 
the stationary systems is that it is portable and therefore, can be used for monitoring of many 
crossings with one system. The system acquires, additionally to 3D accelerations, also the wheel 
impact position on the frog nose and train velocities that is the further technical advantage.  

 

 
Fig. 1: The track-side inertial measurement systems: left – RCF development images and their times 

in megatons (Mt), right – ESAH-M [17]). 
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The concept of PHM implicates the series of steps: data acquisition, data processing, detection, 
diagnostics, prognostics, and advisory generation [18]. The monitoring methods that are based on 
inertial measurements have significant advantage of simple and reliable data acquisition. However, 
the experience of their application for recent detection, diagnostics and especially prognostics of 
railway infrastructure, has shown significant problems. Different to the engineering problems, like 
rolling bearing of gear-box analysis, where the inertial monitoring is successfully used. The problem 
consists in difficulty of interpretation of the measurement results. The performance studies [19, 20] of 
the track-side inertial monitoring systems have shown the significant random variation of the 
measured accelerations that is much higher than the systematic changes during the crossing lifecycle. 
The accelerations in the new crossings are statistically compared not much differ to that from the end 
of the lifecycle. The reasons of the significant random variations are a lot of factors influencing the 
measurement results: different train types and their velocities, wheel profile wear, wheel trajectory 
change due to the lateral wheel position, etc. The error analysis of the system in the study [21] has 
recovered a potential error source due to unknown variation of the distance between the sensor and 
wheel impact position. It was experimentally shown, that the taking into account the effect of wave 
propagation, could significantly reduce the measurement uncertainty.     

An application of modern signal processing and machine learning methods is a promising way 
for solving the problem of inertial measurement uncertainty. The methods allow exploiting the 
measurement information deeper and reveal the hidden relations. An overview of contemporary 
machine learning approaches with application to railway track infrastructure is presented in book [22]. 
A common crossing fault prediction with the track-side inertial measurements using non-linear signal 
processing techniques and regression methods is proposed in the study [23]. An assessment of the 
track condition from on-board acceleration measurements using the grey relational analysis method 
for is presented in [24]. The method determines the track condition using a similarity comparison 
between the obtained track profiles. On-board track condition monitoring with the machine learning 
approach is described in [25]. A learning system in the form of three independent neural networks is 
used within the approach to identify the track condition. Experimental studying the causes of a frog rail 
contact damages using track-side inertial and surface scanning measurements during the overall 
lifecycle is presented in [26]. Studies [27, 28] present a monitoring and prediction of quality 
development of track substructure for ballasted and ballastless track in transition areas. An analysis of 
ESAH-M measurements by statistical and mechanical approaches with the recovering the relation to 
the crossing lifetime is shown in [29]. Detection of track subgrade failures with on-board inertial 
measurements is studied in [30] based on scale modelling. A substantial improvement of common 
crossing inspection system using machine learning prognostics and track-side monitoring is proposed 
in [31]. The study [32] describes a method for rail squats and corrugation detection using bogie 
acceleration measurements on in-service trains. The method uses an analysis of the feature 
frequencies from the continuous wavelet analysis and the feature modes from the empirical mode 
decomposition. Track condition monitoring from in-service train’s acceleration measurements is 
presented in [33]. A mathematical model and the frequency response analysis is used to process the 
information on track alignment and track irregularities. 

A track quality indicator algorithm that is based on a modified Karhunen–Loève transformation, 
was developed in the study [34]. The algorithm is closely related to principal component analysis and 
extracts the principal dynamics from measurement data. A differential evolution technique based track 
measurement is presented in the paper [35], where the axle box measurements are considered. The 
new method enables to estimate the exact location of the irregularity. A development of condition 
indicator for on-board measurements, which is based on time and frequency domain features, with 
application of feature ranking and principal component analysis, is proposed in [36]. Monitoring of 
railway superstructure is shown in [37]. Rails displacement, temperatures, ballast pressure, stresses 
were measured and analyzed during the monitoring. Analysis of dynamic response on switches and 
crossings is demonstrated in [38].The dynamic response was numerically simulated by Finite Element 
Method model of common crossing. An analysis of the correlation between vehicle responses and 
track irregularities is presented in the study [39]. The analysis is bases on experimental measurements 
and modelling. The results show a high influence of track stiffness on the axle box acceleration. The 
data-driven prediction of the track degradation index using acceleration monitoring of in-service 
vehicles described in [40]. The three different machine learning models are presented: random forest 
regression, support vector machine with genetic algorithm and artificial neural network. The random 
forest regression model provided the best results of the prediction. 
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Fractal analysis is a promising technique for signal analysis and feature extraction. It is used in 
[41] for track ballast and subgrade diagnostics and recovering the cause of track irregularities by 
quantifying the wavelength characteristics of the common track geometry data. An application of 
fractal analysis for the data driven assessment of railway superstructure and substructure degradation 
and the necessary predictive maintenance is considered in [42]. An analysis of the multi-fractal 
spectrum for estimation of railway fastenings condition was proposed in the study [43], where pulse 
stimulation measurement technique is used. An application of fractal geometry theory to describe the 
geometric evolution of rail weld irregularities is presented in [44]. 

The goal of this paper is the exploration of multifractal analysis to recover the hidden relations to 
the crossing lifetime in the inertial measurements of track-side ESAH-M system. The study is 
performed in the following steps: multifractal features extraction, significant features selection with 
Lasso (Least absolute shrinkage and selection operator) regularisation technique and feature fusion to 
one structural health indicator. 

 
 

2 The theoretical background of multi-fractal spectrum calculation 
 

The multifractal analysis, different to fractal one that is based on one parameter set of a fractal 
dimension, is based on the calculation of two sets of parameters related to the signals. The sets are 
Hölder exponent, and multifractal spectrum. Hölder exponent quantifies the local regularity of the 
signal and multifractal spectrum – its multifractality. The association of each of data group of the same 
regularity with the Hausdorff dimension by means of multifractal spectrum enables to define a function 
between the Hölder exponent and the Hausdorff dimension that is also known as singularity spectrum 
[45]. 

Nowadays there are a lot of computing methods for performing the fractal and multifractal 
analysis, like box-counting, fractional Brownian motion, spectral methods, etc. For the present study, 
spectral methods are used namely wavelet leader based multifractal analysis [46]. Wavelet leaders 
use the wavelet self-similarity structures in combination with the multiresolution analysis scheme. 
Wavelet leader’s computation includes the search of the highest wavelet coefficient in a close time 
neighborhood, for all finer scales. It can be defined as follows [47]: 

 
����, �� = sup�⊂��{|��|},                                                                                              (1) 
 
here, �� – wavelet coefficients corresponding to the wavelet transform of the signal;  
 

3� = ������ , ����� � – the dilated intervals, with scaling factor M ≥ 3. 

 
The scaling function is computed based on the wavelet leaders: 
 
 �� �!, �� = 2�# ∑ �#�%�∈'�  ,                                                                                                (2) 

 
here ! – order of scaling. 
 
The scaling function decays as power laws of the scales if the signal has the self-similarity. The 
exponents of these power laws are called scaling exponents and are calculated as follows: 

 

(� �!� = lim	inf#→�0
123	�456�%,#��

�7�  .                                                                                                (3) 
 
The singularity spectrum is obtained from the scaling exponents with the help of a Legendre 
transform: 
 
8�ℎ� = inf%�1 + !ℎ − (� �ℎ��	,                                                                                                 (4) 
 
here ℎ – the Hölder exponent. 
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3 Preliminary analysis and multifractal features extraction 
 

A turnout with a stiff common crossing was monitored with track-side measurement system over 
the overall lifecycle 2 Mt. The geometrical parameters of the turnout are the angle 1/12, branch radius 
500 m. The common crossing is assembled from rails 60 E1 of steel R350. The common crossing was 
monitored in 11 measurement actions. Each action included 5 - 6 train passages. Altogether 64 trains’ 
passages with 2 701 wheel axles were measured. Each measurement includes the impact position, 
train velocity and the spatial acceleration in the frog nose. The deep RCF damages appeared after  
27 Mt and after 29 Mt the crossing was renewed. The variation of maximal vertical accelerations and 
the variation of the impact longitudinal position depending on the lifetime of the common crossing is 
shown on the Fig. 2.  

 

 
Fig. 2: The measured maximal vertical accelerations (top) and impact longitudinal position (bottom) in 

common crossing over its lifecycle. 
 

Both the plots of acceleration and the plot of impact position show a high random variation of 
the parameters that is about as high as the mean measured values. A low systematic variation of the 
mean values along the lifetime can be observed on the impact position plot. The maximal vertical 
accelerations seem to be independent to the lifetime and therefore useless for crossing diagnostics. 

A preliminary multifractal analysis was carried out to find out the differences between the new 
and old state of the common crossing. To exclude the external factors influence two acceleration 
measurements were selected with the same rolling stock and about the same velocity. The only 
significant difference was the time of measurements: near to begin and close to end of the crossing 
lifecycle. The measurements are shown on the Fig. 3. 
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Fig. 3: The measured vertical accelerations on the web of common crossing frog-rail for the train ICE 

with speed 160 km/h, at the begin (top plot) and the end (bottom plot) of the lifecycle. 
  
The Fig. 3 of the measured acceleration demonstrates that there is almost the same 

acceleration width ± 200 g for these two cases. Therefore, the maximal accelerations cannot be 
considered as good condition indicator for common crossings. To recover the difference between the 
measurements, multifractal analysis was carried out. Fig. 4 depicts the results in form of two 
parameter sets: the singularity exponent and singularity spectrum. Both parameters show significant 
differences between the measurements. Thus, the multifractal parameters can be used as features for 
the development of condition indicator for common crossings. 

 

 
Fig. 4: The singularity exponent (left) and the singularity spectrum (right) for the lifecycle begin and 

end. 
 

For each acceleration component, 15 features were extracted: singularity spectrum or the 
range of Holder exponents, three cumulants of the scaling exponents and 11 Holder exponent points 
for the !-order from -5 to 5. Also, two operation conditions are added to the feature set: the train speed 
and the impact longitudinal position on the frog nose of common crossing. Altogether 47 features are 
included to one observation.  
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Table 1: Feature set for one observation. 
Abbr. Description 
meanV train velocity 

mAufsPos impact longitudinal position on the frog nose 

cpX1… cpX3 cumulants of the scaling exponents for the lateral acceleration 

cpY1… cpY3 cumulants of the scaling exponents for the vertical acceleration 

cpZ1… cpZ3 cumulants of the scaling exponents for the longitudinal acceleration 

rhX, rhY, rhZ singularity spectrum for the acceleration components 

hX1… hX11 Holder exponents for the lateral acceleration 

hY1… hY11 Holder exponents for the vertical acceleration 

hZ1… hZ11 Holder exponents for the longitudinal acceleration 

 
To extract more observations from 65 train’s passages, the time-series of accelerations are 

analyzed in the windows 10 000 points wide, that comprise at least 2 wheel axles passage. This 
enables to extract 473 observations for the overall lifecycle. A correlation matrix diagram is 
constructed (Fig. 5) for the preliminary analysis of features influences. The diagram graphically depicts 
in the form of matrix the pairwise correlations between all features including the tonnage. Remarkable 
in the diagram is the high collinearity of the first left 5 Holder exponents in for one component of 
acceleration and between the acceleration components. The most interesting is the relation of the 
features to the lifetime that is depicted by the left column or the top row of the matrix. The highest 
correlation to the lifetime of crossing has the following features: rhX1, hX1-3, hX7, rhY1, hY1-3, hZ1, 
hZ2. However, the correlation is relative week and do not exceed 0.25. 

 

 
Fig. 5: Feature correlation plot. 

 
To explore the time relations of the most correlated features, the plot of normalized and 

cantered feature values depending on the lifetime (Fig. 6). The lifetime is presented in measurement 
point or wheel axle and the feature values are averaged to each train. Additionally, the train speeds 
feature is shown. 

Fig. 6 explains the reason of higher correlation for the feature hX7 than for the other features: 
two outliers in the statistic influence the correlation coefficient more than all the feature data. 
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Therefore, only the correlation to the lifetime is a necessary but not the sufficient condition for the 
feature suitability as a condition indicator.  

 

 
Fig. 6: The process of the most correlated features, averaged to the wheel axles. 

 
4 Features selection with Lasso regularisation 
 

There are altogether 47 features that contain some relation to the crossings lifetime but also the 
noise. A features selection process is necessary for selecting a subset of the relevant features, 
reduction of the overfitting or variance, and simplification for further model development. The present 
study is directed on the development of the simple monitoring method and intuitive clear condition 
indicator. The modern machine and deep learning methods offer a lot of high efficient nonlinear and 
black-box techniques for the present problem. However, the complicated models, together with good 
learning results, bring also the problem of interpretation [48]. Clear relation between a predictor and 
the response is one of the prerequisites to the methods for the practical industrial application [49]. The 
linear regression models are most suitable for the purposes.  

Linear regressions with Lasso regularisation are used for the lifetime prediction of the common 
crossing. A multiple linear regression model is defined as follows: 

 
=>? = @1A?1 + @2A?2 + ⋯+ @CA?C,                                                                                                   (5) 
 
where 	=>? – estimated response; @C - the fitted coefficients for p-predictor or feature, A? – the features 
of i-observation. 

The Lasso regularization technique is used to identify important among the redundant predictors 
and therefore to receive lower prediction errors. The optimal @C coefficients are found by the solution 
of the following problem: 

 

minDE,D F �
�G 	∑ �=? − @0 − A?@��G

IJ� + �∑ K@#KL
#J� �       (6) 

 
where, � – a positive regularization parameter; M – the number of observations. 
 

The variation of regularization coefficient � in the formula (6) causes the corresponding variation 
of the fitting mean square error (MSE) that is shown on the Fig. 7. The lowest MSE is where the 
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�NOPQRS is about 0.01. The number of features are different for the various �: the low � corresponds to 
more features considered and vice versa.  

 

 
Fig. 7: MSE depending on shrinkage parameter. 

 
It is clear from the Fig. 7, that the regression model with all features considered has a high 

MSE. The model is usually more parsimonious with less parameters. Therefore, in addition to the 
optimal solution also the suboptimal one is introduced – the ��RS that is the largest lambda value such 
that deviance is within one standard error of the minimum. 

The Lasso method application comprises not only the minimum error search for the coefficient 
in �, but also the cross-validation of the results to assure the model validation. The uncertainty bounds 
of the MSE estimation (Fig. 7) correspond to the solutions for the 10-fold cross-validation. 

Fig. 8 demonstrates the dependence of coefficients fit by Lasso on the regularization coefficient 
� and the number of selected features. The selected features for the optimal � are depicted as thick 
lines. Thus, the optimal feature set consists of 35 features and the suboptimal set within one standard 
error has 23 features. 

 
Fig. 8: Lasso regularisation plot and the optimal number of features. 



Civil and Environmental Engineering                          Vol. 15, Issue 2/2019, 101-114  

 
 

The results of feature fusion to one condition indicator (CI) for the both datasets, as well as the 
feature ranking, are shown on the Fig. 9 and 10. Both regression plots, contrary to the plots of 
maximal vertical accelerations and impact position (Fig. 2), prove the evident relation to the lifetime of 
the common crossing. The regression line for the optimal solution with 35 features (Fig. 9) has the 
systematic variation within 7 levels of CI with 95 % indeed lower coefficient of determination 22 % but 
also significantly lower normalized root-mean-square deviation. The most important feature is the hY7 
that had not the best correlation on the correlation plot (Fig. 5), but can be clearly explained from the 
singularity exponent plot (Fig. 4, left). Remarkable is the component of acceleration: almost all 
significant features are extracted from the vertical accelerations for the solution with the 23 features. 
The minor influence has the longitudinal accelerations with features hZ1 and hZ5. The lateral 
accelerations play almost no role. The feature of operational condition meanV that corresponds to 
train speed plays also an important role in the statistics, whereas the influence of the impact 
longitudinal position feature mAufsPos is almost negligible. 

 

 
Fig. 9: Linear regression of the condition indicator for the 35 selected features (top) and the feature 

importance ranking (bottom). 
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Fig. 10: Linear regression of the condition indicator for the 23 selected features (top) and the feature 

importance ranking (bottom). 
 
 
5  Conclusions 
 

The present paper has explored the potentials of applying the multifractal analysis for 
monitoring and diagnosis of common crossings. The multifractal analysis reveals the hidden relations 
to the lifetime in the crossing loading condition that are not possible to estimate with the analysis of 
maximal accelerations. The correlation test of the extracted 47 features from the acceleration 
components has shown the relation of many features to the lifetime of crossing, but also a high 
correlation between the features. This indicated on the feature collinearity and the redundancy of the 
extracted information. The applied Lasso regularization technique for the linear regression allowed 
selecting the best features and removing the redundant ones. The best fitting results are reached with 
35 features regression. The regression with 23 features provides somewhat lower coefficient of 
determination, but also significantly lower random deviation of the results. The selected features are 
mostly dependent on the vertical accelerations that rises a question of necessity of the lateral and 
longitudinal accelerations. The feature ranking analysis shows the importance of the information about 
the operational conditions namely the train velocity. This means that only measurement of the 
accelerations would provide much worse diagnostic results.  

Despite of relatively good results of applying the multifractal analysis for the common crossing 
condition estimation, it should be noted that the practical application would require the further 
improvements. The wide-ranging scatter of the developed indicator can cause the low prediction 
quality for low number of observations. The fusion of fractal features with time and frequency-domain 
features with other analysis would be a plausible way for the future research.  

 
 



Civil and Environmental Engineering                          Vol. 15, Issue 2/2019, 101-114  

 
 

References 
 
[1] http://europa.eu/rapid/press-release_IP-11-372_en.htm 
[2] https://www.osce.org/secretariat/101047?download=true 
[3] FENDRICH, L. - FENGLER, W.: Handbuch Eisenbahninfrastruktur (Field manualRailway 

Infrastructure). Springer-Verlag Berlin Heidelberg, 2013. doi.org/10.1007/978-3-642-30021-9. 
[4] LETOT, C., et al.: A Data Driven Degradation-based Model for the Maintenance of Turnouts: A 

Case Study, IFACPapersOnLine, Vol. 48, 2015, pp. 958–963, doi.org/10.1016/j.ifacol.2015.09.650. 
[5] GERBER, U. - ZOLL, A. - FENGLER, W.: Verschleiß und Fahrflächenermüdung an Weichenmit 

starrer Herzstückspitze (Wear and Rolling Contact Fatigue on common crossings of railway 
turnouts). ETR - Eisenbahntechnische Rundschau, No. 1, 2015, pp. 36-41. 

[6] INNOTRACK - Innovative Track Systems. Deliverable D3.1.1/D3.1.2, Definition of Key Parameters 
and Report on Cost Drivers for Goal-directed Innovation, 37 p., 2008. 

[7] XIN, L.: Long-Term Behaviour of Railway Crossings: Wheel-Rail Interaction and Rail Fatigue Life 
Prediction. PhD. Thesis, TU Delft, 2017, 218 p. DOI: 10.4233/uuid:7ee5405a-85f1-4bd2-b776-
2013715c8783. 

[8] MAHBOOB, Q. - ZIO, E.: Handbook of RAMS in Railway Systems: Theory and Practice. CRC 
Press, 2018, 765 p., https://doi.org/10.1201/b21983. 

[9] BRAJOVIC, L. M. - MALOVIC, M. - POPOVIC, Z. - LAZAREVIC, L.: Wireless System for Sleeper 
Vibrations Measurement. Communications - Scientific Letters of the University of Zilina, Vol. 16 (4), 
2014, pp. 21-26. 

[10] BÖHM, T. – WEISS, N.: Turnout Analytics - Smart Sensors and Artificial Intelligence for the All-
round Healthy Turnout (in German). Eisenbahntechnische Rundschau, No. 5, 2017, pp. 42‒45. 

[11] AKKERMAN, G. L. - SKUTINA, M. A.: Balisa as a Way to Control Stress State of Rail Bars, Track 
Distortion and Break (in Russian). Innovative transport, Vol. 3 (17), 2015, pp. 34-38. 

[12] KHAIRALLAH, D. - BLANC, J. - COTTINEAU, L.M. - HORNYCH, P. - PIAU, J. - POUGET, S. - 
HOSSEINGHOLIAN, M. - DUCREAU, A. - SAVIN, F.: Monitoring of Railway Structures of the High 
Speed Line BPL with Bituminous and Granular Sublayers. Construction and Building Materials, 
Vol. 211, 2019, pp. 337-348, DOI: 10.1016/j.conbuildmat.2019.03.084. 

[13] HE, M. - FENG, L. - ZHAO, D.: Application of Distributed Acoustic Sensor Technology in Train 
Running Condition Monitoring of the Heavy-haul Railway. Optik, Vol. 181, 2019, pp. 343-350, 
DOI: 10.1016/j.ijleo.2018.12.074. 

[14] CAÑETE, E. - CHEN, J. - DÍAZ, M. - LLOPIS, L. - RUBIO, B.: Wireless Sensor Networks and 
Structural Health Monitoring: Experiences with Slab Track Infrastructures. International Journal of 
Distributed Sensor Networks, Vol. 15, No. 3, 2019, DOI: 10.1177/1550147719826002. 

[15] TASTIMUR, C. - KARAKOSE, M. - AKIN, E. A.: Vision Based Condition Monitoring Approach for 
Rail Switch and Level Crossing using Hierarchical SVM in Railways. IJAMEC, 4 (Special Issue), 
2016, pp. 319–325. 

[16] DHAR, S. - ZHANG, Y. - XU, R. - DANIELSEN, H. K. - JUUL JENSEN, D.: Synchrotron X-ray 
Measurement of Residual Strain within the Nose of a Worn Manganese Steel Railway Crossing. 
IOP Conference Series: Materials Science and Engineering, Vol. 219 (1), 2017. 

[17] ZOLL, A. - GERBER, U. - FENGLER, W.: Das Messsystem ESAH-M (The Measuringsystem 
ESAH-M). EI-Eisenbahningenieur Kalender, 2016, pp. 49-62, ISSN:0934-5930. 

[18] IEC. IEC TR 62278-3: 2010: Railway Applications—Railway Applications—Specification and 
Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) - Part 3: Guide to the 
Application of IEC 62278 for Rolling Stock RAM. Geneva: IEC, 2010. 

[19] LIU, X. - MARKIENE, V. L. - SHEVTSOV, I. Y.: Experiment Study of Key Parameters in Turnout 
Crossing Degradation Process. Proceedings of the 10th International Conference on Contact 
Mechanics (CM2015). AAR, Sept. 1–3, 2015, Colorado (USA). 

[20] GERBER, U. - FENGLER, W.: Belastung von Weichen mit starrer Herzstückspitze [Load of 
Turnouts with a Rigid Frog]. ZEVrail Glaser Annalen, Vol. 131 (5), 2007, pp. 202–214. 

[21] SYSYN, M. P. - KOVALCHUK, V. V. - JIANG, D.: Performance Study of the Inertial Monitoring 
Method for Railway Turnouts. International Journal of Rail Transportation, 7:2, 2019, p. 103-116. 
DOI: 10.1080/23248378.2018.1514282. 

[22] ATTOH-OKINE, N.: Big Data and Differential Privacy: Analysis Strategies for Railway Track 
Engineering. John Wiley & Sons, Inc., 2017. DOI: 10.1002/ 9781119229070. 

[23] SYSYN, M. et al.: Common Crossing Structural Health Analysis with Track-side 
Monitoring. Communications - Scientific Letters of the University of Zilina, 21, (3), 2019, pp. 77-84. 

[24] TABASZEWSKI, M. - FIRLIK, B.: Assessment of the Track Condition Using the Gray Relational 
Analysis Method. Eksploatacja i Niezawodnosc, Vol. 20 (1), 2018, pp. 147-152, DOI: 
10.17531/ein.2018.1.19.  



Civil and Environmental Engineering                          Vol. 15, Issue 2/2019, 101-114  

 
 

[25] FIRLIK, B. - TABASZEWSKI, M.: Monitoring of the Technical Condition of Tracks Based on 
Machine Learning. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail 
and Rapid Transit, 2019, at Press. DOI: 10.1177/0954409719866368. 

[26] SYSYN, M. et al.: Experimental analysis of rail contact fatigue damage on frog rail of fixed 
common crossing 1:12 [online]. Journal of Failure Analysis and Prevention, Vol. 19 (4), 2019, pp. 
1077–1092, DOI: 10.1007/s11668-019-00696-w. 

[27] IZVOLT, L. - SESTAKOVA, J. - SMALO, M.: Analysis of Results of Monitoring and Prediction of 
Quality Development of Ballasted and Ballastless Track Superstructure and its Transition 
Areas. Communications - Scientific Letters of the University of Zilina, Vol.18 (4), 2016, pp. 19-29. 

[28] IZVOLT, L. - SESTAKOVA, J. - SMALO, M.: The Railway Superstructure Monitoring in Bratislava 
Tunnel No. 1 - Section of Ballastless Track and its Transition Areas. MATEC Web of Conferences, 
Vol. 117, 2017, 00063. 

[29] SYSYN, M. et al.: Common Crossing Fault Prediction with Track Based Inertial Measurements: 
Statistical vs. Mechanical Approach. Pollack Periodica [online], Vol. 14 (2), 2019, pp.15–26, DOI: 
10.1556/606.2019.14.2.2.  

[30] RAPP, S. et al.: Track - vehicle Scale Model for Evaluating Local Track Defects Detection 
Methods. Transportation Geotechnics, Vol. 19, 2019, pp. 9–18, doi: 10.1016/j.jrtpm.2016.03.001. 

[31] SYSYN, M. et al.: Improvement of Inspection System for Common Crossings by Track Side 
Monitoring and Prognostics. Structural Monitoring and Maintenance, Vol. 6 (3), 2019, p. 219-235, 
DOI: 10.12989/smm.2019.6.3.219. 

[32] WEI, X. et al.: Squats and Corrugation Detection of Railway Track Based on Time-Frequency 
Analysis by Using Bogie Acceleration Measurements. Vehicle System Dynamics, 2019, at Press. 
DOI: 10.1080/00423114.2019.1610181. 

[33] WEI, X. et al.: Urban Rail Track Condition Monitoring Based on In-Service Vehicle Acceleration 
Measurements.  Measurement: Journal of the International Measurement Confederation, Vol. 
80, 2016, p. 217-228, DOI: 10.1016/j.measurement.2015.11.033. 

[34] CHUDZIKIEWICZ, A.  - KOSTRZEWSKI, M. - KONOWROCKI, R.: Condition Monitoring of 
Railway Track Systems by Using Acceleration Signals on Wheelset Axle-Boxes. Transport, Vol. 
33 (2), 2018, pp. 555-566, DOI: 10.3846/16484142.2017.1342101. 

[35] CHELLASWAMY, C. - MUTHAMMAL, R. - GEETHA, T. S.: A new Methodology for Optimal Rail 
Track Condition Measurement Using Acceleration Signals. Measurement Science and 
Technology, Vol. 29 (7), 2018, 075901, DOI: 10.1088/1361-6501/aabe48.  

[36] SYSYN, M. et al.: Common crossing condition monitoring with on-board inertial measurements. 
Acta Polytechnica, Vol. 59 (4), 2019, pp. 423-434, DOI: 10.14311/AP.2019.59.0423. 

[37] PLASEK, O. - SVABENSKY, O. - VALENTA, M.: Monitoring of Interaction between Railway 
Superstructure and Bridge. Civil-Comp Proceedings, 2012, 98, DOI: 10.4203/ccp.98.49. 

[38] SALAJKA, V. et al.: Numerical Analysis of Dynamic Response in Railway Switches and Crossings. 
Applied System Innovation - Proceedings of the International Conference on Applied System 
Innovation, ICASI 2015, 2016, pp. 1163-1168. 

[39] KARIS, T. - BERG, M. - STICHEL, S.: Analysing the Correlation Between Vehicle Responses and 
Track Irregularities Using Dynamic Simulations and Measurements. Proceedings of the Institution 
of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, at Press. DOI: 
10.1177/0954409719840450. 

[40] FALAMARZI, A. - MORIDPOUR, S. - NAZEM, M.: Development of a Tram Track Degradation 
Prediction Model Based on the Acceleration Data. Structure and Infrastructure Engineering, Vol. 
15 (10), 2019, pp. 1308-1318, DOI: 10.1080/15732479.2019.1615963. 

[41] LANDGRAF, M. - HANSMANN, F.: Fractal Analysis as an Innovative Approach for Evaluating the 
Condition of Railway Tracks. Proceedings of the Institution of Mechanical Engineers, Part F: 
Journal of Rail and Rapid Transit, 2018, DOI: 10.1177/0954409718795763. 

[42] HOELZL, C. - CHATZI, E. - WINKLEHNER, D.: Data-driven Assessment of Railway Infrastructure, 
Master Thesis, Institute of Structural Engineering, 2019, ETH Zurich, Zurich. 

[43] ZHANG, H. - LIU, Q.: Study On Rail Fastener Failure Testing Based on Fractal Theory, 
Vibroengineering Procedia, Vol. 14, 2017, pp. 208-213, DOI: 10.21595/vp.2017.19171. 

[44] GAO, Y. - WANG, P. - XU, J. - CHEN, R.: Influence of Weld Irregularity on Wheel-rail Dynamic 
Interaction of Heavy Haul Railway. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of 
Huazhong University of Science and Technology (Natural Science Edition), Vol. 46 (1), 2018, pp. 
98-103, DOI: 10.13245/j.hust.180119 

[45] SALAT, H. - MURCIO, R. - ARCAUTE, E.: Multifractal Methodology. Physica A: Statistical 
Mechanics and its Applications, Vol. 473, 2017, pp. 467-487, DOI: 10.1016/j.physa.2017.01.041. 



Civil and Environmental Engineering                          Vol. 15, Issue 2/2019, 101-114  

 
 

[46] SERRANO, E. - FIGLIOLA, A.: Wavelet Leaders: A new Method to Estimate the Multifractal 
Singularity Spectra. Physica A: Statistical Mechanics and its Applications, Vol. 388 (14), 2009, pp. 
2793-2805, DOI: 10.1016/j.physa.2009.03.043. 

[47] LEONARDUZZI, R. F. - SCHLOTTHAUER, G. - TORRES, M. E.: Wavelet Leader Based 
Multifractal Analysis of Heart Rate Variability During Myocardial Ischemia. 2010 Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, 
5626091, 2010, pp. 110-113. 

[48] HASTIE, T. - TIBSHIRANI, R. - FREIDMAN, J.: The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction. 2nd ed. Springer-Verlag New York, 2009, 745 p. DOI: 10.1007/978-0-
387-84858-7. 

[49] BEUTLER, A. - SIMROTH A.: Prädictive Instandhaltungsplannung [Predictive Planning of 
Maintenance]. Eisenbahn Ingenieur, Vol. 09, 2018, pp. 90-93. 

 


