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Abstract: This paper presents a new real-coded genetic algorithm with Fuzzy control 

for the Real-Coded Genetic Algorithm (F-RCGA) aggregated with System Dynamics 

models (SD-models). The main feature of the genetic algorithm presented herein is 

the application of fuzzy control to its parameters, such as the probability of a 

mutation, type of crossover operator, size of the parent population, etc. The control 

rules for the Real-Coded Genetic Algorithm (RCGA) were suggested based on the 

estimation of the values of the performance metrics, such as rate of convergence, 

processing time and remoteness from a potential extremum. Results of optimisation 

experiments demonstrate the greater time-efficiency of F-RCGA in comparison with 

other RCGAs, as well as the Monte-Carlo method. F-RCGA was validated by using 

well-known test instances and applied for the optimisation of characteristics of some 

system dynamics models. 

Keywords: real-coded genetic algorithm, fuzzy control, system-dynamics, 

optimisation methods. 

1. Introduction 

This paper considers continuous optimization problems solved with the use of the 

developed real-coded genetic algorithm with Fuzzy control for the Real-Coded 

Genetic Algorithm (F-RCGA). The algorithm is based on the early-developed 

parallel Multi-Agent Real-Coded Genetic Algorithm (MA-RCGA) [1] that is 

improved through including the fuzzy control for setting main parameters having an 

influence on the optimisation process. The objective functions of considered 

continuous optimisation problems are computed in the result of simulation modelling 

with the use of the system dynamics method. Main advantages of the suggested  

F-RCGA are related to solving continuous optimisation problems because real-coded 

heuristic operators provide better precision of solutions without the need to have 

large-sized populations of potential decisions. However, as shown in [1] real-coded 

genetic algorithms can have various types of heuristic operators including the discrete 

crossover and discrete mutation. These operators allow forming the values of 

potential decisions in the discrete space. Thus, F-RCGA can be applied for solving 
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combinatorial optimisation problems too, if discrete heuristic operators are used 

exceptionally. Moreover, there is a possibility to execute both continuous and discrete 

real-coded heuristic operators with defined probabilities that allows solving discrete-

continuous optimisation problems.  

Further, the following black-box single-objective optimisation problem will be 

considered: 

(1)   min ( ),F x  

s.t., 1 2( ,  ,  ..., )  ,nx x x  x =  where 1 2( ,  ,  ..., )'nx x xx =  is a decision variable vector 

of dimension n , 
1

[ ,  ]
n

i i

i

a b


   is the feasible region of the search space  

( 1,  2,  ...,  i n  is the index of decision variables), and :F   is the objective 

function that is computed in the result of the simulation modelling. Such problem 

statement is suggested in works [1, 2, 3]. In particular, the parallel MA-RCGA 

aggregated with the ecological model implemented in the simulation tool is suggested 

in [1]. Moreover, MA-RCGA uses the method of Finite State Automata (FSA) at the 

level of each agent-process to control the main parameters of the genetic algorithm, 

such as the probability of a mutation, type of crossover operator, size of the parent 

population, etc. Parallel MA-RCGA based on FSA has a deterministic adaptive 

system that allows switching to different states of the optimisation algorithm, which 

are characterized by appropriate values of control parameters. In contrast, this work 

aims to design a soft adaptive system of control for F-RCGA based on fuzzy logic. It 

allows using probabilistic rules of switching GA to possible states by setting 

appropriate values of control parameters. Thus, the degree of membership of various 

performance metrics belonging to existing agent-processes clusters is used to form 

the control action in the suggested F-RCGA. Such an approach is more effective 

because the optimal threshold values used in FSA-based methods are not known for 

black-box optimisation problems.  

 
Fig. 1. An example of a typical system dynamics model consisting  

of two connected reservoirs with feedbacks 
 

The system dynamics model can be considered as a black box device with a 

single-objective function and a vector of decision variables. The theory of system 

dynamics was developed by J. Forrester in the 50-ties of the past century [1].  The 

important feature of such models is the availability of sequences of system levels 

(reservoirs) connected to each other through direct and feedback relations (Fig. 1).  

https://www.google.ru/search?newwindow=1&hl=ru&q=continuous+optimization+problems&spell=1&sa=X&ved=0ahUKEwjp1bHc55riAhXIs4sKHWtBCQoQkeECCCooAA
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Thus, such a model can have some reinforcing (e.g., R1, R2) and balanced  

(e.g., B1, B2) feedbacks. Each system level (e.g., L1, L2) is a combiner having 

several input and output flows with their rates and describes the behaviour of a simple 

railway station. The description of such complex systems is given in works [4-8].  

Such a model can be described by the following system of ordinary differential 

equations: 

(2)   1 1 1( ) ( ) ( ) ( 1) ( ) ( ) ( 1)i i i i i i iy f x y f x y            , 

1,  2,  ...,  1i n  , 

and the objective function is  

(3)   
1

1

( ( )) ( )
n

i

i

F y 




x ,  

where ( )iy   is the value of the i-th combiner,  is the continuous time, and ( )if   

are the internal functions of the model influencing the rates of i-ths flows 

( 1,  2,  ...,  ).i n  

System (2) defines a complex landscape of objective function (3) which depends 

on the types of internal functions present. As a rule, objective function (3) is not 

convex and can have breakpoints. As a result, standard Newton and quasi-Newton 

optimisation methods [9, 10] are not applicable. Therefore, RCGA with fuzzy control 

can be applied for such optimisation problems.    

This paper focuses on creating a novel genetic algorithm using fuzzy control to 

set the main parameters that influence the probability of a mutation, the rate of 

convergence, the diversity of the potential decisions and other performance 

characteristics to provide the optimisation flows in system dynamics models. Using 

standard test instances it is shown that F-RCGA is more effective than other 

implementations of genetic algorithms. The important section of this paper involves 

testing the typical system dynamics model for the validation of F-RCGA. The 

aggregated problem of the optimal control of flows in system dynamics models is 

considered. The objective function minimizes the total occupancy time of railway 

stations which are modelled as reservoirs connected with each other through flows 

with variable rates. The model is implemented in Powersim and aggregated with the 

developed F-RCGA through the objective function (summarized cargo residue). This 

paper demonstrates the possibility of applying F-RCGA for the optimisation of 

characteristics of complex system-dynamics models with direct and feedback 

relations.  

2. Related works 

The main feature of many system-dynamics models is the aggregation of separate 

sub-models within a united simulation model [5]. This work demonstrates the 

approach to designing integrated system dynamics models for an oil company whose 

components are connected with each other through direct and feedback relations.  It 

allows modelling the behaviour of such complex systems by taking into account the 

mutual influence of each node of the production supply chain. 
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In another work, a model for organizing cargo transportation between two node 

stations connected by a railway line that contains a certain number of intermediate 

stations was suggested [11]. In this model, the movement of cargo goes in one 

direction. Such behaviour is typical of transport systems in which one of the node 

stations is located in a region, which produces raw materials for manufacturing 

industry located in another region where another node station is located.  

Most such problems are characterized by increased demands for precision of 

solutions to provide the minimum total cargo residues at stations. Therefore, real-

coded genetic algorithms should be applied instead of binary-coded heuristic 

algorithms.  

Examples of the development and application of parallel genetic algorithms for 

black-box optimisation problems are presented in the following works [1, 12-15]. In 

these works, parallel genetic algorithms based on the multi-agent agent architecture 

(MAGAMO) have been suggested. The important advantage of such an approach is 

the co-evolution process based on the periodic exchange of the best potential 

decisions belonging to agent-processes through a global population. Such agent 

interaction can be applied for designing the fuzzy control to provide probabilistic 

rules for transitions to different states of RCGA by setting appropriate control 

parameters. There are other important works devoted to developing genetic 

algorithms [16-20]. Among them, works should be highlighted concerning the 

development of RCGAs [17] and coupled using genetic algorithms and fuzzy logic 

systems described in the book [18]. These pioneering works represent the foundations 

of the development of RCGAs with fuzzy control. 

Currently, GAs are applied to the optimisation of ship passage planning [21], 

the design of genetic fuzzy systems [22], and control of agent-rescuer behaviour 

based on the fuzzy clustering [23], amongst other problems.   

3. Proposed methods 

3.1. Genetic algorithm with fuzzy control 

The first important feature to note of the suggested genetic algorithm with fuzzy 

control (F-RCGA) is that it uses the fuzzy set of possible states of the algorithm to 

provide probabilistic transitions between various states of agent-processes by 

changing the values of associated parameters. Because the efficiency of F-RCGA 

depends on many factors, the following integral performance metric will be used at 

the level of each agent-process: 

(4)   1 2 3

1 1

RC ( ) DP ( ) ( )
( ) 1 ,

1 1
RC ( ) DP ( )

k k k k k k
k k K K

a k k k

k a

t t F t F
M t c c c

F
t t

K K 

 
     

  
  

(5)   
1

DP ( ) ( ) ( ) ,
I

a k ai k i k

i

t x t x t


    

1 2 3 1c c c   ,   0 1 for all 1,  2,  3lc l   ,   k K ,   k kt T ,  i I , 
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where: K  is the set of indexes of agent-processes; K , I  are numbers of elements 

in appropriate sets; kT  is the set of external iteration indexes; 1 2,  ,  ... , k K
t t t T  is 

the index of external iterations of F-RCGA, where 
K

T  is the total number of external 

iterations; I  is the set of indexes of decision variables; RC ( )k kt  is the rate of 

convergence of the genetic algorithm of the k-th-agent-process ( )k K  at iteration 

kt ( )k kt T ; DP ( )k kt is the level of the population diversity of the k-th-agent-process 

( )k K  at iteration kt ( )k kt T ; ( )k kF t  is the value of the objective function 

computed at the level of the k-th-agent-process ( )k K  at iteration kt ( )k kt T ; F  

is the known reference objective function value; ( )ki kx t  is the value of the i-th-

decision variable ( )i I  computed at the level of the k-th-agent-process ( )k K  

with the help of the crossover, mutation and selection operators at iteration kt

( )k kt T ; 1 2 3{ ,  ,  }c c c  are the preference coefficients set by a decision-maker.  

The following states of the k-th-agent-process ( )k K  will be considered for 

F-GA at iteration kt ( )k kt T . 

To define the current state of the agent-process the following set of three 

characteristic functions will be used: 

 the smooth Z-function membership of the k-th -agent-process ( )k K to the 

first state when the low performance metrics are observed is   

(6)    

11
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11

12 11
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12 11

12

0  if ( ) , 

( )
1 2  if ( ) ,
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2  if ( ) ,
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 the trapezoidal membership function of the k-th -agent-process ( )k K to the 

second state when the average performance metrics are observed is   

(7)    
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22
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22 21
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 the smooth Z-function membership of the k-th -agent-process ( )k K to the 

third state when the high performance metrics are achieved is   
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(8)    

31

2

31 31 32
31

32 31

2

32 31 32
32

32 31

3 32 33

2

33 33
32

34 33

0  if ( ) , 

( )
2  if ( ) ,

2

( )
1 2  if ( ) ,

2

( ) 1  if ( ) ,

( )
1 2  if ( )

k k

k k
a k

k k
k k

k k k k

k k
a k

M t m

M t m m m
m M t

m m

m M t m m
M t m

m m

M t m M t m

M t m m
m M t

m m





  
  

 

  
   

 

  

 
   

 

34

2

34 33 34
34

34 33

34

,
2

( )
2  if ( ) ,  

2

0  if  ( ) .

k k
k k

k k

m

m M t m m
M t m

m m

M t m
















   
   
  




  

Here, threshold values 11 12{ ,  }m m , 21 22 23 24{ ,  ,  ,  }m m m m  and 

31 32 33 34{ ,  ,  ,  }m m m m  are known and updated for each solved optimisation problem, 

11 12m m , 21 22m m , 23 24m m , 31 32m m . 

Fig. 2 shows the single-objective real-coded genetic algorithm with fuzzy 

control.  

The suggested algorithm (Fig. 2) is based on the parallel multi-agent real-coded 

genetic algorithm for large-scale black-box single-objective optimisation that was 

previously proposed in the work [1]. Combining different crossover and mutation 

operators was suggested in this work by using the FSA-based control. These are the 

following heuristic operators:  

 Laplace crossover (LX) generates potential decisions in the continuous 

search space with a high precision and low rate of convergence [24]. 

 Simulated Binary crossover (SBX) generates potential decisions in the 

continuous search space with the average rate of convergence [25].  

 Modified Simulated Binary crossover (MSBX) generates potential decisions 

in the continuous search space with a fast rate of convergence and low precision [1]. 

 Modified Discrete SBX-crossover (DMSBX) generates potential decisions in 

the discrete search space [1]. 

 Power Mutation (PM) generates potential decisions in the continuous search 

space near the parent solutions [26]. 

 Uniform Mutation (UM) generates potential decisions in the continuous 

search space regardless of parent solutions [17]. 

 Discrete Uniform Mutation (DUM) generates potential decisions in the 

discrete search space regardless of parent solutions [1]. 

 Scalable Uniform Mutation operator (SUM) allows quantizing the feasible 

ranges of decision variables into uniform intervals to obtain potential solutions 

outside the area of local extrema [1]. 

The following control parameters are suggested for F-RCGA: 
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 ( ) [2,  ]k k kL t L is the size of the local population of parent-individuals 

belonging to the k-th-agent-process ( )k K that is limited by the size of the initial 

population 
kL  at iteration kt  ( )k kt T ; 

 ( ) [1,  ]k k kt T   is the frequency of exchanging the best potential decisions 

between the k-th-agent-process and other processes at iteration kt  ( )k kt T ; 

 ,cross ( ) [0,  1]k kp t   is the probability of a crossover operator at iteration kt  

( )k kt T ; 

 ,mut ( ) [0,  1]k kp t   is the probability of a mutation operator at iteration kt  

( )k kt T ; 

 ( )k k kC t C  is the subset of crossover operators that can be used at iteration 

kt  ( )k kt T :  

( ) {{LX},  {LX,  SBX},  {SBX,  MSBX},

          {MSBX, DMSBX},  {DMSBX}}

k kC t 
; 

 ( )k k kM t M  is the subset of mutation operators that can be used at iteration 

kt  ( )k kt T : 

{{PM},  {PM,  UM},  {UM,  SUM},  {SUM}}kM  . 

The current values of these parameters are set through the fuzzy control (4)-(8) 

at each external iteration kt  ( )k kt T .  

The following test instances that can be related to functions with complex relief 

were used for the validation of the developed F-RCGA:   

 FT1 is the Griewank function: 

(9)   
1 1

( 1 4000 cos
n n

i
i

i i

x
F x

i 

 
   

 
 x) = ,    

[ 600,  600]ix   ,  1,  2,  ...,  i n ,  (0, 0, ..., 0) 0F    = . 

 FT2 is the Lunacek bi-Rastrigin function: 

(10)   

   

  

2 2

1 2

1 1

1

1

( min ,  

10 1 cos(2 ,

n n

i i

i i

n

i

i

F x d n s x
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x) =

  

[ 5.12,  5.12]ix   ,  1,  2,  ...,  i n ,  (2.5, 2.5, ..., 2.5) 0F    = , 

where 

1 2.5  ,   1
2

d

s





  ,   1d  ,  

1
1

2 2 20 8.2
s  

 
. 

 FT3 is Schaffer’s F6 function 
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(11)   
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1
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1 0.001
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i

i

x

F
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x) =     

[ 100,  100]ix   ,  1,  2,  ...,  i n ,  (0, 0, ..., 0) 0F    = . 

 

 
Fig. 2.  Real-coded genetic algorithm with fuzzy control (F-RCGA) 

  

The results of testing MA-RCGA with FSA and F-RCGA with fuzzy control are 

shown in Table 1. The number of decision variables 100n  . The number of agent-

processes 20K  .   

Here, ( )F x  is the value of the objective function, PT, s is the processing time. 

All tests were conducted using an Intel Core (TM) i7-4980HQ CPU @2.8 GHz four 

core processor.  
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Table 1. Performance metrics of F-RCGA in comparison with MA-RCGA 

Instance 
MA-RCGA with 

FSA 

F-RCGA with Fuzzy 

Control 

Extremum 

(reference value) 

FT1 F(x)  0.0510 0.0001 0 

PT, s 2600 1100  

FT2 F(x) 0.0064 0.0002 0 

PT, s 1700 680  

FT3 F(x) 0.0950 0.0003 0 

PT, s  950 321  
 

Comparison of the performance metrics of F-RCGA with other optimisation 

methods was conducted also, e.g., well-known quasi-Newton methods, parallel 

RCGAs and nonparallel binary GAs. F-RCGA demonstrated the greatest time-

efficiency and precision.   

The locations of three agent-processes regarding the global extremum at the 

tenth iteration of F-RCGA ( 10)kt   using Schaffer’s F6 function with two decision 

variables ( 2)n  as an example is shown in Fig. 3. 

 
Fig. 3.  Locations of three agent-processes regarding the global extremum  

using Schaffer’s F6 function 

3.2. System dynamical modelling  

The section is devoted to designing several typical SD-models that can be aggregated 

with the suggested F-RCGA through their objective functions.  

The first SD-model consists of four system levels (combiners), five flows with 

rates and five decision variables.  The implementation of the model in the Powersim 

simulation tool is shown in Fig. 4. 
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Fig. 4.  The implementation of the first SD-model in Powersim 

 

The model is described by the following system of ordinary differential 

equations in the interval 1s st t   : 

(12)   

1 1 1 1

2 1 2

3 2 3

4 3 4

( ) ( ) ( 1) ( ),

( ) ( ) ( ),

( ) ( ) ,( )

( ) ( ) ( ),

y x y z

y z z

y z z

y z z

   

  

  

  

  
  


 
  

  

where 

   

 
2 1 2 1 2 1 2

1

1 1 2 1 2

( ) ( 1) ( 1)  if ( 1) ( ) ( 1) ( 1) 0,  
( )

( 1) if  ( 1) ( ) ( 1) ( 1) 0,  

x y y y x y y
z

y y x y y

      


    

         
 

      

   

 
3 2 3 2 3 2 3

2

2 2 3 2 3

( ) ( 1) ( 1)  if  ( 1) ( ) ( 1) ( 1) 0,  
( )

( 1) if  ( 1) ( ) ( 1) ( 1) 0,  

x y y y x y y
z

y y x y y

      


    

         
 

      

   

 
4 3 4 3 4 3 4

3

3 3 4 3 4

( ) ( 1) ( 1)  if ( 1) ( ) ( 1) ( 1) 0,  
( )

( 1) if  ( 1) ( ) ( 1) ( 1) 0,  

x y y y x y y
z

y y x y y

      


    

         
 

      

5 4 4 5 4

4

4 4 5 4

( ) ( 1) if  ( ) ( ) ( 1) 0,  
( )

( 1) if  ( ) ( ) ( 1) 0. 

x y x x y
z

y x x y

    


   

   
 

   
 

Here, 1 2 3 4{ ( ),  ( ),  ( ),  ( )}y y y y    , 1 2 3 4{ ( ),  ( ),  ( ),  ( )}z z z z     and  

1 2 3 4 5{ ( ),  ( ),  ( ),  ( ),  ( )}x x x x x      are the values of system levels, flow rates and 

decision variables at moment   respectively, 1 2,  ,...,  s St t t t  is the index of time 

moments (by days), and S is the simulation period (e.g., ten days).   

The values of the control parameters are set at initial moment 1t . The solution 

of system (12) satisfied the restrictions given below under fixed values of control 

parameters 1 1 2 1 3 1 4 1 5 1{ ( ),  ( ),  ( ),  ( ),  ( )}x t x t x t x t x tx  are provided by the fourth-order 

Runge-Kutta integration method. At the same time, the non-negative of 

1 2 3 4{ ( ),  ( ),  ( ),  ( )}y y y y     is provided. 

Y1
z0

Y2z1

x1
z2

x2
x3

F

Y3Y4
z3

x4

z4

x5
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The objective function of such a system estimated at the end of the simulation 

period is 

(13)   1 2 3 4( ) ( ) ( )+ ( )+ ( )S S S SF y t y t y t y t x .   

The target function represents the cumulative residue that is summated by all 

system levels. As a rule, the residue should be non-negative for each system level 

during the entire period of modelling (e.g., cargo residues, credit restudies, etc.). 

Then, the following single-objective box-constrained optimisation problem can be 

formulated for the system being considered.  

Problem A. The need to minimize the value of residue through the set of control 

parameters 1 1 2 1 3 1 4 1 5 1{ ( ),  ( ),  ( ),  ( ),  ( )}x t x t x t x t x t estimated by the end of the simulation 

period:   

(14)   
1 1 2 1 3 1 4 1 5 1{ ( ), ( ), ( ), ( ), ( )}

min ( )
x t x t x t x t x t

F x ,      

s.t. 1 1 10 ( )x t x  ,  2 1 20 ( )x t x  , 3 1 30 ( )x t x  , 4 1 40 ( )x t x  , 5 1 50 ( )x t x  . 

Here, 1 2 3 4 5{ ,  ,  ,  ,  }x x x x x  are the upper limits of the decision variables. 

Note that problem (14) has multiple solutions depending on feasible ranges set 

through 1 2 3 4{ ,  ,  ,  }x x x x . Thus, it is a multimodal objective function with the 

extremum ˆ ˆ( ) 0F x .   

The second SD-model extends the first model through adding two bi-directional 

flows and additional input flows on the right side.  The implementation of the model 

in the Powersim simulation tool is shown in Fig. 5. 

 
Fig. 5.  Implementation of the second SD-model in Powersim 

 

The model is described by the following system of ordinary differential 

equations in the interval : 

Y1
r1

Y2z1

x1
z3

x2
x5

F

Y3Y4
z4

x8

z6

x9

z2

x3

z5
x7

z7
x4

z8
x6

1s st t  
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(15)   

1 1 1 2 1

2 4 2 1 2 3

3 6 3 3 5 4

4 4 6 5

( ) ( ) ( 1) ( ) ( ),

( ) ( ) ( 1) ( ) ( ) ( ),

( ) ( ) ( 1) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

y x y z z

y x y z z z

y x y z z z

y z z z

    

     

     

   

   
     


    
   

 

where 

 2 1 2

1

1 1 2

( ) ( 1) ( 1)  if I is true, 
( )

( 1),  if ( 1) ( )  if I is false,

x y y
z

y y x

  


  

  
 

  
 

 3 1 2

2 2

( ) ( 1) ( 1)  if  II is true,

( ) ( 1)
 if  II is false,

2

x y y

z y

  

 

  


  



 

 5 2 3

3 2

( ) ( 1) ( 1)  if  II is true,

( ) ( 1)
 if  II is false,
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x y y

z y

  

 

  


  



 

 8 3 4
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( ) ( 1) ( 1)  if  III is true,
( )
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x y y
z
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 7 3 4

5 4

( ) ( 1) ( 1)  if  IV is true,

( ) ( 1)
 if  IV is false,

2

x y y

z y

  

 

  


  



 

9 4

6 4

( ) ( 1) if  IV is true,

( ) ( 1)
 if  IV is false,

2

x y

z y

 

 




 



 

I.  1 2 1 2( 1) ( ) ( 1) ( 1) >0y x y y        , 

II.    2 3 1 2 5 2 3( 1) ( ) ( 1) ( 1) ( ) ( 1) ( 1) 0y x y y x y y                , 

III.  3 8 3 4( 1) ( ) ( 1) ( 1) 0,y x y y          

IV.  4 7 3 4 9 4( 1) ( ) ( 1) ( 1) ( ) ( 1) 0y x y y x y             . 

Here, 1 1 2 1 9 1{ ( ),  ( ),  ...,  ( )}x t x t x tx  is the set of decision variables and x  is the 

set of upper limits for decision variables. 

Then, the following single-objective box-constrained optimisation problem can 

be formulated for the system being considered.  

Problem B. The need to minimize the value of residues through the set of 

control parameters 1 1 2 1 9 1{ ( ),  ( ),  ...,  ( )}x t x t x t  estimated at the end of the simulation 

period:   

(16)   
1 1 2 1 9 1{ ( ), ( ), ..., ( )}

min ( )
x t x t x t

F x , 

s.t., 0  x x .  

The third SD-model is the typical dynamical Supply-Chain (SC) model and is 

modified by the inclusion of the Input Flow of Material that is distributed between 

other flows (Fig. 6).  
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Fig. 6.  The implementation of the dynamical SC-model in Powersim 

 

Here, the Input Flows of Materials is defined with the help of the Poisson 

distribution: ( )
!

x

f x e
x

  .  The distribution describes the most realistic dynamics 

of supply in logistics. At the same time, the objective function (F) of the system is 

the total residue summarized by all system levels (warehouses Y1 – Y5 in Fig. 6).  

The model is described by the following system of ordinary differential 

equations at the interval 1s st t   : 

(17)   
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where 
1 2 12{ ( ),  ( ),  ...,  ( )}z z z    are values of input and output flows depending on the 

values of decision variables 
1 2 12{ ( ),  ( ),  ...,  ( )}x x x   .   

For the considered system, the following single-objective box-constrained 

optimisation problem can be formulated. 

Problem C. The need to minimize the value of residues through the set of 

control parameters 
1 1 2 1 12 1{ ( ),  ( ),  ...,  ( )}x t x t x t  estimated at the end of the simulation 

period:   

(18)   
1 1 2 1 12 1{ ( ), ( ), ..., ( )}

min ( )
x t x t x t

F x , 

s.t., 0  x x .   

It has been shown in this work that Problem A, Problem B and Problem C can 

be solved using the suggested F-RCGA.  
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4. Results and discussion 

The results of optimisation experiments using the first SD-model (Problem A) 

aggregated with F-RCGA (Fig. 2) are presented in Table 2. The simulation period is 

ten days. The reference values were computed with the help of the well-known quasi-

Newton method [10]. The initial values of all system levels 

1 1 2 1 3 1 4 1{ ( ),  ( ),  ( ),  ( )} 100y t y t y t y t  . The simulation period 10.St   
 

Table 2. Results of optimisation experiments using the first SD-model and F-RCGA 

Values of upper 

limits for all 

decision variables 

Decisions 

Objective 

(computed 

value) 

Extremum 

(reference 

value) 

1 F(x)
 

{0, 0.87, 0.69, 0.73, 1} 0 0 

PT, s 1.8   

100 F(x)
 

{0, 30.71, 67.23, 45.13, 86.66} 0 0 

PT, s 1.9   

1000 F(x)
 

{0, 307.1, 672.32, 451.27, 866.64} 0 0 

PT, s 2.0   

100,000 F(x)
 

{0, 44456, 80496, 24106, 47743} 0 0 

PT, s 2.2   
 

The results of optimisation experiments using the second SD-model  

(Problem B) aggregated with F-RCGA are presented in Table 3. The simulation 

period 60.St   
 

Table 3. Results of optimisation experiments using the second SD-model and F-RCGA 

Values of  

upper limits  

of decision  

variables 

Decisions 

Objective 

(computed 

value) 

Extremum 

(reference 

value) 

1 
F(x)

 
{0, 0.59, 0.73, 0, 0.46, 0, 0.45, 0.64, 1.0} 0 0 

PT, s 5.0   

100 
F(x)

 
{0, 87.45, 56.97, 0, 50.29, 0, 28.59, 33.66, 33.52}  0 0 

PT, s 5.3   

1000 
F(x)

 {0, 480.52, 769.94, 0, 570.33, 0, 282.88, 585.46, 

341.59}  
0 0 

PT, s 5.5   

100,000 
F(x)

 
{0, 53168, 72692, 0, 72520, 0, 20083, 71475, 35094} 0 0 

PT, s 5.9   
 

The results of optimisation experiments using the last SD-model are presented in 

Table 4 and Fig. 7. Because the problem being solved is more complex and the 

objective function value depends on multiple parameters, the Monte-Carlo method 

[27, 28] was used for the validation of F-RCGA instead of the quasi-Newton method.  

Thus, the two scenarios will be considered: 

 Scenario 1. The Monte-Carlo method is used for identifying the minimum 

value of the objective function ( )F x  using about 100 000 simulation experiments. 

The values of the decision variables are set using the uniform distribution on the 

interval [0,  1] .  
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 Scenario 2. F-RCGA is used for identifying the minimum value of the 

objective function  using about 20 agent-processes.  
 

Table 4. Results of optimisation experiments using the third SD-model and F-RCGA 

xi(t1), 

i=1, …, 12 

Values of decision variables and an objective function 

Scenario 1 (Monte-Carlo method) Scenario 2 (F-RCGA) 

x1(t1) 0.10 0.00 

x2(t1) 0.92 1.00 

x3(t1) 0.32 0.00 

x4(t1) 0.50 0.96 

x5(t1) 0.40 0.00 

x6(t1) 0.40 0.92 

x7(t1) 0.20 0.46 

x8(t1) 0.50 0.73 

x9(t1) 0.21 0.79 

x10(t1) 0.62 0.07 

x11(t1) 0.23 0.49 

x12(t1) 0.11 0.00 

F(x)
 

31.98 11.07 

 

 
Fig. 7.  Dynamics of the objective function for the third SD-model 

 

The suggested real-coded genetic algorithm with fuzzy control (F-RCGA) has 

greater performance efficiency than the standard multi-agent genetic algorithm 

developed for the large-scale black-box single-objective optimisation [6]. This is 

confirmed by the results optimisation experiments using complex test instances 

(Table 1 and Fig. 3).     

The experiments on three SD-models (Figs 4-6) aggregated with F-RCGA  

(Fig. 2) showed that the suggested real-coded genetic algorithm with fuzzy control is 

able to solve appropriate single-objective box-constrained optimisation problems 

with the required precision and time-efficiency (Tables 2-4). Because well-known 

Newton and quasi-Newton methods [9, 10] cannot be applied to the complex  

SD-models described by differential equations with many internal feedbacks, the 

Monte-Carlo method was used for identifying optimal solutions. However, the 

suggested F-RCGA is significantly more efficient in comparison (Fig. 7).  
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Despite the highlighted advantages of F-RCGA, such an algorithm is the most 

efficient for black-box (derivative-free) optimization when the value of the objective 

function is computed as a result of the simulation modelling (e.g., using Powersim). 

In other cases, such methods as the Ant Colony Optimization (ACO) algorithms  

[29, 30], Particle Swarm Optimization (PSO) [31] and hybrid genetic algorithm with 

using the Newton method [32] can be more preferable.   

5. Conclusion 

Developing optimisation algorithms for system dynamics models is an important 

problem because such systems are characterized by many internal feedback relations 

and non-liner dependencies. Currently, SD-models are used for managing petroleum 

companies [5], solving transport problems [11] and optimising supply-chains [6]. At 

the same time, identifying optimal decisions for such systems can cause difficulties 

due to the complex landscape of the objective function.  

In this work, a new parallel real-coded genetic algorithm with fuzzy control  

(F-RCGA) was presented and its application in the optimization of SD-model 

parameters showed high performance efficiency. 

As future work, we plan to use the proposed algorithm for the large-scale multi-

objective optimisation of parameters of more complex simulations.  
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