
 11

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 18, No 1

Sofia 2018 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2018-0002

Malicious URLs Detection Using Decision Tree Classifiers

and Majority Voting Technique

Dharmaraj R. Patil, J. B. Patil
Department of Computer Engineering, R. C. Patel Institute of Technology, 425405 Shirpur, India
E-mail: dharmaraj.rcpit@gmail.com

Abstract: Researchers all over the world have provided significant and effective
solutions to detect malicious URLs. Still due to the ever changing nature of cyber-
attacks, there are many open issues. In this paper, we have provided an effective
hybrid methodology with new features to deal with this problem. To evaluate our
approach, we have used state-of-the-arts supervised decision tree learning
classifications models. We have performed our experiments on the balanced
dataset. The experimental results show that, by inclusion of new features all the
decision tree learning classifiers work well on our labeled dataset, achieving 98-
99% detection accuracy with very low False Positive Rate (FPR) and False
Negative Rate (FNR). Also we have achieved 99.29% detection accuracy with very
low FPR and FNR using majority voting technique, which is better than the well-
known anti-virus and anti-malware solutions.
Keywords: Static and dynamic analysis; feature extraction; decision tree learning;
malicious URLs; Web security.

1. Introduction

The World Wide Web (WWW) has become the global platform for millions of

users all over the world. Today s Web is well matured and has large application

area, including e-commerce, online banking, social networking, communication and

many more. Rich Web based applications are available over the WWW to provide

such types of services. This is the positive side of this technology. Unfortunately,

the Web has also become a more dangerous place; the popularity of WWW has also

attracted hackers, intruders, attackers, etc., to abuse the Internet and users to

perform illegitimate activity for financial profit. Popular types of attacks using

malicious URLs include: Drive-by download, phishing, and social engineering and

spamming [1]. N i e l s P r o v o s et al. [2], in 2007 found more than three million

URLs that launched drive-by-download attacks. According to B i n L i a n g et al.

[3], 29 of 90 Websites contained malicious code. According to D a v i d e C a n a l i

et al. [4] in particular attackers frequently use drive-by-download exploits to

compromise a large number of users.

 12

To overcome these issues, research community all over the world has applied

many efficient machine learning approaches and achieved significant detection of

malicious URLs. These include static analysis approach, dynamic analysis

approach, blacklisting-based approach and heuristic-based approach [5]. D. P a t i l

and J. P a t i l [6] have applied static analysis of URLs approach with 79 static

features of URLs and domain names and achieved detection rate between 95-99%

with very low False Positive Rate (FPR) and False Negative Rate (FNR). Also, they

have applied static analysis approach for the detection of malicious JavaScript code

in the Webpages with 77 static JavaScript features and achieved detection rate

between 97-99% with very low FPR and FNR in their next study [7]. But, due to

the ever changing nature of attack construction techniques applied by the attackers,

there are still many open issues. To overcome the limitations of above approaches,

dynamic analysis of URLs is more effective for the detection of today's dynamic

attack construction techniques used by attackers. Web pages feature selection plays

an important role in dynamic analysis, for the effective detection of malicious Web

pages.

In this paper, we have applied a hybrid methodology, i.e. combination of static

and dynamic approach for the detection of malicious URLs. We have extracted

features using static analysis and some dynamic analysis of the URLs. We have

extracted 117 static and dynamic features, among which 44 are new features to

identify malicious URLs. We have constructed a balanced labeled dataset of 52,082

malicious and benign benchmarks URLs. Our dataset consists of equal distribution

of malicious and benign URLs. It consists of 26,041 benign and 26,041 malicious

URLs. We have evaluated our methodology using 6 state of the art decision tree

learning classifiers including, J48 Decision Tree, Simple CART, Random Forest,

Random Tree, ADTree and REPTree. We have built a multi-model classification

system for the effective detection of URL as benign or malicious using Majority

Voting algorithm. Also, we have compared our detection results with 18 well-

known anti-virus and anti-malware solutions. Our experimental results show that,

by inclusion of new features all decision tree learning classifiers perform well on

our labeled dataset, achieving 98-99% detection accuracy with very low false

positives and false negatives, as compared to the well-known anti-virus and anti-

malware solutions.

The remainder of this paper is organized as follows. Section 2 gives a brief

related work. Section 3 describes the methodology with feature extraction and

supervised decision tree learning classifiers. Section 4 describes the experimental

results. Section 5 gives discussion and limitations of our system. We present our

conclusions in Section 6.

2. Related work

Many researchers all over the world have proposed different approaches for

classification and detection of malicious URLs given as below.

C h o i, Z h u and L e e [8] have proposed a method using machine learning to

detect malicious URLs of all popular attack types like spam, phishing, malware etc.

and to identify the nature of attack a malicious URL attempts to launch. They have

 13

used features like lexical, link popularity, Webpage content, DNS, DNS fluxiness

and network traffic. They have collected real-life data from various sources like

URLs from jwSpamSpy, Web spam dataset, Phishing URLs from PhishTank and

Malware URLs from DNS-BH. They have used three machine learning algorithms

like the Support Vector Machine (SVM) to detect malicious URLs, RAkEL and

ML-kNN learning algorithms for multi-label classification problem to identify

attack type. They have evaluated their method on 40,000 benign URLs and 32,000

malicious URLs and achieved the accuracy of 98% in detection of malicious URLs

and 93% in identification of attack types.

E s h e t e, V i l l a f i o r i t a and W e l d e m a r i a m [5] have presented a

lightweight approach, called BINSPECT that combines static analysis and

emulation. They have used supervised learning techniques in detection of malicious

Web pages that may launch drive-by-download, phishing, injection and malware

distribution attacks. They have extracted features like URL features, page-source

features and social-reputation features. They have collected a malicious dataset of

71,919 URLs from the malware and phishing blacklist of Google, Phishtank

database and the malware and injection attack URL list of MalwareURL. The

benign dataset of 414,000 benign URLs is collected from three popular sources like

the Alexa Top sites, the Yahoo random URL generation service and the DMOZ

directory. According to their experimental evaluation, BINSPECT achieved 97%

accuracy with low false signals.

L e et al. [9] have presented a novel two-stage classification model to detect

malicious Web pages. They have divided the detection process into two stages. In

the first stage they have estimated the maliciousness of Web pages using static

features and in the second stage they have used the potential malicious Web pages

found in the first stage for final identification of malicious Web pages by extracting

run time features of these Web pages. They have extracted the static features from

contents or properties of Web pages without rendering fully or executing Web

pages. Potential run-time features like foreign contents, script contents and exploit

contents are extracted by rendering Web pages fully and executing them on specific

systems. They have used scoring algorithm for the classification. They have

evaluated their scoring algorithm on the dataset of 20,000 benign Web pages for

training and 13,646 instances of benign and malicious for testing. According to

their experimental results, this approach reduced 86% of suspicious Web pages

without missing attacks.

B a s n e t and S u n g [10] have proposed a machine learning based approach

to detect phishing Web pages. They have used many novel content based features

and applied cutting-edge machine learning techniques such as 6 batch learning

algorithms, Random Forests, Support Vector Machines (SVM) with rbf linear

kernels, Naive Bayes, C4.5, Logistic Regression (LR) and a set of five online

learning algorithms: Updatable version of Naive Bayes (NB-U), updatable version

of LogitBoost (LB-U), Perceptron, Passive-Aggressive (PA) and Confidence-

Weighted (CW) algorithms. They have used 179 Web page features such as lexical

based features, keyword based features, search engine based feature and reputation

 14

based features to demonstrate their approach. To conduct all the experiments, they

used WEKA and CW libraries. The experimental results show that their proposed

approach can detect phishing Webpages with an accuracy of 99.9%, false positive

rate of as low as 0.00% and false negative rate of 0.06%.

M a et al. [11] have explored how to detect malicious Web sites from the

lexical and host-based features of their URLs. They show that this problem lends

itself naturally to modern algorithms for online learning. According to them online

algorithms not only process large numbers of URLs more efficiently than batch

algorithms, they also adapt more quickly to new features in the continuously

evolving distribution of malicious URLs. They developed a real-time system for

gathering URL features and pair it with a real-time feed of labeled URLs from a

large Web mail provider. According to their experimental analysis, they have

achieved detection accuracy of 99% over a balanced dataset.

G a r e r a et al. [12] have focused on studying the structure of URLs employed

in various phishing attacks. They described several features that can be used to

distinguish a phishing URL from a benign one. These features include page based,

domain based, type based and word based. These features are used to model a

logistic regression filter that is efficient and has a high accuracy. They have used

millions of URLs in their experiments and achieved classification accuracy of

97.3%.

3. Methodology

3.1. Framework of our proposed of Malicious URLs detection system

Fig. 1 shows the framework of our proposed of malicious URLs detection system. It

consists of feature extraction phase, training phase and classification phase. The raw

malicious and benign URLs from benchmarks sources are fed to the feature

extraction script written in Java.

Fig.1. Framework of our proposed of Malicious URLs detection system

 15

We have extracted the 117 static and dynamic features of the benign and

malicious URLs. These are numeric and binary features. In our dataset preparation,

we have labeled the benign URLs as 1 and malicious URLs as +1. In the training

phase, 6 decision tree learning algorithms J48 Decision Tree, Simple CART,

Random Forest, Random Tree, ADTree and REPTree are trained using our labeled

dataset. This phase provides 6 trained models, which are used in the testing phase.

In the testing phase, unknown URLs are tested using the trained model, as benign or

malicious. We have evaluated 6 trained decision tree learning models on our

dataset, in terms of detection accuracy, False Positive Rate (FPR), False Negative

Rate (FNR), precision, recall, F-measure and ROC. Further, we have built a multi-

model classification system for the effective detection of URLs as benign or

malicious using Majority Voting algorithm. The Majority Voting scheme with

MAJORITY_VOTING_RULE allows comparison of different models and makes

the overall result more reliable.

3.2. Feature extraction

We have extracted four types of static and dynamic URLs features like, URL

features, domain name features, Webpage source features and short URLs features.

We have implemented URLs feature extractor in Java. The URL feature extraction

is implemented based on the URL class of Java and the features are collected by

lexical scanning of the URL string. The domain name features extraction is

implemented based on the domain name extraction and scanning of the domain

name. The Webpage source features are collected by visiting the page via Selenium

WebDriver [13] and an instance of Firefox browser so as to capture the details of

what is rendered (HTML) using a feature extraction engine implemented in Java.

For each URL visit for feature extraction, a fresh instance of the Firefox browser is

created to ensure a unique session for each URL. The short URLs features are

extracted by checking the domain names containing the major URL shortening

services like bit.ly, goo.gl, tinyurl.com, owl.ly, deck.ly, su.pr and bit.do. The

expanded URLs are obtained by making query to the URL shortening services.

After getting the original URL from URL shortening services, we have set a

threshold value of 30 for the length of URLs i.e. if the length of the returned URL is

over 30, it is marked as malicious. Also, we have checked the lexical properties of

the returned URL string for deciding it as benign or malicious. We have checked

the returned URL string for containing suspicious lexical characters like, _, =, (,),

%, & and @.

3.2.1. URL features

We have extracted 63 URL features from the URL string. Among these features 47

are from the literature [5, 6, 8, 14-19] and 16 are new features. These are the lexical

properties of the URLs. Lexical features are the textual properties of the URL itself.

These features include the general look and feel properties of the URLs. In addition

to the lexical features, we have checked the presence of suspicious words in the

URLs. These are numeric and binary features. These URL features are given in

 16

Table 1. We have extended the lexical feature set by adding 7 new lexical features.

These features are important to differentiate malicious URLs from benign ones.

 Table 1. URL features

Sr. No Feature name Type

Features used in the literature

1 Length of URL numeric

2 Presence of IP address in Hostname numeric

3 Length of Query string in URL numeric

4 Number of Tokens in URL numeric

5 Number of Dots (.) characters numeric

6 Number of Hyphens (-) sign characters numeric

7 Number of Underscore (_) sign characters numeric

8 Number of Equal (=) sign characters numeric

9 Number of Forward slash (/) sign characters numeric

10 Number of Question Mark sign (?)characters numeric

11 Presence of secure word in URL string binary

12 Presence of account word in URL string binary

13 Presence of webscr word in URL string binary

14 Presence of login word in URL string binary

15 Presence of ebayisapi word in URL string binary

16 Presence of signin word in URL string binary

17 Presence of banking word in URL string binary

18 Presence of confirm word in URL string binary

19 Presence of blog word in URL string binary

20 Presence of logon word in URL string binary

21 Presence of signon word in URL string binary

22 Presence of login.asp word in URL string binary

23 Presence of login.php word in URL string binary

24 Presence of login.htm word in URL string binary

25 Presence of .exe word in URL string binary

26 Presence of .zip word in URL string binary

27 Presence of .rar word in URL string binary

28 Presence of .jpg word in URL string binary

29 Presence of .gif word in URL string binary

30 Presence of viewer.php word in URL string binary

31 Presence of link= word in URL string binary

32 Presence of getImage.asp word in URL string binary

33 Presence of plugins word in URL string binary

34 Presence of paypal word in URL string binary

35 Presence of order word in URL string binary

36 Presence of dbsys.php word in URL string binary

37 Presence of config.bin word in URL string binary

38 Presence of download.php word in URL string binary

39 Presence of .js word in URL string binary

40 Presence of payment word in URL string binary

41 Presence of files word in URL string binary

42 Presence of css word in URL string binary

43 Presence of shopping word in URL string binary

44 Presence of mail.php word in URL string binary

45 Presence of .jar word in URL string binary

46 Presence of .swf word in URL string binary

47 Presence of .cgi word in URL string binary

 17

 Table 1 (c o n t i n u e d)

Sr. No Feature name Type

New features

1 Number of Semicolon (;) sign characters numeric

2 Number of Open Parenthesis (() sign characters numeric

3 Number of Close Parenthesis()) sign characters numeric

4 Number of Mod Sign (%) sign characters numeric

5 Number of Ampersand Sign (&) sign characters numeric

6 Number of At the Rate Sign (@) sign characters numeric

7 Number of Digits in the URL numeric

8 Entropy of URL string real

9 Presence of .php word in URL string binary

10 Presence of abuse word in URL string binary

11 Presence of admin word in URL string binary

12 Presence of .bin word in URL string binary

13 binary

14 Presence of personal word in URL string binary

15 Presence of update word in URL string binary

16 Presence of verification word in URL string binary

 Shannon entropy of URLs

To demonstrate the randomness factor in URLs, we have used Shannon

Entropy as a measure: higher the entropy, higher is the randomness of the instance

under consideration. We calculated the entropy measure of each benign and

malicious URL separately [20]. The Shannon entropy of the URL string is

calculated using following equation:

(1)
0

() () log (),
n

i b i
i

H x p x p x

where H(x) is the Shannon entropy of string x, b is the base of the logarithm used,

and p(x) is the probability mass function.

Table 2 show the average entropy of malicious and benign URLs used in our

dataset. From the table it is clear that, malicious URLs have high entropy as

compare to benign URLs. It shows that there is more randomness factor in

malicious URLs, to mark it as malicious.

Table 2. Average entropy of benign and malicious URLs used in our dataset

Sr. No Average entropy of Benign URL string Average entropy of Malicious URL string

1 3.87 4.14

 Suspicious word based features of the URLs

We have added seven new suspicious words in the URL feature set. The word-

based features are binary. We tested if the given word is present or absent in a URL.

We have used string matching algorithm by Knuth-Morris-Pratt (KMP) to find the

presence or absence of the suspicious word in the URL [21]. The frequency

distribution of these new suspicious word-based features is given in Table 3. It is

clear from the Table 3 that the frequency of the suspicious word features in the

malicious URLs is higher than that of benign URLs. Hence, these features help to

identify malicious URLs from benign URLs.

 18

Table 3. Distribution of word based features

Sr.
No

Feature name

Distribution of word based
features presence in URLs

Benign (%) Malicious (%)

1 Presence of .php word in URL string 0.03 35.66

2 Presence of abuse word in URL string 0.01 5.51

3 Presence of admin word in URL string 0.04 6.45

4 Presence of .bin word in URL string 0.08 0.13

5 Presence of personal word in URL string 0.03 0.19

6 Presence of update word in URL string 0.15 2.2

7 Presence of verification word in URL string 0.00 0.72

3.2.2. Domain name features

We have used 18 domain name features, among these seven are taken from the

literature [6, 8, 5, 12, 18, 22] and 11 are new features. We have extracted the

domain names from the URL string a script written in Java. These are numeric,

binary and real value features. The domain name features are given in Table 4.

Table 4. Domain name features

Sr.
No

Feature name Type Description

Features used in the literature

1 Length of Domain Name numeric Length of the domain name string

2 Domain Name contains IP
address?

binary It is 1 if domain contains IP address

3 Is Domain is TLD? binary It is 1 if domain is a top-level domain

4
Number of Sub-Domains numeric

No of sub-domains in the domain name
string

5 Number of Yahoo links for
domain

numeric
No of Yahoo search results for the
domain name

6 Number of Bing links for
domain

numeric
No of Bing search results for the domain
name

7 Alexa Rank of domain numeric Alexa ranking of the domain name

New features

1
Domain Name is Valid? binary

It is 1 if domain name is a valid domain
name

2 Entropy of Domain Name
string

real
Shannon entropy of the domain name
string

3 Number of tokens in Domain
Name

numeric No of tokens in the domain name string

4 Length of Longest Domain
Token

numeric Length of longest domain name token

5 Entropy of Longest Domain
token

real
Shannon entropy of the longest domain
token

6 Average length of domain
token

real Average length of domain token

7
Number of tokens in Path numeric

No of tokens in the domain name path
string

8 Length of Longest Path Token numeric Length of longest domain path token

9 Average length of path token real Average length of domain path token

10 Domain Name contains
suspicious https?

binary
It is 1 if domain name contains suspicious

11 Domain Name contains
suspicious www?

binary
It is 1 if domain name contains suspicious

 19

 Shannon entropy of domain name

We have used Shannon entropy to demonstrate the randomness factor in

domain names of malicious and benign URLs. High entropy indicates the more

suspicious nature of the URL. The Shannon entropy of the domain name string is

calculated using (1). Table 5 show the average entropy of malicious and benign

domain names and longest domain tokens used in our dataset.

Table 5. Average entropy of benign and malicious URL domain names and longest domain tokens

Sr.

No

Average entropy

of benign URL

domain name

Average entropy

of malicious URL

domain name

Average entropy of

longest domain token in

benign URL

Average entropy of

longest domain token

in malicious URL

1 3.25 3.37 2.52 2.89

It is clear that the entropy of domain names and longest tokens in domain

names of malicious URLs is higher than benign URLs. This indicates that there is

more randomness factor in malicious URLs, to mark it as malicious.

3.2.3. Web page source features

For the effective detection of malicious Web pages, we have used the Web page

source features. We have rendered the Web pages with the help of Selenium

WebDriver and an instance of Firefox browser, every time for a new URL the Web

page is loaded. We have written a script in Java and Selenium WebDriver, which

extracts the Web page source features. We have extracted 34 such features among

which 19 features are taken from literature [5, 8, 12, 14, 22, 23] and 15 are new

features. These are numeric, binary and real value features. These features are given

in Table 6.

 Table 6. Web page source features

Sr. No Feature name Type

Features used in the literature

1 Number of Blank Lines in a Web Page numeric

2 Number of Blank Spaces in a Web Page numeric

3 Number of Words in a Web Page numeric

4 Average Length of Words in a Web Page real

5 Number of iFRames in a Web Page numeric

6 Number of JavaScript in a Web Page numeric

7 Number of embed Tag in a Web Page numeric

8 Number of object Tag in a Web Page numeric

9 Number of meta Tag in a Web Page numeric

10 Number of div Tag in a Web Page numeric

11 Number of body Tag in a Web Page numeric

12 Number of form Tag in a Web Page numeric

13 Title Tag present? in a Web Page binary

14 Number of anchor Tag in a Web Page numeric

15 Number of Hidden elements in a Web Page numeric

16 Number of External JavaScript Files in a Web Page numeric

17 Number of Links in a Web Page numeric

18 Number of Internal Links in a Web Page numeric

19 Number of External Links in a Web Page numeric

 20

Table 6 (c o n t i n u e d)
Sr. No Feature name Type

New features

1 Number of image Tag in a Web Page numeric

2 Number of span Tag in a Web Page numeric

3 Number of input Tag in a Web Page numeric

4 Number of CSS styles in a Web Page numeric

5 Number of audio Tag in a Web Page numeric

6 Number of applet Tag in a Web Page numeric

7 The size of Webpage numeric

8 Credit card number word present? in a Web Page binary

9 log word present?, in a Web Page binary

10 pay word present?, in a Web Page binary

11 free word present?, in a Web Page binary

12 access word present?, in a Web Page binary

13 bonus word present?, in a Web Page binary

14 click word present?, in a Web Page binary

15 Entropy of Webpage real

3.2.4. Short URLs features

Today Online Social Networks (OSN) like Twitter, Facebook, WhatsApp, etc., are

widely used by millions of users all over the world for communication. Due to the

text limitation on OSN, URL shortening services like bit.ly, goo.gl, tinyurl.com,

owl.ly, deck.ly, su.pr, bit.do, etc., are widely used; however they are not free from

attackers often use such types of URL shortening services to hide their original

identity. Considering this in mind, we have extracted two features of short URLs.

We have written an URL expander script in Java, once we get the short URL with

above URL shortening services; our expander script returns the original URL. We

have set the threshold of 30 characters for the length of the URL and designed

following rules:

1. if (expandedURL_length >= 30 && contains suspicious characters)

2. {

3. URL > malicious

4. }

5. else

6. {

7. URL > benign

8. }

Also, to decide the URL is malicious or benign we have extracted the lexical

features, i.e., is URL contains suspicious characters like, _, =, (,), %, & and @.

These are numeric and binary features and given in Table 7.

 21

Table 7. Short URLs features

Sr. No Feature name Type

1 Length of expanded URL numeric

2 Is URL is malicious? binary

3.3. Decision tree methods used for Malicious URLs detection

The problem of identifying malicious URLs is an instance of binary classification.

For a given URL, the data point
dx R represents its feature vector with d features.

Let the set of training sample data be {(x1, y1 xi, yi xn, yn)}, where xi

denotes the i-th feature vector; y { 1, +1} is the label of the i-th feature vector,

denoting whether the feature vector represents a benign or not; and n is the size

of the data set. During testing, if the predicted label = +1 but the actual label

y = 1, then the error is a false positive. If = 1 but y = +1, then the error is

a false negative.

3.3.1. Decision tree learning

Owing to space limitations, the detail discussion of these algorithms is out of the

scope of this paper. We have given the short description of each algorithm is as

follow.

 J48 Decision Tree: J48 Decision tree learning is one of the most widely

used techniques for classification. J48 is slightly modified C4.5 in WEKA. The

C4.5 algorithm generates a classification-decision tree for the given dataset by

recursive partitioning of data. The decision is grown using depth-first strategy. The

algorithm considers all the possible tests that can split the data set and selects a test

that gives the best information gain [35].

 Simple CART: Classification and regression trees are machine-learning

methods for constructing prediction models from data. The models are obtained by

recursively partitioning the data space and fitting a simple prediction model within

each partition [36].

 Random Forest: Random forest is a combination of tree predictors such that

each tree depends on the values of a random vector sampled independently and with

the same distribution for all trees in the forest. It is an effective classifier in

prediction. Random forest generally exhibits a substantial performance

improvement over the single tree classifier such as CART and C4.5 [37].

 Random Tree: With k random features at each node, a random tree is a tree

drawn at random from a set of possi

tree in the set of trees has an equal chance of being sampled. Random trees can be

generated efficiently and the combination of large sets of random trees generally

leads to accurate models [38].

 ADTree: An alternating decision tree (ADTree) is a machine learning

method for classification. It is introduced by F r e u n d and M a s o n [39]. An

ADTree consists of an alternation of decision nodes, which specify a predicate

condition and prediction nodes, which contain a single number. An instance is

 22

classified by an ADTree by following all paths for which all decision nodes are true

and summing any prediction nodes that are traversed.

 REPTree: REPTree is a fast decision tree classifier which builds a

decision/regression tree using information gain as the splitting criterion and prunes

it using reduced-error pruning. It only sorts values for numeric attributes once.

Missing values are dealt with by splitting the corresponding instances into pieces

(i.e., as in C4.5) [40].

3.3.2. Majority voting

URL as malicious or benign. Voting is the simplest ensemble algorithm and is often

very effective. It can be used for classification or regression problems. It works by

creating two or more sub-models, in our case 6 models. Each sub-model makes

predictions which are combined using MAJORITY_VOTING_RULE. The

following Fig. 2 gives the working of the majority voting algorithm. It is a meta-

classifier for combining similar or conceptually different machine learning

classifiers for classification via majority voting. In majority voting, we predict the

final class label as the class label that has been predicted most frequently by the

classification models. Here, we p

classifier Cj [26, 27]:

(2) =mode {C1(x), C2(x),..., Cm(x)},

where predicted class label and C1(x), C2(x),..., Cm(x) classification models.

Fig. 2. Majority voting algorithm

4. Experimental setup and evaluation

4.1. Data source and dataset

We have collected URLs from the benchmark sources of URLs for both malicious

and benign URLs and divided the dataset into a ratio of 66:34 as training and a

testing set, i.e., 66% for training and 34% for testing. The dataset of benign URLs is

collected from the Alexa Top sites [28]. We collected 26,041 benign URLs from the

above source of benign URLs. For the malicious dataset, we have collected URLs

from three benchmark sources, like the malware and phishing blacklist of the

PhishTank database of verified phishing pages [29], the malware and injection

attack URL list of Malware Domain List [30] and Spam domain blacklist by

 23

jwSpamSpy [31]. We collected 26,041 malicious URLs from the above benchmark

sources of malicious URLs including 8,976 phishing URLs, 11,297 malware URLs

and 5,721 spam URLs. We have constructed a balanced dataset consisting of equal

instances of malicious and benign URLs. The breakdown of the dataset is shown in

Table 8.

 Table 8. Dataset for training and testing

Task Benign Malicious Total

Training 17,187 17,187 34,374

Testing 8,854 8,854 17,708

Total 52,082

4.2. Evaluation results

4.2.1. Evaluation measures

We have evaluated the performance of 6 decision tree learning classifiers on our

URL dataset shown in Table 8. We have used the Weka API of all the learning

classifiers, in our experiments [25]. To obtain the best classification results we have

used the majority voting scheme. To decide the best performing classifier, we have

used the confusion matrix, which contains actual and predicted classifications done

by a classification algorithm [32]. We have used the following confusion matrix

given in Table 9.

Table 9. Confusion matrix for actual and predicted benign and malicious URLs

Predicted

Actual
Positive Negative

Positive TP FN

Negative FP TN

Using the above confusion matrix we have calculated following measures, to

evaluate the performance of the classifiers. A binary classifier predicts all data

instances of a test dataset as either positive or negative. This classification (or

prediction) produces four outcomes true positive, true negative, false positive and

false negative.

 True Positive (TP): correct positive (malicious URL) prediction

 False Positive (FP): incorrect positive (malicious URL) prediction

 True Negative (TN): correct negative (benign URL) prediction

 False Negative (FN): incorrect negative (benign URL) prediction
Based on the above confusion matrix, the classifier performance measures like

accuracy, FPR, FNR, precision, recall and F-measure is calculated using the

following equations:

(3)
TP TN

Accuracy ,
TP TN FN FF

(4)
FP

FPR ,
TN FP

(5)
FN

FNR ,
TP FN

 24

(6)
TP

Precision ,
TP FP

(7)
TP

Recall ,
TP FN

(8)
2 Precision Recall

F-measure .
Precision Recall

4.2.2. Significance of new features

To verify whether the features we have introduced are important in enhancing the

effectiveness of analysis and detection of malicious URLs, we compared the

classification accuracy, False Positive Rate (FPR), False Negative Rate (FNR),

precision, recall, F-measure and ROC of the classifiers with and without our newly

introduced features on our URL dataset. As shown in Table 10, the use of new

for improved accuracy.

Table 10. Overall contribution of new features on the accuracy of classifiers

Classifier
Accuracy without

new features (%)

Accuracy with new

features (%)
Change (%)

J48 Decision Tree 98.51 99.03 0.53 (

SimpleCart 98.31 99.15 0.84 (

Random Forest 98.98 99.44 0.46 (

Random Tree 97.83 98.18 0.35 (

ADTree 98.02 98.48 0.45 (

REPTree 98.31 99.19 0.89 (

Majority Voting 98.68 99.29 0.61(

Table 11. Detailed performance analysis of machine learning classifiers on our URL

dataset with and without new features

Classifier Accuracy (%) FPR FNR ROC

Without new features

J48 Decision Tree 98.51 0.029 0.000 0.995

SimpleCart 98.31 0.033 0.001 0.999

Random Forest 98.98 0.020 0.000 0.998

Random Tree 97.83 0.040 0.004 0.979

ADTree 98.02 0.039 0.000 1.000

REPTree 98.31 0.033 0.001 0.999

Majority Voting 98.68 0.026 0.000 0.987

With new features

J48 Decision Tree 99.03 (0.018 (0.002 (0.998 (

SimpleCart 99.15 (0.016(0.001 0.998(

Random Forest 99.44 (0.011 (0.000 1.000 (

Random Tree 98.18 (0.032 (0.004 0.982 (

ADTree 98.48 (0.029 (0.001 (1.000

REPTree 99.19 (0.014 (0.002 (0.998 (

Majority Voting 99.29 (0.014 (0.000 0.993(

 25

As shown in Table 11, by the inclusion of new features the FPR and FNR of

classifiers is decreased. The FPR of all seven classifiers is decreased as shown with

four of the seven classifiers remains same on both the features set

with new features and without new features. The FNR of three of the seven

classifiers is slightly increased using new features. Also the ROC area of four of the

seven classifiers is increased by using the new features, while it remains same for

one of the seven classifiers on both the features set with new and without new

features. It is slightly decreased for SimpleCart and REPTree classifiers. The

overall performance analysis of all the seven classifiers shows that, it is good

indication that our new introduced features are enhancing the effectiveness of

analysis and detection of malicious URLs.

Table 12 shows the overall performance of seven classifiers in terms of

precision, recall and f-measure with and without inclusion of new features in our

URL dataset. It is clear from the table, that there is a significant improvement in all

the three performance measures for all 7 classifiers with the inclusion of new

Table 12. Performance analysis of machine learning classifiers in terms of precision, recall and

F-measure on our URL dataset with and without new features

Classifier Precision Recall F-measure

Without new features

J48 Decision Tree 0.986 0.985 0.985

SimpleCart 0.984 0.983 0.983

Random Forest 0.990 0.990 0.990

Random Tree 0.979 0.978 0.978

ADTree 0.981 0.980 0.980

REPTree 0.984 0.983 0.983

Majority Voting 0.987 0.987 0.987

With new features

J48 Decision Tree 0.990 (0.990 (0.990 (

SimpleCart 0.992(0.992(0.992(

Random Forest 0.994 (0.994 (0.994 (

Random Tree 0.982 (0.982 (0.982 (

ADTree 0.985 (0.985 (0.985 (

REPTree 0.992 (0.992 (0.992 (

Majority Voting 0.993 (0.993 (0.993 (

4.2.3. Comparison with antivirus and anti-malware softwares and services

To verify the effectiveness of our approach for the analysis and detection of

malicious URLs, we compared the classification accuracy of 18 well-known

antivirus and anti-malware softwares and services with our approach, as shown in

Table 13. We have used the VirusTotal public API v2.0 in our Java program [33].

VirusTotal, a subsidiary of Google, is a free online service that analyzes files and

URLs enabling the identification of viruses, worms, trojans and other kinds of

malicious content detected by antivirus engines and website scanners. We have

Java, to design our script written in Java [

upload and scan files, submit and scan URLs, access finished scan reports and make

 26

automatic comments on URLs and samples without the need of using the HTML

website interface. It allows building simple scripts to access the information

generated by VirusTotal.

We have extracted the detection statistics of 18 well-performing antivirus and

anti-malware softwares and services. We have tested all the 26041 malicious URLs

used in our dataset using VirusTotal public API v2.0. Table 13 shows the detection

accuracy of 18 well-known antivirus and anti-malware softwares and services on

our malicious URLs dataset. Out of 18, Fortinet antivirus outperforms all the

remaining antivirus and anti-malware softwares and services in detection accuracy,

which has a detection accuracy of 96.5%. The overall detection accuracy of our

approach using majority voting classifier with new features is 99.29%, which is far

better than all the 18 well-known antivirus softwares. It shows that our approach is

more effective in the analysis and detection of malicious URLs.

Table 13. Detection accuracy of well-known antivirus and anti-malware softwares and

services on our malicious URLs
Sr.

No

Antivirus and anti-malware softwares and services Detection accuracy (%)

1 Our approach 99.29
2 Fortinet 96.5

3 Kaspersky 95.72

4 Sophos 79.68

5 Avira 62.17

6 BitDefender 58.95

7 ESET 51.04

8 G-Data 44.15

9 Websense ThreatSeeker 38.17

10 Emsisoft 35.12

11 Phishtank 33.54

12 Dr.Web 30.05

13 Google Safebrowsing 22.77

14 Netcraft 18.72

15 Malware Domain Blocklist 16.53

16 Malwarebytes hpHosts 12.44

17 Malware Patrol 6.93

18 Comodo Site Inspector 6.8

19 CLEAN MX 3.62

5. Limitations of our approach

Considering our approach, it is also not free from limitations. Following are some

of the limitations of our malicious URLs detection system:

1. There is need to investigate features from social networks to characterize

Malicious URLs.

2. Our methodology lacks analysis and detection of obfuscated JavaScripts in

the Webpages, which is the major cause behind attacks like drive-by downloads,

XSS, etc.

3. There is need to investigate more features of short URLs for the effective

detection.

 27

6. Conclusions

In this paper, we have performed the static and dynamic analysis of URLs for the

detection of URL as benign or malicious. We have extracted 117 static and dynamic

features of the URLs, among which 44 are new features. We have prepared a

labeled dataset of 52,082 URLs, among which 26,041 are malicious and 26,041 are

benign. We have evaluated the performance of 6 decision tree learning algorithms

in terms of detection accuracy, FPR, FNR, precision, recall, F-measure and ROC on

our balanced dataset. Our experimental results show that with inclusion of new

features all the decision tree learning classifiers have achieved good detection rate

between 98-99% with very low FPR and FNR. In addition, we have compared our

approach with 18 well-known antivirus and anti-malware softwares and services in

terms of detection accuracy. The experimental analysis show that, our approach

outperform all the 18 well-known antivirus and anti-malware softwares and services

in terms of malicious URLs detection accuracy with an overall accuracy of 99.29%

using majority voting technique.

Acknowledgements:
Gandhi Science and Technology Commission (RGSTC), 13-

through North Maharashtra University, Jalgaon, India.

R e f e r e n c e s

1. P a t i l, D. R., J. B. P a t i l. Survey on Malicious Web Pages Detection Techniques. International

Journal of u- and e-Service, Science and Technology, Vol. 8, 2015, No 5, pp. 195-206.

http://dx.doi.org/10.14257/ijunesst.2015.8.5.18
2. P r o v o s, N., P. M a v r o m m a t i s, M. A. R a j a b, F. M o n r o s e. All Your iFRAMEs Point to

Us. In: Proc. of 17th Conference on Security Symposium (), USENIX Association

Berkeley, CA, USA, 2008, pp. 1-15.

3. L i a n g, B., J. H u a n g, F. L i u, D. W a n g, D. D o n g, Z. L i a n g. Malicious Web Pages

Detection Based on Abnormal Visibility Recognition. In: Proc. of International Conference

on e-Business and Information System Security (), Wuhan, 2009, pp. 1-5.

4. C a n a l i, D., M. C o v a, G. V i g n a, C. K r u e g e l. Prophiler: A Fast Filter for the Large-Scale

Detection of Malicious Web Pages. In: Proc. of 20th International Conference on World

Wide Web (WWW 11), Hyderabad, India, 2011, pp. 197-206.

5. E s h e t e, B., A. V i l l a f i o r i t a, K. W e l d e m a r i a m. BINSPECT Holistic Analysis and

Detection of Malicious Web Pages. In: Proc. of 8th International ICST Conference,

SecureComm, Padua, Italy, 2012, pp. 149-166.

6. P a t i l, D. R., J. B. P a t i l. Malicious Web Pages Detection Using Static Analysis of URLs,

International Journal of Information Security and Cybercrime, Vol. 5, 2016, Issue 2,

pp. 31-50.

7. P a t i l, D. R., J. B. P a t i l. Detection of Malicious JavaScript Code in Web Pages. Indian

Journal of Science and Technology, Vol. 10, 2017, No 19, pp. 1-12.

8. C h o i, H., B. B. Z h u, H. L e e. Detecting Malicious Web Links an Identifying Their Attack

Types. In: Proc. of 2nd USENIX Conference on Web Application Development

(WebApps 11), USENIX Association Berkeley, CA, USA, 2011, pp. 1-12.

9. L e, V. L., I. W e l c h, X. G a o, P. K o m i s a r c z u k. Two-Stage Classification Model to Detect

Malicious Web Pages. In: Proc. of IEEE International Conference on Advanced

Information Network.ing and Applications, Biopolis, 2011, pp. 113-120.

 28

10. B a s n e t, R. B., A. H. S u n g. Classifying Phishing Emails Using Confidence-Weighted Linear

Classifiers. In: Proc. of International Conference on Information Security and Artificial

Intelligence, 2010.

11. M a, J., L. K. S a u l, S. S a v a g e, G. M. V o e l k e r. Learning to Detect Malicious URLs. ACM

Transactions on Intelligent Systems and Technology, Vol. 2, 2011, No 3, Article 30,

pp. 30(1)-30(24).

http://doi.acm.org/10.1145/1961189.1961202.

12. G a r e r a, S., N. P r o v o s, M. C h e w, A. D. R u b i n. A Framework for Detection and

Measurement of Phishing Attacks. In: Proc. of 2007 ACM Workshop on Recurring

Malcode, 2007, pp. 1-8.

13. Selenium WebDriver 2.39. Last accessed on 25th December 2016.

http://www.seleniumhq.org/projects/webdriver/
14. C a n a l i, D., M. C o v a, G. V i g n a, C. K r u e g e l. Prophiler: A Fast Filter for the Large-Scale

Detection of Malicious Web Pages. In: Proc. of 20th International Conference on World

Wide Web (WWW 11), Hyderabad, India, 2011, pp. 197-206.

15. W a n g, T., S. Y u, B. X i e. Novel Framework for Learning to Detect Malicious Web Pages.

In: Proc. of International Forum on Information Technology and Applications (IFITA),

Kunming, 2010, pp. 353-357.

16. C o v a, M., C. K r u e g e l, G. V i g n a. Detection and Analysis of Drive-by-Download Attacks

and Malicious JavaScript Code. In: Proc. of International World Wide Web Conference

Committee (IW3C2), Raleigh, North Carolina, USA, 2010.

17. M a, J., L. L a w r e n c e, K. S a u l, S. S a v a g e, G. M. V o e l k e r. Beyond Blacklists: Learning

to Detect Malicious Websites from Suspicious URLs. In: Proc. of 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (), NY, USA,

2009, pp. 1245-1254.

18. L i u, H., X. P a n, Z. Q u. Learning Based Malicious Web Sites Detection Using Suspicious URLs.

Last accessed January 2016.

http://users.eecs.northwestern.edu/~hlc720/349/HTXPZYQ.pdf/
19. Z h a n g, Y., J. H o n g, L. C r a n o r. CANTINA: A Content-Based Approach to Detecting

Phishing Web Sites. In: Proc. of International World Wide Web Conference Committee

(IW3C2), Banff, Alberta, Canada, 2007, pp. 639-648.

20. V e r m a, R., A. D a s. What s in a URL: Fast Feature Extraction and Malicious URL Detection.

In: Proc. of 3rd International Workshop on Security and Privacy Analytics, 2017, pp. 55-63.

21. K n u t h, D. E., J. H. M o r r i s, V. R. P r a t t. Fast Pattern Matching in Strings. In: SIAM

Journal on Computing, Vol. 6, 1977, No 2, pp. 323-350.

22. B a s n e t, R., S. M u k k a m a l a, A. H. S u n g. Detection of Phishing Attacks: A Machine

Learning Approach. Soft Computing Applications in Industry, Vol. 226, 2008,

pp. 373-383.

23. M a r c h a l, S., K. S a a r i, N. S i n g h y, N. A s o k a n. Know Your Phish: Novel Techniques for

Detecting Phishing Sites and Their Targets. In: Proc. of IEEE 36th International

Conference on Distributed Computing Systems (ICDCS), 2016, pp. 323-333.

24. N e p a l i, R. K., Y. W a n g. You Look Suspicious!!: Leveraging Visible Attributes to Classify

Malicious Short Urls on Twitter. In: Proc. of 49th Hawaii International Conference in

System Sciences (HICSS), 2016, pp. 2648-2655.

25. Weka 3: Data Mining Software in Java. Last accessed December 2016.

http://www.cs.waikato.ac.nz/ml/weka/
26. EnsembleVote Classifier. Last accessed on 25th January 2017.

http://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/
27. How to Use Ensemble Machine Learning Algorithms in Weka. Last accessed on 25th January

2017.

http://machinelearningmastery.com/use-ensemble-machine-learning-algorithms-weka/
28. Alexa: Alexa Top 500 Global Websites. Last accessed on November 2016.

http://www.alexa.com/topsites/
29. PhishTank: Join the Fight against Phishing. Last accessed on November 2016.

https://www.phishtank.com/

 29

30. Malware Domain List. Last accessed on December 2016.

http://www.malwaredomainlist.com/forums/index.php?topic=3270.0/
31. Spam Domain Blacklist (Filtered by jwSpamSpy). Last accessed on December 2016.

http://www.joewein.de/sw/blacklist.htm/
32. Basic Evaluation Measures from the Confusion Matrix. Last accessed on January 2017.

https://classeval.wordpress.com/introduction/basic-evaluation-measures/
33. VirusTotal Public API v2.0. Last accessed on January 2017.

https://www.virustotal.com/en/documentation/public-api/
34. VirusTotal Public API v2.0 Client Implementation in Java. Last accessed on January 2017.

https://vighnesh.me/virustotal/
35. Q u i n l a n, J. R. Induction of Decision Trees. Machine Learning, Vol. 1, 1986, No 1,

pp. 81-106.

36. B r e i m a n, L., J. H. F r i e d m a n, R. A. O l s h e n, C. J. S t o n e. Classification and Regression

Trees. Belmont, California, Wadsworth International Group, 1984.

37. B r e i m a n, L. Random Forests. Machine Learning, Vol. 45, 2001, No 1, pp. 5-32.

38. Z h a o, Y., Y. Z h a n g. Comparison of Decision Tree Methods for Finding Active Objects.

Advances in Space Research, Vol. 41, 2008, No 12, pp. 1955-1959.

39. F r e u n d, Y., L. M a s o n. The Alternating Decision Tree Learning Algorithm. In: Proc. of

International Conference on Machine Learning, Vol. 99, 1999, pp. 124-133.

40. REPTree. Last accessed on November 2016.

http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/REPTree.html

Received 23.10.2017; Accepted 23.01.2018

