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Abstract: Researchers all over the world have provided significant and effective 
solutions to detect malicious URLs. Still due to the ever changing nature of cyber-
attacks, there are many open issues. In this paper, we have provided an effective 
hybrid methodology with new features to deal with this problem. To evaluate our 
approach, we have used state-of-the-arts supervised decision tree learning 
classifications models. We have performed our experiments on the balanced 
dataset. The experimental results show that, by inclusion of new features all the 
decision tree learning classifiers work well on our labeled dataset, achieving 98- 
99% detection accuracy with very low False Positive Rate (FPR) and False 
Negative Rate (FNR). Also we have achieved 99.29% detection accuracy with very 
low FPR and FNR using majority voting technique, which is better than the well-
known anti-virus and anti-malware solutions.  
Keywords: Static and dynamic analysis; feature extraction; decision tree learning; 
malicious URLs; Web security. 

1. Introduction 

The World Wide Web (WWW) has become the global platform for millions of 

users all over the world. Today s Web is well matured and has large application 

area, including e-commerce, online banking, social networking, communication and 

many more. Rich Web based applications are available over the WWW to provide 

such types of services. This is the positive side of this technology. Unfortunately, 

the Web has also become a more dangerous place; the popularity of WWW has also 

attracted hackers, intruders, attackers, etc., to abuse the Internet and users to 

perform illegitimate activity for financial profit. Popular types of attacks using 

malicious URLs include: Drive-by download, phishing, and social engineering and 

spamming [1]. N i e l s  P r o v o s  et al. [2], in 2007 found more than three million 

URLs that launched drive-by-download attacks. According to B i n  L i a n g et al.  

[3], 29 of 90 Websites contained malicious code. According to D a v i d e  C a n a l i  

et al. [4] in particular attackers frequently use drive-by-download exploits to 

compromise a large number of users. 
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To overcome these issues, research community all over the world has applied 

many efficient machine learning approaches and achieved significant detection of 

malicious URLs. These include static analysis approach, dynamic analysis 

approach, blacklisting-based approach and heuristic-based approach [5]. D. P a t i l  

and J. P a t i l  [6] have applied static analysis of URLs approach with 79 static 

features of URLs and domain names and achieved detection rate between 95-99% 

with very low False Positive Rate (FPR) and False Negative Rate (FNR). Also, they 

have applied static analysis approach for the detection of malicious JavaScript code 

in the Webpages with 77 static JavaScript features and achieved detection rate 

between 97-99% with very low FPR and FNR in their next study [7]. But, due to 

the ever changing nature of attack construction techniques applied by the attackers, 

there are still many open issues. To overcome the limitations of above approaches, 

dynamic analysis of URLs is more effective for the detection of today's dynamic 

attack construction techniques used by attackers. Web pages feature selection plays 

an important role in dynamic analysis, for the effective detection of malicious Web 

pages. 

In this paper, we have applied a hybrid methodology, i.e. combination of static 

and dynamic approach for the detection of malicious URLs. We have extracted 

features using static analysis and some dynamic analysis of the URLs. We have 

extracted 117 static and dynamic features, among which 44 are new features to 

identify malicious URLs. We have constructed a balanced labeled dataset of 52,082 

malicious and benign benchmarks URLs. Our dataset consists of equal distribution 

of malicious and benign URLs. It consists of 26,041 benign and 26,041 malicious 

URLs. We have evaluated our methodology using 6 state of the art decision tree 

learning classifiers including, J48 Decision Tree, Simple CART, Random Forest, 

Random Tree, ADTree and REPTree. We have built a multi-model classification 

system for the effective detection of URL as benign or malicious using Majority 

Voting algorithm. Also, we have compared our detection results with 18 well-

known anti-virus and anti-malware solutions. Our experimental results show that, 

by inclusion of new features all decision tree learning classifiers perform well on 

our labeled dataset, achieving 98-99% detection accuracy with very low false 

positives and false negatives, as compared to the well-known anti-virus and anti-

malware solutions. 

The remainder of this paper is organized as follows. Section 2 gives a brief 

related work. Section 3 describes the methodology with feature extraction and 

supervised decision tree learning classifiers. Section 4 describes the experimental 

results. Section 5 gives discussion and limitations of our system. We present our 

conclusions in Section 6. 

2. Related work 

Many researchers all over the world have proposed different approaches for 

classification and detection of malicious URLs given as below.  

C h o i, Z h u  and L e e  [8] have proposed a method using machine learning to 

detect malicious URLs of all popular attack types like spam, phishing, malware etc. 

and to identify the nature of attack a malicious URL attempts to launch. They have 
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used features like lexical, link popularity, Webpage content, DNS, DNS fluxiness 

and network traffic. They have collected real-life data from various sources like 

URLs from jwSpamSpy, Web spam dataset, Phishing URLs from PhishTank and 

Malware URLs from DNS-BH. They have used three machine learning algorithms 

like the Support Vector Machine (SVM) to detect malicious URLs, RAkEL and 

ML-kNN learning algorithms for multi-label classification problem to identify 

attack type. They have evaluated their method on 40,000 benign URLs and 32,000 

malicious URLs and achieved the accuracy of 98% in detection of malicious URLs 

and 93% in identification of attack types.  

E s h e t e, V i l l a f i o r i t a  and W e l d e m a r i a m  [5] have presented a 

lightweight approach, called BINSPECT that combines static analysis and 

emulation. They have used supervised learning techniques in detection of malicious 

Web pages that may launch drive-by-download, phishing, injection and malware 

distribution attacks. They have extracted features like URL features, page-source 

features and social-reputation features. They have collected a malicious dataset of 

71,919 URLs from the malware and phishing blacklist of Google, Phishtank 

database and the malware and injection attack URL list of MalwareURL. The 

benign dataset of 414,000 benign URLs is collected from three popular sources like 

the Alexa Top sites, the Yahoo random URL generation service and the DMOZ 

directory. According to their experimental evaluation, BINSPECT achieved 97% 

accuracy with low false signals.  

L e  et al. [9] have presented a novel two-stage classification model to detect 

malicious Web pages. They have divided the detection process into two stages. In 

the first stage they have estimated the maliciousness of Web pages using static 

features and in the second stage they have used the potential malicious Web pages 

found in the first stage for final identification of malicious Web pages by extracting 

run time features of these Web pages. They have extracted the static features from 

contents or properties of Web pages without rendering fully or executing Web 

pages. Potential run-time features like foreign contents, script contents and exploit 

contents are extracted by rendering Web pages fully and executing them on specific 

systems. They have used scoring algorithm for the classification. They have 

evaluated their scoring algorithm on the dataset of 20,000 benign Web pages for 

training and 13,646 instances of benign and malicious for testing. According to 

their experimental results, this approach reduced 86% of suspicious Web pages 

without missing attacks. 

B a s n e t  and S u n g  [10] have proposed a machine learning based approach 

to detect phishing Web pages. They have used many novel content based features 

and applied cutting-edge machine learning techniques such as 6 batch learning 

algorithms, Random Forests, Support Vector Machines (SVM) with rbf linear 

kernels, Naive Bayes, C4.5, Logistic Regression (LR) and a set of five online 

learning algorithms: Updatable version of Naive Bayes (NB-U), updatable version 

of LogitBoost (LB-U), Perceptron, Passive-Aggressive (PA) and Confidence-

Weighted (CW) algorithms. They have used 179 Web page features such as lexical 

based features, keyword based features, search engine based feature and reputation 
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based features to demonstrate their approach. To conduct all the experiments, they 

used WEKA and CW libraries. The experimental results show that their proposed 

approach can detect phishing Webpages with an accuracy of 99.9%, false positive 

rate of as low as 0.00% and false negative rate of 0.06%. 

M a et al. [11] have explored how to detect malicious Web sites from the 

lexical and host-based features of their URLs. They show that this problem lends 

itself naturally to modern algorithms for online learning. According to them online 

algorithms not only process large numbers of URLs more efficiently than batch 

algorithms, they also adapt more quickly to new features in the continuously 

evolving distribution of malicious URLs. They developed a real-time system for 

gathering URL features and pair it with a real-time feed of labeled URLs from a 

large Web mail provider. According to their experimental analysis, they have 

achieved detection accuracy of 99% over a balanced dataset. 

G a r e r a  et al. [12] have focused on studying the structure of URLs employed 

in various phishing attacks. They described several features that can be used to 

distinguish a phishing URL from a benign one. These features include page based, 

domain based, type based and word based. These features are used to model a 

logistic regression filter that is efficient and has a high accuracy. They have used 

millions of URLs in their experiments and achieved classification accuracy of 

97.3%. 

3. Methodology 

3.1. Framework of our proposed of Malicious URLs detection system 

Fig. 1 shows the framework of our proposed of malicious URLs detection system. It 

consists of feature extraction phase, training phase and classification phase. The raw 

malicious and benign URLs from benchmarks sources are fed to the feature 

extraction script written in Java.  

 
Fig.1. Framework of our proposed of Malicious URLs detection system 
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We have extracted the 117 static and dynamic features of the benign and 

malicious URLs. These are numeric and binary features. In our dataset preparation, 

we have labeled the benign URLs as 1 and malicious URLs as +1. In the training 

phase, 6 decision tree learning algorithms J48 Decision Tree, Simple CART, 

Random Forest, Random Tree, ADTree and REPTree are trained using our labeled 

dataset. This phase provides 6 trained models, which are used in the testing phase. 

In the testing phase, unknown URLs are tested using the trained model, as benign or 

malicious. We have evaluated 6 trained decision tree learning models on our 

dataset, in terms of detection accuracy, False Positive Rate (FPR), False Negative 

Rate (FNR), precision, recall, F-measure and ROC. Further, we have built a multi-

model classification system for the effective detection of URLs as benign or 

malicious using Majority Voting algorithm. The Majority Voting scheme with 

MAJORITY_VOTING_RULE allows comparison of different models and makes 

the overall result more reliable. 

3.2. Feature extraction 

We have extracted four types of static and dynamic URLs features like, URL 

features, domain name features, Webpage source features and short URLs features. 

We have implemented URLs feature extractor in Java. The URL feature extraction 

is implemented based on the URL class of Java and the features are collected by 

lexical scanning of the URL string. The domain name features extraction is 

implemented based on the domain name extraction and scanning of the domain 

name. The Webpage source features are collected by visiting the page via Selenium 

WebDriver [13] and an instance of Firefox browser so as to capture the details of 

what is rendered (HTML) using a feature extraction engine implemented in Java. 

For each URL visit for feature extraction, a fresh instance of the Firefox browser is 

created to ensure a unique session for each URL. The short URLs features are 

extracted by checking the domain names containing the major URL shortening 

services like bit.ly, goo.gl, tinyurl.com, owl.ly, deck.ly, su.pr and bit.do. The 

expanded URLs are obtained by making query to the URL shortening services. 

After getting the original URL from URL shortening services, we have set a 

threshold value of 30 for the length of URLs i.e. if the length of the returned URL is 

over 30, it is marked as malicious. Also, we have checked the lexical properties of 

the returned URL string for deciding it as benign or malicious. We have checked 

the returned URL string for containing suspicious lexical characters like, _, =, (,), 

%, & and @. 

3.2.1. URL features 

We have extracted 63 URL features from the URL string. Among these features 47 

are from the literature [5, 6, 8, 14-19] and 16 are new features. These are the lexical 

properties of the URLs. Lexical features are the textual properties of the URL itself. 

These features include the general look and feel properties of the URLs. In addition 

to the lexical features, we have checked the presence of suspicious words in the 

URLs. These are numeric and binary features. These URL features are given in 
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Table 1. We have extended the lexical feature set by adding 7 new lexical features. 

These features are important to differentiate malicious URLs from benign ones. 

        Table 1. URL features 

Sr. No Feature name Type 

Features used in the literature 

1 Length of URL numeric 

2 Presence of IP address in Hostname numeric 

3 Length of Query string  in URL numeric 

4 Number of Tokens in URL numeric 

5 Number of Dots (.) characters numeric 

6 Number of Hyphens (-) sign characters numeric 

7 Number of Underscore (_) sign characters numeric 

8 Number of Equal (=) sign characters numeric 

9 Number of Forward slash (/) sign characters numeric 

10 Number of Question Mark sign (?)characters numeric 

11 Presence of secure  word in URL string binary 

12 Presence of account  word in URL string binary 

13 Presence of webscr  word in URL string binary 

14 Presence of login  word in URL string binary 

15 Presence of ebayisapi  word in URL string binary 

16 Presence of signin  word in URL string binary 

17 Presence of banking  word in URL string binary 

18 Presence of confirm  word in URL string binary 

19 Presence of blog  word in URL string binary 

20 Presence of logon  word in URL string binary 

21 Presence of signon  word in URL string binary 

22 Presence of login.asp  word in URL string binary 

23 Presence of login.php  word in URL string binary 

24 Presence of login.htm  word in URL string binary 

25 Presence of .exe  word in URL string binary 

26 Presence of .zip  word in URL string binary 

27 Presence of .rar  word in URL string binary 

28 Presence of .jpg  word in URL string binary 

29 Presence of .gif  word in URL string binary 

30 Presence of viewer.php  word in URL string binary 

31 Presence of link=  word in URL string binary 

32 Presence of getImage.asp  word in URL string binary 

33 Presence of plugins  word in URL string binary 

34 Presence of paypal  word in URL string binary 

35 Presence of order  word in URL string binary 

36 Presence of dbsys.php  word in URL string binary 

37 Presence of config.bin  word in URL string binary 

38 Presence of download.php  word in URL string binary 

39 Presence of .js  word in URL string binary 

40 Presence of payment  word in URL string binary 

41 Presence of files  word in URL string binary 

42 Presence of css  word in URL string binary 

43 Presence of shopping  word in URL string binary 

44 Presence of mail.php  word in URL string binary 

45 Presence of .jar  word in URL string binary 

46 Presence of .swf  word in URL string binary 

47 Presence of .cgi  word in URL string binary 
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        Table 1 (c o n t i n u e d) 

Sr. No Feature name Type 

New features 

1 Number of Semicolon (;) sign characters numeric 

2 Number of Open Parenthesis (() sign characters numeric 

3 Number of Close Parenthesis()) sign characters numeric 

4 Number of Mod Sign (%) sign characters numeric 

5 Number of Ampersand Sign (&) sign characters numeric 

6 Number of At the Rate Sign (@) sign characters numeric 

7 Number of Digits in the URL numeric 

8 Entropy of URL string real 

9 Presence of .php  word in URL string binary 

10 Presence of abuse  word in URL string binary 

11 Presence of admin  word in URL string binary 

12 Presence of .bin  word in URL string binary 

13  binary 

14 Presence of personal  word in URL string binary 

15 Presence of update  word in URL string binary 

16 Presence of verification  word in URL string binary 
 

 Shannon entropy of URLs 

To demonstrate the randomness factor in URLs, we have used Shannon 

Entropy as a measure: higher the entropy, higher is the randomness of the instance 

under consideration. We calculated the entropy measure of each benign and 

malicious URL separately [20]. The Shannon entropy of the URL string is 

calculated using following equation: 

(1)    
0

( ) ( ) log ( ),
n

i b i
i

H x p x p x  

where H(x) is the Shannon entropy of string x, b is the base of the logarithm used, 

and p(x) is the probability mass function. 

Table 2 show the average entropy of malicious and benign URLs used in our 

dataset. From the table it is clear that, malicious URLs have high entropy as 

compare to benign URLs. It shows that there is more randomness factor in 

malicious URLs, to mark it as malicious. 

Table 2. Average entropy of benign and malicious URLs used in our dataset 

Sr. No Average entropy of Benign URL string Average entropy of Malicious URL string 

1 3.87 4.14 
 

 Suspicious word based features of the URLs 

We have added seven new suspicious words in the URL feature set. The word-

based features are binary. We tested if the given word is present or absent in a URL. 

We have used string matching algorithm by Knuth-Morris-Pratt (KMP) to find the 

presence or absence of the suspicious word in the URL [21]. The frequency 

distribution of these new suspicious word-based features is given in Table 3. It is 

clear from the Table 3 that the frequency of the suspicious word features in the 

malicious URLs is higher than that of benign URLs. Hence, these features help to 

identify malicious URLs from benign URLs. 
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Table 3. Distribution of word based features 

Sr. 
No 

Feature name 

Distribution of word based 
features presence in URLs 

Benign (%) Malicious (%) 

1 Presence of .php  word in URL string 0.03 35.66 

2 Presence of abuse  word in URL string 0.01 5.51 

3 Presence of admin  word in URL string 0.04 6.45 

4 Presence of .bin  word in URL string 0.08 0.13 

5 Presence of personal  word in URL string 0.03 0.19 

6 Presence of update  word in URL string 0.15 2.2 

7 Presence of verification  word in URL string 0.00 0.72 

3.2.2. Domain name features 

We have used 18 domain name features, among these seven are taken from the 

literature [6, 8, 5, 12, 18, 22] and 11 are new features. We have extracted the 

domain names from the URL string a script written in Java. These are numeric, 

binary and real value features. The domain name features are given in Table 4. 

Table 4. Domain name features 

Sr. 
No 

Feature name Type Description 

Features used in the literature 

1 Length of Domain Name numeric Length of the domain name string 

2 Domain Name contains IP 
address? 

binary It is 1 if domain contains IP address 

3 Is Domain is TLD? binary It is 1 if domain is a top-level domain 

4 
Number of Sub-Domains numeric 

No of sub-domains in the domain name 
string 

5 Number of Yahoo links for 
domain 

numeric 
No of Yahoo search results for the 
domain name 

6 Number of Bing links for 
domain 

numeric 
No of Bing search results for the domain 
name 

7 Alexa Rank of domain numeric Alexa ranking of the domain name 

New features 

1 
Domain Name is Valid? binary 

It is 1 if domain name is a valid domain 
name 

2 Entropy of Domain Name 
string 

real 
Shannon entropy of the domain name 
string 

3 Number of tokens in Domain 
Name 

numeric No of tokens in the domain name string 

4 Length of Longest Domain 
Token 

numeric Length of longest domain name token 

5 Entropy of Longest Domain 
token 

real 
Shannon entropy of the longest domain 
token 

6 Average length of domain 
token 

real Average length of domain token 

7 
Number of tokens in Path numeric 

No of tokens in the domain name path 
string 

8 Length of Longest Path Token numeric Length of longest domain path token 

9 Average length of path token real Average length of domain path token 

10 Domain Name contains 
suspicious https? 

binary 
It is 1 if domain name contains suspicious 

 

11 Domain Name contains 
suspicious www? 

binary 
It is 1 if domain name contains suspicious 
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 Shannon entropy of domain name 

We have used Shannon entropy to demonstrate the randomness factor in 

domain names of malicious and benign URLs. High entropy indicates the more 

suspicious nature of the URL. The Shannon entropy of the domain name string is 

calculated using (1). Table 5 show the average entropy of malicious and benign 

domain names and longest domain tokens used in our dataset. 
 

Table 5. Average entropy of benign and malicious URL domain names and longest domain tokens 

Sr. 

No 

Average entropy 

of benign URL 

domain name 

Average entropy 

of malicious URL 

domain name 

Average entropy of 

longest domain token in 

benign URL 

Average entropy of 

longest domain token 

in malicious URL 

1 3.25 3.37 2.52 2.89 

It is clear that the entropy of domain names and longest tokens in domain 

names of malicious URLs is higher than benign URLs. This indicates that there is 

more randomness factor in malicious URLs, to mark it as malicious. 

3.2.3. Web page source features 

For the effective detection of malicious Web pages, we have used the Web page 

source features. We have rendered the Web pages with the help of Selenium 

WebDriver and an instance of Firefox browser, every time for a new URL the Web 

page is loaded. We have written a script in Java and Selenium WebDriver, which 

extracts the Web page source features. We have extracted 34 such features among 

which 19 features are taken from literature [5, 8, 12, 14, 22, 23] and 15 are new 

features. These are numeric, binary and real value features. These features are given 

in Table 6. 

              Table 6. Web page source features 

Sr. No Feature name Type 

Features used in the literature 

1 Number of Blank Lines in a Web Page numeric 

2 Number of Blank Spaces in a Web Page numeric 

3 Number of Words in a Web Page numeric 

4 Average Length of Words in a Web Page real 

5 Number of iFRames in a Web Page numeric 

6 Number of JavaScript in a Web Page numeric 

7 Number of embed Tag in a Web Page numeric 

8 Number of object Tag in a Web Page numeric 

9 Number of meta Tag in a Web Page numeric 

10 Number of div Tag in a Web Page numeric 

11 Number of body Tag in a Web Page numeric 

12 Number of form Tag in a Web Page numeric 

13 Title Tag present? in a Web Page binary 

14 Number of anchor Tag in a Web Page numeric 

15 Number of Hidden elements in a Web Page numeric 

16 Number of External JavaScript Files in a Web Page numeric 

17 Number of Links in a Web Page numeric 

18 Number of Internal Links in a Web Page numeric 

19 Number of External Links in a Web Page numeric 
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Table 6 (c o n t i n u e d) 
Sr. No Feature name Type 

New features 

1 Number of image Tag in a Web Page numeric 

2 Number of span Tag in a Web Page numeric 

3 Number of input Tag in a Web Page numeric 

4 Number of CSS styles in a Web Page numeric 

5 Number of audio Tag in a Web Page numeric 

6 Number of applet Tag in a Web Page numeric 

7 The size of Webpage numeric 

8 Credit card number word present? in a Web Page binary 

9 log word present?, in a Web Page binary 

10 pay word present?, in a Web Page binary 

11 free word present?, in a Web Page binary 

12 access word present?,  in a Web Page binary 

13 bonus word present?, in a Web Page binary 

14 click word present?, in a Web Page binary 

15 Entropy of Webpage real 

3.2.4. Short URLs features 

Today Online Social Networks (OSN) like Twitter, Facebook, WhatsApp, etc., are 

widely used by millions of users all over the world for communication. Due to the 

text limitation on OSN, URL shortening services like bit.ly, goo.gl, tinyurl.com, 

owl.ly, deck.ly, su.pr, bit.do, etc., are widely used; however they are not free from 

 

attackers often use such types of URL shortening services to hide their original 

identity. Considering this in mind, we have extracted two features of short URLs. 

We have written an URL expander script in Java, once we get the short URL with 

above URL shortening services; our expander script returns the original URL. We 

have set the threshold of 30 characters for the length of the URL and designed 

following rules:  

 

1. if (expandedURL_length >= 30 && contains suspicious characters) 

2. { 

3.     URL  > malicious 

4.  } 

5.   else 

6.  { 

7.     URL  > benign 

8.  } 

 

Also, to decide the URL is malicious or benign we have extracted the lexical 

features, i.e., is URL contains suspicious characters like, _, =, (,), %, & and @. 

These are numeric and binary features and given in Table 7. 
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Table 7. Short URLs features 

Sr. No Feature name Type 

1 Length of expanded URL numeric 

2 Is URL is malicious? binary 

3.3. Decision tree methods used for Malicious URLs detection 

The problem of identifying malicious URLs is an instance of binary classification. 

For a given URL, the data point 
dx R represents its feature vector with d features. 

Let the set of training sample data be {(x1, y1 xi, yi xn, yn)}, where xi 

denotes the i-th feature vector; y { 1, +1} is the label of the i-th feature vector, 

denoting whether the feature vector represents a benign or not; and n is the size  

of the data set. During testing, if the predicted label  = +1 but the actual label  

y = 1, then the error is a false positive. If  = 1 but y = +1, then the error is 

a false negative.  

3.3.1. Decision tree learning 

Owing to space limitations, the detail discussion of these algorithms is out of the 

scope of this paper. We have given the short description of each algorithm is as 

follow. 

 J48 Decision Tree: J48 Decision tree learning is one of the most widely 

used techniques for classification. J48 is slightly modified C4.5 in WEKA. The 

C4.5 algorithm generates a classification-decision tree for the given dataset by 

recursive partitioning of data. The decision is grown using depth-first strategy. The 

algorithm considers all the possible tests that can split the data set and selects a test 

that gives the best information gain [35]. 

 Simple CART: Classification and regression trees are machine-learning 

methods for constructing prediction models from data. The models are obtained by 

recursively partitioning the data space and fitting a simple prediction model within 

each partition [36]. 

 Random Forest: Random forest is a combination of tree predictors such that 

each tree depends on the values of a random vector sampled independently and with 

the same distribution for all trees in the forest. It is an effective classifier in 

prediction. Random forest generally exhibits a substantial performance 

improvement over the single tree classifier such as CART and C4.5 [37]. 

 Random Tree: With k random features at each node, a random tree is a tree 

drawn at random from a set of possi

tree in the set of trees has an equal chance of being sampled. Random trees can be 

generated efficiently and the combination of large sets of random trees generally 

leads to accurate models [38]. 

 ADTree: An alternating decision tree (ADTree) is a machine learning 

method for classification. It is introduced by F r e u n d  and M a s o n  [39]. An 

ADTree consists of an alternation of decision nodes, which specify a predicate 

condition and prediction nodes, which contain a single number. An instance is 
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classified by an ADTree by following all paths for which all decision nodes are true 

and summing any prediction nodes that are traversed. 

 REPTree: REPTree is a fast decision tree classifier which builds a 

decision/regression tree using information gain as the splitting criterion and prunes 

it using reduced-error pruning. It only sorts values for numeric attributes once. 

Missing values are dealt with by splitting the corresponding instances into pieces 

(i.e., as in C4.5) [40]. 

3.3.2. Majority voting 

URL as malicious or benign. Voting is the simplest ensemble algorithm and is often 

very effective. It can be used for classification or regression problems. It works by 

creating two or more sub-models, in our case 6 models. Each sub-model makes 

predictions which are combined using MAJORITY_VOTING_RULE. The 

following Fig. 2 gives the working of the majority voting algorithm. It is a meta-

classifier for combining similar or conceptually different machine learning 

classifiers for classification via majority voting. In majority voting, we predict the 

final class label as the class label that has been predicted most frequently by the 

classification models. Here, we p

classifier Cj [26, 27]: 

(2)     =mode {C1(x), C2(x),..., Cm(x)},  

where  predicted class label and C1(x), C2(x),..., Cm(x) classification models. 

 
Fig. 2. Majority voting algorithm 

4. Experimental setup and evaluation 

4.1. Data source and dataset 

We have collected URLs from the benchmark sources of URLs for both malicious 

and benign URLs and divided the dataset into a ratio of 66:34 as training and a 

testing set, i.e., 66% for training and 34% for testing. The dataset of benign URLs is 

collected from the Alexa Top sites [28]. We collected 26,041 benign URLs from the 

above source of benign URLs. For the malicious dataset, we have collected URLs 

from three benchmark sources, like the malware and phishing blacklist of the 

PhishTank database of verified phishing pages [29], the malware and injection 

attack URL list of Malware Domain List [30] and Spam domain blacklist by 
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jwSpamSpy [31]. We collected 26,041 malicious URLs from the above benchmark 

sources of malicious URLs including 8,976 phishing URLs, 11,297 malware URLs 

and 5,721 spam URLs. We have constructed a balanced dataset consisting of equal 

instances of malicious and benign URLs. The breakdown of the dataset is shown in 

Table 8. 

                                    Table 8. Dataset for training and testing 

Task Benign Malicious Total 

Training 17,187 17,187 34,374 

Testing 8,854 8,854 17,708 

Total 52,082 

4.2. Evaluation results 

4.2.1. Evaluation measures 

We have evaluated the performance of 6 decision tree learning classifiers on our 

URL dataset shown in Table 8. We have used the Weka API of all the learning 

classifiers, in our experiments [25]. To obtain the best classification results we have 

used the majority voting scheme. To decide the best performing classifier, we have 

used the confusion matrix, which contains actual and predicted classifications done 

by a classification algorithm [32]. We have used the following confusion matrix 

given in Table 9. 

Table 9. Confusion matrix for actual and predicted benign and malicious URLs 

Predicted 

Actual  
Positive Negative 

Positive TP FN 

Negative FP TN 

Using the above confusion matrix we have calculated following measures, to 

evaluate the performance of the classifiers. A binary classifier predicts all data 

instances of a test dataset as either positive or negative. This classification (or 

prediction) produces four outcomes  true positive, true negative, false positive and 

false negative. 

 True Positive (TP): correct positive (malicious URL) prediction 

 False Positive (FP): incorrect positive (malicious URL) prediction 

 True Negative (TN): correct negative (benign URL) prediction 

 False Negative (FN): incorrect negative (benign URL) prediction 
Based on the above confusion matrix, the classifier performance measures like 

accuracy, FPR, FNR, precision, recall and F-measure is calculated using the 

following equations: 

(3)   
TP TN

Accuracy ,
TP TN FN FF

 

(4)   
FP

FPR ,
TN FP

  

(5)    
FN

FNR ,
TP FN
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(6)   
TP

Precision ,
TP FP

  

(7)   
TP

Recall ,
TP FN

  

(8)   
2 Precision Recall

F-measure .
Precision Recall

  

4.2.2. Significance of new features    

To verify whether the features we have introduced are important in enhancing the 

effectiveness of analysis and detection of malicious URLs, we compared the 

classification accuracy, False Positive Rate (FPR), False Negative Rate (FNR), 

precision, recall, F-measure and ROC of the classifiers with and without our newly 

introduced features on our URL dataset. As shown in Table 10, the use of new 

for improved accuracy.  

Table 10. Overall contribution of new features on the accuracy of classifiers 

Classifier 
Accuracy without 

new features (%) 

Accuracy with new 

features (%) 
Change (%) 

J48 Decision Tree 98.51 99.03 0.53 (  

SimpleCart 98.31 99.15 0.84  (  

Random Forest 98.98 99.44 0.46 (  

Random Tree 97.83 98.18 0.35 (  

ADTree 98.02 98.48 0.45 (  

REPTree 98.31 99.19 0.89 (  

Majority Voting 98.68 99.29 0.61(  
 

Table 11. Detailed performance analysis of machine learning classifiers on our URL 

dataset with and without new features 

Classifier Accuracy (%) FPR FNR ROC 

Without new features 

J48 Decision Tree 98.51 0.029 0.000 0.995 

SimpleCart 98.31 0.033 0.001 0.999 

Random Forest 98.98 0.020 0.000 0.998 

Random Tree 97.83 0.040 0.004 0.979 

ADTree 98.02 0.039 0.000 1.000 

REPTree 98.31 0.033 0.001 0.999 

Majority Voting 98.68 0.026 0.000 0.987 

With new features 

J48 Decision Tree 99.03 (  0.018 (  0.002 (  0.998 (  

SimpleCart 99.15 (  0.016(  0.001 0.998(  

Random Forest 99.44 (  0.011 (  0.000 1.000 (  

Random Tree 98.18 (  0.032 (  0.004 0.982 (  

ADTree 98.48 (  0.029 (  0.001 (  1.000 

REPTree 99.19 (  0.014 (  0.002 (  0.998 (  

Majority Voting 99.29 (  0.014 (  0.000 0.993(  
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As shown in Table 11, by the inclusion of new features the FPR and FNR of 

classifiers is decreased. The FPR of all seven classifiers is decreased as shown with 

four of the seven classifiers remains same on both the features set 

with new features and without new features. The FNR of three of the seven 

classifiers is slightly increased using new features. Also the ROC area of four of the 

seven classifiers is increased by using the new features, while it remains same for 

one of the seven classifiers on both the features set with new and without new 

features. It is slightly decreased for SimpleCart and REPTree classifiers. The 

overall performance analysis of all the seven classifiers shows that, it is good 

indication that our new introduced features are enhancing the effectiveness of 

analysis and detection of malicious URLs. 

Table 12 shows the overall performance of seven classifiers in terms of 

precision, recall and f-measure with and without inclusion of new features in our 

URL dataset. It is clear from the table, that there is a significant improvement in all 

the three performance measures for all 7 classifiers with the inclusion of new 

 
 

Table 12. Performance analysis of machine learning classifiers in terms of precision, recall and  

F-measure on our URL dataset with and without new features 

Classifier Precision Recall F-measure 

Without new features 

J48 Decision Tree 0.986 0.985 0.985 

SimpleCart 0.984 0.983 0.983 

Random Forest 0.990 0.990 0.990 

Random Tree 0.979 0.978 0.978 

ADTree 0.981 0.980 0.980 

REPTree 0.984 0.983 0.983 

Majority Voting 0.987 0.987 0.987 

With new features 

J48 Decision Tree 0.990 (  0.990 (  0.990 (  

SimpleCart 0.992(  0.992(  0.992(  

Random Forest 0.994 (  0.994 (  0.994 (  

Random Tree 0.982 (  0.982 (  0.982 (  

ADTree 0.985 (  0.985 (  0.985 (  

REPTree 0.992 (  0.992 (  0.992 (  

Majority Voting 0.993 (  0.993 (  0.993 (  

4.2.3. Comparison with antivirus and anti-malware softwares and services 

To verify the effectiveness of our approach for the analysis and detection of 

malicious URLs, we compared the classification accuracy of 18 well-known 

antivirus and anti-malware softwares and services with our approach, as shown in 

Table 13. We have used the VirusTotal public API v2.0 in our Java program [33]. 

VirusTotal, a subsidiary of Google, is a free online service that analyzes files and 

URLs enabling the identification of viruses, worms, trojans and other kinds of 

malicious content detected by antivirus engines and website scanners. We have 

Java, to design our script written in Java [

upload and scan files, submit and scan URLs, access finished scan reports and make 
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automatic comments on URLs and samples without the need of using the HTML 

website interface. It allows building simple scripts to access the information 

generated by VirusTotal. 

We have extracted the detection statistics of 18 well-performing antivirus and 

anti-malware softwares and services. We have tested all the 26041 malicious URLs 

used in our dataset using VirusTotal public API v2.0. Table 13 shows the detection 

accuracy of 18 well-known antivirus and anti-malware softwares and services on 

our malicious URLs dataset. Out of 18, Fortinet antivirus outperforms all the 

remaining antivirus and anti-malware softwares and services in detection accuracy, 

which has a detection accuracy of 96.5%. The overall detection accuracy of our 

approach using majority voting classifier with new features is 99.29%, which is far 

better than all the 18 well-known antivirus softwares. It shows that our approach is 

more effective in the analysis and detection of malicious URLs. 
 

Table 13. Detection accuracy of well-known antivirus and anti-malware softwares and 

services on our malicious URLs 
Sr. 

No 

Antivirus and anti-malware softwares and services Detection accuracy (%) 

1 Our approach  99.29 
2 Fortinet 96.5 

3 Kaspersky 95.72 

4 Sophos 79.68 

5 Avira 62.17 

6 BitDefender 58.95 

7 ESET 51.04 

8 G-Data 44.15 

9 Websense ThreatSeeker 38.17 

10 Emsisoft 35.12 

11 Phishtank 33.54 

12 Dr.Web 30.05 

13 Google Safebrowsing 22.77 

14 Netcraft 18.72 

15 Malware Domain Blocklist 16.53 

16 Malwarebytes hpHosts 12.44 

17 Malware Patrol 6.93 

18 Comodo Site Inspector 6.8 

19 CLEAN MX 3.62 

5. Limitations of our approach 

Considering our approach, it is also not free from limitations. Following are some 

of the limitations of our malicious URLs detection system: 

1. There is need to investigate features from social networks to characterize 

Malicious URLs. 

2. Our methodology lacks analysis and detection of obfuscated JavaScripts in 

the Webpages, which is the major cause behind attacks like drive-by downloads, 

XSS, etc. 

3. There is need to investigate more features of short URLs for the effective 

detection. 
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6. Conclusions 

In this paper, we have performed the static and dynamic analysis of URLs for the 

detection of URL as benign or malicious. We have extracted 117 static and dynamic 

features of the URLs, among which 44 are new features. We have prepared a 

labeled dataset of 52,082 URLs, among which 26,041 are malicious and 26,041 are 

benign. We have evaluated the performance of 6 decision tree learning algorithms 

in terms of detection accuracy, FPR, FNR, precision, recall, F-measure and ROC on 

our balanced dataset. Our experimental results show that with inclusion of new 

features all the decision tree learning classifiers have achieved good detection rate 

between 98-99% with very low FPR and FNR. In addition, we have compared our 

approach with 18 well-known antivirus and anti-malware softwares and services in 

terms of detection accuracy. The experimental analysis show that, our approach 

outperform all the 18 well-known antivirus and anti-malware softwares and services 

in terms of malicious URLs detection accuracy with an overall accuracy of 99.29% 

using majority voting technique. 
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