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Abstract: The main goal of the present research is to classify images of plants to 

species with deep learning. We used convolutional neural network architectures for 

feature learning and fully connected layers with logsoftmax output for classification. 

Pretrained models on ImageNet were used, and transfer learning was applied. In the 

current research image sets published in the scope of the PlantCLEF 2015 challenge 

were used. The proposed system surpasses the results of all top competitors of the 

challenge by 8% and 7% at observation and image levels, respectively. Our 

secondary goal was to satisfy the users’ needs in content-based image retrieval to 

give relevant hits during species search task. We optimized the length of the returned 

lists in order to maximize MAP (Mean Average Precision), which is critical to the 

performance of image retrieval. Thus, we achieved more than 50% improvement of 

MAP in the test set compared to the baseline. 

Keywords: deep learning, convolutional neural networks, Inception V3, MAP, image 

retrieval. 

1. Introduction 

Being able to identify the different species of plants growing in agricultural areas and 

to automatically detect the presence of invasive species is crucial. Identifying plants 

is usually a difficult task, sometimes for professionals (such as farmers or 

lumberjacks) as well [1]. Using content-based image retrieval technologies is a 

promising possibility in this field (as a fine-grained object categorization problem 

[18]), and the aim of our work was to solve it automatically. 

In this image-based plant identification work, we focused on tree, herb and fern 

species identification based on different types of images. We used PlantCLEF 2015 

database [8], where the number of species was 1000, and the images showed either 

parts – branch, leaf, leafscan (scan or scan-like pictures of leaf), flower, fruit, stem – 

or the entire plant. The dataset was composed of 113,205 pictures belonging to 41,794 

observations of 1000 species of plants living in Western European regions; and this 

was collected by 8,960 distinct users, the distribution of the different types of images 

by the part of the plant they show can be seen in Table 1.  
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Table 1. Distribution of images among different viewpoints 

Method Total Branch Entire Flower Fruit Leaf L. Scan Stem 

Trayning 91,759 8,130 16,235 28,225 7,720 13,367 5,476 12,605 

Test 21,446 2,088 2,983 6,113 8,327 1,423 696 935 

All 113,205 10,218 19,218 34,438 16,047 14,790 6,172 13,540 
 

Our aim was twofold: (1) firstly, to classify the observed plants (so-called 

observations) into the known categories (species) with high accuracy (see extended 

classification below), (2) secondly, to construct a content-based image retrieval 

system. Besides the images of an observation, some contextual metadata (data, 

location, author and rating information) were available, but we had not used them 

(we focused on image contents only). Our aim was to elaborate fully automatic 

methods for these problems. 

Given a set of N training examples of the form {(x1, y1), ... , (xN, yN)} such that 

xi is the feature vector of the i-th example, yi is the corresponding label (class), and 

the number of the classes is denoted by C. Based on the learnt model the traditional 

classifier predicts a class for unknown example: ŷ , and in order to measure how well 

a function fits the training data, an error function 0:L Y Y R   is defined. The error 

of predicting the value of each example  )ˆ,( ii yyL  can be summarized for overall 

error.  

In extended classification task not only one class is predicted, but series of them 

(vector), Ciii yyy ,2,1, ˆ,...,ˆ,ˆ , where these labels are in decreasing order according to their 

reliabilities (the first element is a most probable class for i-th example). So the error 

function  )ˆ,( ii yyL


 is based on the prediction vector and the real class. 

An ‘extended classification’ task can occur at half automatic annotation, where 

a new instant should be categorized into large number classes; in this case a human 

annotator can see not only the most probable class but the second, third, etc. most 

probable classes as well (human annotator will accept the true class from the top of 

the predicted classes). 

At retrieval task, the aim is to select examples from the available set for a class 

(as a query) and to rank them in decreasing order according to their predicted 

relevance (an example is relevant to the query if its class is the same as the class in 

the query). Let us denote the set of examples possessing class c by Sc, and the 

identities of k retrieved examples by kr


 (as vector) in decreasing order, thus error 

function, ( , )c kL S r  can be defined to evaluate the retrieval. Finding a good k value is 

a subtask of retrieval. 

At our first task (i.e., extended classification) there is an input image as can be 

seen at the left side of Fig. 1 (or observation with more images at the right side of the 

Fig. 1), and the aim is to predict series of species, as prediction vector. In every 

observation, the plants belong to the same species. The true species of the left image 

and all right images (observation) are Quercus ilex and Hedera helix, respectively; 

and the task was to find out the species (as single label classification). 
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Fig. 1. Example inputs and outputs for extended classification 

Our second task is the content-based image retrieval, where only visual 

information is available; the input is the name of species, and the outputs are predicted 

images. 

On the contrary to a classical “query by image” system, the target here is “query 

by category”: the user gives the name of a plant species and the system retrieve a 

ranked set of images corresponding to this species. The retrieval task, as an offline 

problem can only be executed on a large image set, so after the classification of all 

plant images. The goodness of the solution of offline problem can be measured by 

users’ satisfaction; i.e., users, who search an interesting plant species, would like to 

get lots of images of this species, and none of the others. The “precision”, as the 

relative ratio of the relevant images in the retrieved list, is a good indicator for 

measure the goodness. Even if the precisions are the same, the goodness can be 

different, e.g., the relevant images in the retrieved list being uniformly distributed is 

worse than all the relevant images being at the beginning of retrieved list. That is why 

we used a better indicator, Average Precision (AP), which is the average of precision 

values at each position in the retrieved list where the image is relevant. The difficulty 

is to determine the length of the retrieved list in order to meet users’ needs. In the 

retrieval task, we focused on this length optimization. 

2. Previous works 

There have been a great number of previous works about plant classification based 

on image data [5] with methods Probabilistic Neural Networks (PNN) [31, 12] and 

Support Vector Machine (SVM) [14]. Plant identification task existed in the 

ImageCLEF challenge from 2011, and in 2014 a combined system of convolutional 

neural nets and SVM won the challenge [4]. The CNNs had five convolutional layers, 

however, their pure deep learning solution was outperformed by ensemble systems. 

Other approach used hand-crafted visual features for the different view types and 

trained SVM classifier [16]. SVM methods present good results in image 

categorization particularly when they are associated with a kernel function. In the 

challenge in 2014 we also used SVM with viewpoints combined method for image-
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based plant identification [29]. In 2014 another group used a pretrained Overfeat [20] 

network for feature learning, and the output of the fully-connected layer (before the 

softmax layer) was fed into a tree-based ensemble classifier [25]. However, other 

groups with SVM based solutions resulted better. In 2015 an Inception Convolutional 

Neural Network (CNN) model-based network won the competition [26]. They have 

pretrained the model with ImageNet and fine-tuned with the PlantCLEF database. 

They used the combined output of five CNNs, that were fine-tuned with randomly 

selected parts of the database, however, hyperparameter optimization was not 

performed. Also in 2015 a pretrained AlexNet was fine-tuned, which resulted the 4th 

place [21].  

Our goal was to introduce AlexNet augmented with new results of deep learning 

and Inception V3 architectures, apply hyperparameter optimization and investigate if 

further improvements could be achieved.  

3. Content-based plant classification with deep learning 

3.1.  Convolutional neural network 

Nowadays state-of-the-art image recognition and classification solutions generally 

use deep learning methodology. Deep convolutional neural networks are able to learn 

the descriptive features of the image database in many abstraction levels. In a baseline 

system the convolutional layers are followed by a classifier. Using feed-forward 

layers as classifier the whole end-to-end process of feature learning and classification 

is controlled by deep learning methods, thus higher accuracy can be achieved.  

The LeNet was among the first neural networks that were directly fed with 

matrix representation of images instead of feature vectors [15]. This type of network 

is referred to as CNN. The LeNet was followed by many variants until the real 

breakthrough of convolutional neural networks was achieved in 2012, when a team 

led by Geoffrey Hinton and Alex Krizhevsky won the ImageNet Large Scale Visual 

Recognition Competition [23] by a large margin [13]. The main strength of their 

solution lay in the application of numerous fine-tuned convolutional and max-pooling 

layers, in the application of dropout method [24], in the usage of non-saturating 

neurons (Rectified Linear Units, ReLUs) [30], and in an efficient GPU 

implementation. This model is often referred to as AlexNet. AlexNet is followed by 

many improved convolutional neural network variants. These variants include, e.g., 

the Inception models [2, 27, 28] and the deep residual neural network [9]. Our 

proposed method is based on a simple data preparation and we used a modified 

version of AlexNet and the Inception V3 model as described below. 

3.2. Data preparation 

We kept the data preparation methods as low as possible. As state-of-the-art 

applications of CNN suggest ‒ due to the deep convolutional network’s feature 

learning behavior ‒ we applied cropping, scaling and normalization. Hence, we only 

cropped the center of the images with the shorter dimension of the image and scaled 

it down to the network’s input dimension, which is 299×299 pixels. Finally, we 
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normalized the red, green and blue color channels individually to zero mean and unit 

variance.  

We could have improved the performance by generating “more” training data 

with simple transformations on the provided pictures, like random rotation, mirroring 

and cropping. Moreover, we could also have mixed in some random noise to make 

the recognition more robust.  

3.3. The proposed convolutional network 

For training the PlantCLEF 2015 database, first we used a modified version of 

AlexNet [13]. We changed the ReLU (Rectified Linear Unit) activation functions to 

parametric ReLUs (PReLUs) [10] in order to avoid zero gradients. In PReLU the 

activation function is defined as 

(1)  
0,if

( )
0.if

i i
i

i i i

y y
f y

a y y


 


  

The PReLU is the generalization of ReLU and Leaky ReLU, because if we use 

parameter ai=0, then we will get ReLU; and if the parameter ai is equal to 0.01 (or 

other small fixed number), then this is so-called Leaky ReLU, which surpasses the 

accuracy of ReLU [19]. In case of PReLU ai is a learnable parameter and adjusted to 

the training data, thus higher classification accuracy was achieved on the ImageNet 

2012 (which is a post-competition result).  

The other modification we applied was the introduction of batch normalization 

[11] before the max-pooling layers of AlexNet. It has been known for a long time 

[17] that standardizing the inputs to zero mean and unit variance the neural net 

converges faster. However, the distribution of each layer’s inputs changes due to the 

change in network parameters during training, which can radically slow down 

convergence. Batch normalization addresses this problem by standardizing the inputs 

for each layer. Experiments in [11] show that with batch normalization significantly 

better accuracy can be achieved on MNIST and ImageNet datasets with faster 

convergence. The block diagram of the proposed convolutional network is shown in 

Fig. 2. However, AlexNet had a poor performance on the PlantCLEF 2015 dataset 

(the MAP value was below 0.1).  
 

 

Fig. 2. The block-diagram of the proposed convolutional network, which is a modification of AlexNet 

[15]. A@B×B refers to A number of planes with size B×B. The C×C, s: D×E refers to C×C kernel size 

with D×E stride 
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Therefore, a more advanced model, namely the Inception V3 [1] was introduced. 

Inception V3 uses ReLU as activation function; it applies batch normalization and 

additional factorization ideas (e.g., 1×1 convolutions for dimensionality reduction). 

The Inception V3 model has great performance on ImageNet database, and we expect 

that it will also be suitable for plant recognition purposes.   

For optimizer, first we chose AdaDelta [32], which is a great tool for adaptively 

adjusting the learning rate. It originated from AdaGrad [6], which applies a continual 

decay of learning rates throughout training, while AdaDelta uses a restricted 

accumulation window instead of accumulating the sum of squared gradients over all 

time. This prevents accumulation to infinity, thus it ensures that the learning can 

continue even after many iterations. However, according to our preliminary tests, the 

error did not converge when we used AdaDelta in the Inception V3 model. Thus, we 

ended up using Stochastic Gradient Descent (SGD) on mini-batches [17] in case of 

Inception V3. AlexNet exploited the advantage of AdaDelta, however, the 

classification accuracy was much lower.  

Our research originated from an Inception V3 model that was pretrained on 

Imagenet. We applied transfer learning by resetting the last fully connected 

classification layer’s weights to ensure that the network learns the appropriate classes. 

Furthermore, we added a narrowing layer to restrict the 1008 outputs to 1000. We did 

not freeze any layers; all layers were trained equally. Finally, we removed the last 

SoftMax layer and appended a LogSoftMax layer to ensure that the sum of the output 

is 1. As the last layer’s output contains log-probabilities, we used Negative Log 

Likelihood as loss function. 

Hyperparameter optimization was performed with grid and random search 

methods in terms of learning rate and batch size. Throughout the experiments the 

following hyperparameters achieved the best accuracy with simple Stochastic 

Gradient Descent with Learning rate: 0.045; Weight decay 1e-5; Momentum 0.1; 

Learning rate decay 1e-7; Batch size 10.  

3.4. Usage of the proposed method for classification and retrieval 

The Inception V3 convolutional neural network gives a prediction for each unknown 

image which contains 1000 values, one possibility for each class. Generally, in case 

of traditional classification tasks a category from the output distribution is chosen 

(e.g., class label with the highest possibility), however, in test phase this approach 

gives only a binary result (e.g., the predicted class was correct or not). Therefore, we 

calculated the more sophisticated S metric (see Section 4.1 for details) to evaluate the 

results of the extended classification. For the image level evaluation of S we used the 

possibility values provided by the CNN. 

As the training was executed in image level, an observation level classifier was 

not available, so we constructed one using the image level predictions. In case of 

many observations only one viewpoint was provided, and in other cases, the number 

of available viewpoints was 2-3 only. For observation level classification we 

calculated the average of predictions in every available viewpoint and took a 

weighted average of them as final prediction. We used logistic regression to optimize 

the weights of different viewpoints. This optimization was performed on a validation 
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set generated from the training data of the PlantCLEF 2015 competition by randomly 

selecting 9.5% of images from it. Additionally, we calculated the simple average of 

the different viewpoints, i.e. with unified weights. Furthermore, it is important to note 

that training several CNNs, one for each viewpoint was less efficient than training 

one CNN with all images [26, 3]. Therefore, we chose to train a single network for 

the total dataset. 

At the retrieval task, we used the same possibility values as for the calculation 

of image level S metric, and we sorted them in descending order for each category. 

We call these descending order of possibility “sorted list” or “retrieved list”. The 

difficulty was to determine the length of the retrieved list in order to meet users’ need. 

Our solution to this problem was a length optimization algorithm, described in 

Section 4.2. 

3.5.  Training times 

The hardware we used for training were an NVidia GTX 970 (4 GB) and an  

NVidia Titan X (12 GB) GPUs. For data preparation, training and evaluating deep 

neural networks the Torch7 deep learning framework was used. 

Preprocessing the images and converting them to the suitable format took about 

half an hour including the calculation of the pictures’ mean and standard deviation 

per channel. As for the Inception V3 execution times, 1 training epoch took 

approximately 52 min, and the validation took about 13 minutes on the Titan. After 

53 epochs (cca. 2 days) the training reached the best result thus early stopping was 

triggered after 103 epochs (cca. 4 days). However, evaluation of an image only took 

about a second on the trained network.  

Regarding the limitations of the model, hyperparameter optimization is very 

resource demanding due to the quite complex architecture of Inception V3. 

Furthermore, the wide variety of crowd-sourced images would require a massive 

preprocessing step that includes a huge amount of manual work. 

4. Evaluation 

4.1. Results of classification  

At extended classification task, the evaluation process takes into consideration not 

only one class but series of them (vector), 
Cppp yyy ,2,1, ˆ,...,ˆ,ˆ , where these labels are in 

decreasing order according to their reliabilities which were the response of the 

classifier (the first element is most probable class for p-th observation). For the 

evaluation we used different metrics from PlantCLEF [6]: The first metrics was a 

special score based on reciprocal rank, where the rank is the sequential number of the 

correct species in the list of retrieved species (sorted by decreasing order). The dataset 

was built in a collaborative manner, thus, simple average score may introduce some 

bias. Instead of “simple mean” the mean of the average score rate per author was 

defined for S at observation level as can be seen in the following equation: 

(2)  ,

1 1

1 1
,

uPU

u p
uu p

S S
U P

 

     
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where U is the number of users (who have at least one image in the test data); 

Pu – the number of individual plants observed by the u-th user. 

The error function )ˆ,( pp yyL
  is based on the prediction vector and the real class: 

(3)  , ,

1
ˆ ,u p p j pS y y

j
    

where score Su,p is the p-th observation of the u-th user, so this equals to the inverse 

of the rank of the correct species. 

The second method was used to evaluate the prediction of classification task at 

image level. Following the same motivations explained above, a simple mean on all 

test images would, however, introduce some bias as well (some authors sometimes 

provided many pictures of the same individual plant to enrich training data with less 

efforts). Because the final aim was to evaluate the ability of a system to provide the 

correct answer based on a single plant observation, we also had to average the 

classification rate on each individual plant. Finally, our secondary metric at image 

level is defined as the following average classification score S: 

(4)  
,

, ,
,1 1 1

1 1 1
,

u pu
NPU

u p n
u u pu p n

S S
U P N

  

      

where U is the number of users (who have at least one image in the test data); 

Pu – the number of individual plants observed by the u-th user; 

Nu,p – the number of pictures taken from the p-th plant observed by the u-th user. 

Similarly, Su,p,n is the n-th picture taken from the p-th plant observed by the u-th 

user: 

(5)  , , ,

1
ˆ .u p n n j nS y y

j
    

The final score S of extended classification in both of observation and image 

level will be between 0 and 1, and the goal is to attain larger S.  

We tested our solution on the official test set of PlantCLEF 2015 competition 

(see Table 1) released by the competition organizers after the finish of the contest 

(the structure of the data is described in Section 1). We used the following weights – 

coming from the Logistic Regression (LogReg) optimization – for the observation 

level classification: 0.108, 0.123, 0.242, 0.051, 0.142, 0.080 and 0.222 for Flower, 

Fruit, Leaf, LeafScan, Entire, Stem and Branch, respectively. However, the S metric 

(observation level) with this configuration was slightly lower than with unified 

weights, namely 0.7051 compared to 0.7196. The results are shown in Table 2.  

Table 2. Final test results of classification with the Inception V3 model (see Section 3.3 

for details) on PlantCLEF 2015 dataset (as described in Section 1). 

Solution 
S 

(image level) 

S 

(observation level) 

Our solution (with unified fusion) 0.6956 0.7196 

Our solution (with LogReg fusion) 0.6956 0.7051 
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4.2.  MAP optimization in results of the image retrieval  

The scores S of observation and image level are able to measure the goodness of 

classification, however, we need further metrics for measurement the goodness of 

retrieval task. 

As we mentioned above, our second goal was to construct a content-based image 

retrieval system. A common issue with this is how to determine the length of the 

returned lists (the number of images in the list). It is a critical point of retrieval tasks 

because the users would like to get relevant pictures. Therefore, we focused on the 

optimization of these lists. We used AP (Average Precision) to measure the goodness 

of a retrieved list, i.e., the ratio of the relevant and all (non-relevant and relevant) 

images in that list. We calculated this AP for each category and averaged them to get 

the MAP (Mean Average Precision) metric [22], as can be seen in the following 

equation: 

(6)  1

1

AP

MAP , AP precision( ) recall( ),

C

k L
k

k

i

i i
C





  


   

where C is the number of classes, and L is the length of the retrieved list. 

We estimated the optimal length of the returned lists by measuring MAP values 

for every different size; this optimization was performed on the same validation set 

that we used for the LogReg optimization.  

 
Fig. 3. MAP optimization for the validation and test sets (dashed – validation; solid – test) 

We defined the same length for each category, thus every AP value was used 

uniformly with the same weight at calculating the MAP. As can be seen on the  

Fig. 3, the results of the validation set got the highest MAP (=0.9490) when the length 

of the returned lists was 2. After this point, the longer the lists were, the lower the 

MAP was. With full lists the MAP was 0.7515, which means that the optimization 

resulted in nearly 26% growth. So, based on this we chose the size of the returned 

lists to be also 2 for the test set (official test set of PlantCLEF 2015 competition). We 

evaluated the results of the test set for the 2-long lists, and it reached 0.9185 MAP 

score. To decide if it was a good estimation, we calculated MAP values for the test 

set (solid line on Fig. 3), similarly to the validation set. It can be seen that the decision 

was right because the 2-long lists were also optimal for evaluating MAP on the result 

of the test set. In this case, the MAP was 0.6086 without cutting the returned lists. 
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Based on this we can conclude that the preliminary prediction of the size of the 

returned lists had a positive effect, because it increased the MAP value by more than 

50%. In retrieval tasks, it is highly recommended not to return too many non-relevant 

hits (especially in image retrieval). Supposing that we chose 10-long lists to return, 

Fig. 3 shows that the proposed system would give back approximately 9 relevant 

images out of 10. 

4.3.  Comparative assessment 

Image recognition systems use common CNN architectures nowadays, like AlexNet, 

VGG Net, GoogLeNet and Inception. These networks for feature learning are 

typically trained on the ImageNet database and fine-tuned with data of the target 

scenario and generally apply techniques that are proven to be effective empirically. 

In this research, we concentrated on AlexNet and Inception V3, and with 

hyperparameter fine-tuning, we could surpass the performance of previous methods 

in the plant identification task. In the following, the similar approaches are briefly 

investigated, and Table 3 compares the main features of our and of the previous 

solutions. 

SNUMED INFO [26] used 1 and 5 random CNNs, but did not use CNNs for 

each viewpoint. Their best run was based on Majority voting method (better than 

Borda Count). QUT RV [4] and INRIA ZENITH [3] tried combining several CNNs 

(one for each view), but 1 CNN was better in case of both researches. At the best run 

of INRIA ZENITH observations composed of several images, are combined using a 

Maximum function, although they tried Borda Count. (At another run of INRIA they 

applied SVM with Fisher Vectors.) At the best run of EcoUAN [21] the sum of all 

predicted image vectors was used for observations, which is equivalent to average 

function. At the work of MICA [16] Kernel DES (KDES) and SVM were used for 

classification, and BC (Borda count), IRP (Inverse Rank Position) and WP (Weighted 

Probability) for observation fusion. 

We compared our results with other available results coming from state-of-the-

art solutions as can be seen in Table 3. According to the results our model surpasses 

the S metrics of all other previous solutions at observation and at image level as well. 

Compared to the best performing previous system we have reached 8% and 7% better 

result at observation and image levels, respectively. 

Table 3. Comparison of test results and approaches of different solutions  

Our solution 

Goodness of  

classification: S metrics Fusion  

method 

Ordered list  

optimization S (image  

level) 

S (observation  

level) 

0.6956 0.7196 Unified, Log Regr. Yes 

Best run of  

SNUMED INFO [26] 
0.652 0.667 

BC, Majority  

voting 
No 

Best run of  

QUT RV [4] 
0.590 0.633 n.a. 

Only first 1 & 5  

was used 

Best run of  

INRIA ZENITH [3] 
0.581 0.609 

Maximum  

function 
No 

Best run of EcoUAN [21] 0.486 0.487 Average No 

Best run of MICA [16] 0.194 0.209 BC, IRP, WP No 
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5. Conclusion 

We elaborated a classification method for image-based plant identification task and 

content-based image retrieval problem. We used pretrained convolutional neural 

networks with transfer learning. At the preprocessing stage the images were 

normalized to zero mean and unit variance, they were also cropped and scaled down. 

AlexNet type neural network had significantly lower performance on the plant 

database compared to the Inception V3 model.  
To evaluate the efficiency of the solution, the S and MAP metrics for 

classification and retrieval tasks were measured, respectively. The image sets 

published under the PlantCLEF 2015 challenge in the LifeCLEF campaign were 

used. The results showed that the proposed system surpasses the S metrics of all top 

competitors of this challenge. On the other hand, we optimized the length of the 

returned lists to maximize the MAP score. Comparing the baseline (i.e., without MAP 

optimization) and our solution we gained more than 50% improvement of MAP in 

the test set.  

Our contribution is applying and fine-tuning pretrained AlexNet and Inception 

V3 CNN models for plant classification purposes, furthermore the optimization of 

the training and investigation of the returned lists’ length in the content-based image 

retrieval. These results show not only the importance of a well-trained state-of-the-

art convolutional neural network but the significant impact of metrics optimization 

as well. 
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