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Abstract: High Performance Computing (HPC) is required for many important 

applications in chemistry, computational fluid dynamics, etc., see, e.g., an overview 

in [1]. In this paper we shortly describe an application (a multiscale material design 

problem) that requires HPC for several reasons. The problem of interest is analysis 

of the fiber-reinforced concrete and we focus on modelling of stiffness through 

numerical homogenization and computing local material properties by inverse 

analysis. Both problems require a repeated solution of large-scale finite element 

problems up to 200 million degrees of freedom and therefore the importance of HPC 

computing is evident. 
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1. Introduction 

The paper concerns linear micromechanics exploiting Computed Tomography (CT) 

scans for determination of microstructure and numerical homogenization with a focus 

on a specific application – analysis of fiber-reinforced concrete. The analysis includes 

an identification problem and stochastic uncertainty, which bring new dimensions 

and enhance the need for fast solvers and ultrascale computations. Fiber-reinforced 

concrete with steel fibers has many applications in civil and geotechnical engineering. 

It is less expensive than hand-tied rebar, while still increasing the tensile strength 

many times. The shape, dimension, and length (standard 1 mm diameter, 45 mm 

length) of the fiber together with fiber volume amount and distribution are important 

parameters influencing the tensile strength of concrete. 

The analysis includes an assessment of tensile stiffness for several samples of 

fiber-reinforced concrete which differ in amount and distribution of fibers. These 

samples are scanned by CT and analyzed with provided elastic parameters for steel 

fibers and concrete matrix. The detailed scan of a sample leads to solving of elastic 

problems with about 200 million degrees of freedom. 

If the global response of the samples can be tested on a loading frame, then the 

output allows solving an inverse material identification procedure to determine the 

elastic properties of the concrete matrix. In this way, we can both determine the 

properties of concrete matrix, which can also be variable to some extent, as well as 

assess if some discrepancy can be explained by imperfect bonding of fibers. 
It is also possible not only to investigate selected physical samples of the fiber-

reinforced concrete but also to do stochastic analysis with repeated generation of 

stochastic microstructure, see, e.g., [6, 7]. 

2. Homogenization and identification of parameters 

The numerical homogenization starts with solving the elasticity problem on the 

domain Ω with given microstructure. The solution is possibly repeated for different 

loadings by imposed boundary conditions. In an abstract way, we denote the loading 

conditions by L or in the case of multiple loading by L(k). The stress and strain tensors 

σ(k) and ε(k) are averaged over Ω and the homogenized elasticity tensor 𝐶̅ ∈ 𝑅sym
6×6×6×6, 

𝐶 = [𝑐𝑖𝑗𝑘𝑙],  𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑘𝑙𝑖𝑗 ,  is determined as a (generalized) solution of the 

system 

𝐶̅𝜀̅(𝑘) = 𝜎̅(𝑘),        𝜎̅(𝑘) = |Ω|−1 ∫ 𝜎(𝑘)𝑑Ω ,
Ω

       𝜀 ̅(𝑘) = |Ω|−1 ∫ 𝜀(𝑘)𝑑Ω .
Ω

 

Assuming isotropy of the homogenized elasticity tensor, one loading is 

sufficient for getting elasticity constants. If 𝜀 = 𝜀vol + 𝜀dev is the decomposition of 

𝜀 ∈ 𝑅sym
6×6 into the volumetric and deviatoric parts and ‖∙‖ is the Frobenius norm, then 

the bulk and shear moduli can be determined as 

𝐾 =
1

3
‖𝜎̅vol‖ / ‖𝜀v̅ol‖ , 𝐺 =

1

2
‖𝜎̅dev‖ / ‖𝜀d̅ev ‖ . 
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For the parameter identification, we assume that some local material properties 

are unknown, e.g. that the concrete matrix is described by unknown parameters  

𝑝 = (𝐾c, 𝐺c), where Kc and Gc are unknown bulk and shear parameters of concrete. 

More generally, Ω can be split into subdomains with different unknown elastic 

moduli of concrete. Then the parameters are found by minimization of a proper 

objective function J over a set of admissible parameters, see, e.g., [8]. 

The construction of the objective function can be as follows: 

𝐽(𝑝) = ∑ [𝑤1𝑘 ‖𝜀̅(𝑘)(𝑝) − 𝜀t̅est
(𝑘)

‖
2

 + 𝑤2𝑘 ‖𝜎̅(𝑘)(𝑝) − 𝜎̅test
(𝑘)

‖
2

] ,

𝑘

 

where 𝜎̅(𝑘)(𝑝) and 𝜀̅(𝑘)(𝑝) are averaged stresses and strains computed by solving the 

boundary value problem in Ω with given microstructure, local material properties 

involving parameters from p and the loading L(k). This boundary value problem 

represents a physical test on the specimen Ω. The test configuration is such that in the 

case of homogeneity of  Ω, the problem has a solution with unique and constant 

stress 𝜎̅test
(𝑘)  and strain 𝜀t̅est

(𝑘)
, which can be determined from measurements. The 

weight𝑠 𝑤𝑖𝑘 can be determined by numerical experiments or simply set to be equal 

to 𝑤𝑖𝑘 = 1. 
The optimization is performed by a suitable method; we already successfully 

tested the Nelder-Mead and Gauss-Newton methods. 

More details on the exploited homogenization and identification methods can 

be found in [4, 5]. 

3. Additive Schwarz solver with two-level parallelization 

A crucial component of the homogenization and identification procedures is the 

solver for boundary value problems of elasticity. We assume a finite element 

discretization leading to algebraic systems of type 𝐴𝑢 =  𝑏  or  𝐴(𝑝)𝑢(𝑝) = 𝑏, where 

the latter indicates dependence on some local material parameters. The system can 

be solved by the Preconditioned Conjugate Gradient (PCG) method with one-level 

Additive Schwarz (AS) preconditioner BAS1, and mostly by its extended two-level 

version BAS2, 

𝐵AS1 = ∑ 𝑅𝑘
T𝐴̃𝑘

−1𝑅𝑘 ,        𝐵AS2 = 𝐵AS1 + 

𝑁

𝑘=1

𝑅0
T𝐴̃0

−1𝑅0 . 

Here Rk is a restriction defined by subdomain Ω𝑘 or algebraically by overlapping 

decomposition of the solution vector 𝑢 ∈ 𝑅𝑛, 𝐴̃𝑘  is an approximation to  

𝐴𝑘 = 𝑅𝑘𝐴𝑅𝑘
T. In our case 𝐴̃𝑘 is a displacement decomposition – incomplete 

factorization of Ak. The one-level AS preconditioner is not scalable, the number of 

iterations increases with N, although this growth is partially compensated by the fact 

that 𝐴̃𝑘  becomes a better approximation to Ak. It fits the algebraic form of the 

Schwarz methods if 𝑅0 ∈ 𝑅𝑛0×𝑛 is a Boolean matrix, which defines aggregation 

of degrees of freedom, i.e., each row of R0 defines one aggregate by unities in this 

row. On the other hand, each degree of freedom corresponds to just one aggregate, 



 8 

i.e., there is precisely one unity in each column of R0. More details about this setting 

can be found, e.g., in [3]. 

In the case of computing on a massively parallel computer like Salomon [9], it 

is possible to exploit hundreds of processors, which makes the local problems Ak 

small even for large scale matrices A. It is difficult to keep balance of times for 

solving the local problems Ak and the coarse global one A0. For this reason, parallel 

inner CG iterations for the solution of problem A0 were proposed and the algorithm 

employs two levels of parallelization. 

4. Numerical experiments 

Our numerical experiments present five real samples of fiber-reinforced concrete, 

each one of cubic shape and size 35 mm. Their microstructure is taken from industrial 

CT scanning performed at the CT lab of the Institute of Geonics of the CAS. The 

digital models arose from meshes of approx. 1400 × 1400 × 1400 voxels, which 

were further trimmed to 1000 × 1000 × 1000 voxels due to surface damage or 

irregular sides of the samples. 

Consequent computational models use smaller REpresentative Volumes (REV) 

and standard linear tetrahedral finite elements. The size of each REV is  
400 × 400 × 400 voxels for homogenization experiments or 100 × 100 × 100 

voxels for tests related to material identification, respectively. Accordingly, the 

model leads to a (repeated) solution of the resulting linear system in size of about 193 

or 3 million degrees of freedom. Main characteristics of each REV are summarized 

in Table 1. 

 

Table 1. Characteristics of REV for each sample of reinforced concrete. 

Samples differ in the volumes of steel fibers as well as voids. The size of 

fibers: Length 6 mm, diameter 0.12 mm 

Sample Steel fibers, kg/m3 Volume, steel, % Volume, voids, % 

0         0 0.00 1.55 

2       50 0.92 1.22 

3     100 1.82 0.75 

4     150 2.57 0.71 

5     200 2.11 1.83 

 

The properties of materials involved in mathematical modelling are listed in 

Table 2. Voids (air bubbles in the microstructure) bring a kind of singularity caused 

by the finite elements weakly hanged in void space. They are replaced with a very 

weak elastic material. The convergence of the applied PCG method is then smoother 

and faster. 
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Table 2. List of involved materials and their properties. 

Young’s modulus E and Poisson’s ratio ν 

Material E, GPa ν 

Concrete 19 0.2 

Steel 200 0.3 

Voids          0.01 0.1 

 

The arising large-scale systems of linear equations are processed by parallel 

solvers based on the PCG method, with stabilization in the singular case [11]. Most 

of the computations were performed on the SGI cluster Salomon [9], only the results 

of the performance comparison study and scalability tests were obtained with the aid 

of other available High Performance Computing (HPC) computers: 

 Salomon – IT4Innovations, Ostrava: SGI cluster, currently on 78 place in 

Top500 (June 2017), consists of 24192 cores and 129 TB of memory in total and with 

the theoretical peak performance over 2 PFlop/s. Most of its compute nodes are 

equipped with two 12-core processors Intel Xeon E5-2680 V3 and 128 GB of 

memory. 

 Anselm – IT4Innovations, Ostrava: Bull cluster with 209 compute nodes, in 

total having 3344 cores with 15 TB of memory and giving over 94 TFlop/s of 

theoretical peak performance. The used compute nodes were Bullx B510 blade 

servers with 28-core processors Intel Sandy Bridge E5-2665 and 64 GB of memory. 

 Avitohol – Institute of Information and Communication Technologies of the 

BAS, Sofia: HP cluster based on 150 SL230S GEN8 servers with 28-core 

processors Intel Xeon E5-2650 V2. In total, it consists of 20700 cores and 9600 GB 

of memory and gives 412 TFlop/s of theoretical peak performance. 

 Enna – Institute of Geonics of the CAS, Ostrava: Symmetric multiprocessor 

Supermicro 5086B-TRF equipped with 88-core processors Intel Xeon E7-8837 and 

512 GB of shared memory. 

On all platforms, source codes of parallel solvers were compiled by Intel 

compilers (Intel Parallel Studio XE, see Table 6 for the versions used). The applied 

compilation flags Bincluded mainly – O3 specifying the level of code optimization,  

-xHost generating instructions for the highest instruction set available on the target 

processor (not supported and applied on Enna), -shared-intel linking Intel-provided 

libraries dynamically, and -mcmodel medium telling the compiler to use a specific 

memory model to generate code and store data. 

Table 3 presents results of numerical homogenization applying pure Dirichlet 

and pure Neumann Boundary Conditions (BC). The choice of BC sets a configuration 

of homogenization procedure, which simulates an appropriate laboratory test under 

uniaxial loading. The Dirichlet BC prescribe some non-zero displacement on the top 

side in the direction of uniaxial loading, the other sides have zero normal 

displacements. The Neumann BC enter opposite non-zero forces on the top and 

bottom sides in the direction of uniaxial loading, the other sides have zero normal 

forces. The use of pure Dirichlet and pure Neumann BC allow us to get upper and 

lower bounds for the upscaled elasticity tensor, see, e.g., [4]. 
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Table 3. Results obtained by numerical homogenization applying Dirichlet and Neumann BC. Values 

of material parameters for different directions (X, Y, Z) of uniaxial loading and averaged (below) 

Sample 
Dirichlet BC Neumann BC 

E, GPa ν E, GPa ν 

0 
18.365 18.370 18.407 0.199 0.199 0.199 18.307 18.305 18.216 0.199 0.199 0.197 

18.381 0.199 18.276 0.198 

2 
19.050 18.960 19.063 0.200 0.201 0.200 18.692 18.822 18.798 0.197 0.199 0.199 

19.024 0.200 18.771 0.198 

3 
20.015 19.621 19.768 0.200 0.202 0.201 19.912 19.599 19.716 0.203 0.199 0.201 

19.801 0.201 19.742 0.201 

4 
20.865 19.977 19.960 0.198 0.203 0.203 20.613 19.948 19.435 0.204 0.199 0.195 

20.267 0.201 19.999 0.199 

5 
19.345 19.508 19.715 0.202 0.202 0.201 18.297 17.193 19.213 0.190 0.178 0.199 

19.523 0.202 18.234 0.189 

 

Due to irregular placement of steel fibers as well as voids in the microstructure, 

the results document anisotropy of tested material, when the values of material 

properties strongly vary for different directions of loading, e.g., the Young’s modulus 

E (Sample 4, Neumann BC) in Table 3 varies about more than 1 GPa. However, as 

expected and consistent with theory, their averaged values follow the increase of 

volume of steel fibers in concrete. 

The corresponding values for the pure Dirichlet and pure Neumann BC give 

quite close bounds for real material properties. However we observe that these 

bounds grow away with the increasing volume of voids in the microstructure, 

moreover when the voids are closer to the border of the studied domain and the pure 

Neumann BC are applied, see the values for the Sample 5. Comparing with the others, 

Sample 5 contains also another abnormality. Although this sample should contain the 

most of steel fibers according to Table 1, the real volume of steel in REV is not the 

biggest one. Moreover, REV of this sample overcomes the others in the volume of 

the void space in its microstructure. 

The previous tests were related to the direct problem, which is the computation 

of stiffness of the fiber-reinforced concrete based on known material distribution and 

local material properties. The next numerical experiments describe one of the 

possible inverse problems, an identification of the material properties (Young’s 

modulus E and Poisson ratio ν) of the concrete matrix from known material 

distribution, elastic properties of fibers and response of the sample (REV) to uniaxial 

or triaxial loading tests. This inverse problem exploits the objective function (the cost 

functional) 𝐽(𝑝),  𝑝 = (𝐸; 𝜈),  𝑤1𝑘 = 𝑤2𝑘 = 1,  introduced in Section 2. For more 

details, see [4]. 
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Table 4. Results of material identification applying Dirichlet and Neumann-Dirichlet BC. The 

number of transformation steps of the applied Nelder-Mead method and the identified averaged 

material properties of the concrete matrix for each REV 

Sample 
Dirichlet BC Neumann BC 

Steps E, GPa  ν Steps E, GPa ν 

0 135 19.020 0.199 138 18.996 0.200 

2 141 19.000 0.200 135 19.004 0.200 

3 141 19.005 0.200 135 19.006 0.200 

4 141 19.029 0.200 162 19.034 0.200 

5 141 19.007 0.200 129 19.007 0.200 

 

Optimization is performed by the non-gradient Nelder-Mead (NM) method  

with starting values (𝐸, 𝜈) provided by three pairs (17.000, 0.26), (21.000, 0.17), 

(18.000, 0.23). In each step of the NM method, three direct problems (three 

computation of local stresses and strains), corresponding to simulation of uniaxial 

loading tests for each direction X, Y and Z, are solved. The Dirichlet BC describe the 

same loading as in case of homogenization tests. The Neumann-Dirichlet BC enter a 

combination of the pure Dirichlet and pure Neumann BC introduced earlier. It means 

the prescribed non-zero displacement on the top side in the direction of loading, zero 

displacement on the bottom side in the direction of loading and zero normal forces 

on the other sides. The NM iterations are stopped if the decrease of the cost functional 

and differences in the identified parameters are sufficiently small. 

The numbers of transformation steps performed by the NM optimization 

procedure and the averaged values of the identified material properties are 

summarized in Table 4. The Dirichlet BC on the whole sample boundary are used for 

comparison purposes. They are applicable if the loading response is computed 

artificially. The results obtained show a good accordance with values for the concrete 

matrix presented in Table 2. Considering the number of NM steps and the need to 

repeat the FEM calculation several times in each step, the results document also 

substantially increased requirements on the computational power of the used 

computer. 

5. Tuning of parallel solvers 

Nowadays powerful parallel computers for HPC have hundreds or thousands of cores, 

or more. It brings new paradigm of solver programming and urges us to adapt our 

parallel solver originally developed for Beowulf type clusters with up to  

20 processors. 

The original solver is based on the PCG method, uses one-directional domain 

decomposition for parallelization of the iterative process as well as construction of 

efficient one-level and two-level AS preconditioners (AS1, AS2), see their definition 

through BAS1 and BAS2 in Section 3. Parallel processes communicate through message 

passing (MPI standard). 
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Fig. 1. Traces of one PCG iteration processing four subdomains. From top, records for the original 

solver with AS1 and AS2, and new solver with AS1 only. States of parallel processes: work (blue), 

wait or idle (red) 

Fig. 1 shows traces of runs of parallel solvers produced by the Intel Trace 

Analyzer. The implementation of the original solver follows the master-slave design, 

when the first process (from above) is the master, almost idle, just controlling the 

iterative process and computing two global scalar products. Each of the four slave 

processes (below the master) work on its portion of data, especially during the 

dominating operations: MatriX by Vector multiplication (MXV) and 

PREConditioning (PREC). 

The second trace adds a coarse grid computation to AS2. This process is very 

important because the coarse grid computation strongly improves the efficiency of 

the preconditioner and speeds up the convergence of the PCG iterations. A separate 

process, in this case idle for more than a half of the iteration execution time, performs 

the computation. For larger number of subdomains, this ratio changes and the coarse 

grid computation becomes most time consuming, see further discussion. 

The third trace documents a run of the new version of the parallel solver, 

surpassing the original one in the execution time and a better utilization of processes. 

New solver works internally with data in double precision and dynamic allocation of 

memory, uses a modified domain decomposition (with an overlapping of 

subdomains) leading to a better load balancing of processes, has optimized (mainly 

global) communication of processes and calculations in loops (during MXV and 

PREC operations). It abandons the master-slave design, the negligible amount of 

work performed by the master process was taken over by the other processes. 

The new solver was tested on the solution of large-scale linear system of 193 

million degrees of freedom. The test problem arose from the numerical 

homogenization experiment performed on the material Sample 4, when the Dirichlet 

BC prescribing the loading in direction Z were applied. The solver used the one-level 

additive Schwarz preconditioner AS1 and iterations were stopped with the obtained 

relative residual accuracy 10–4. The results of performance comparison study and 

scalability tests for various available HPC computers are summarized in Table 5. 
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Table 5. A performance comparison study and scalability tests of newly implemented parallel solver 

executed on various HPC computers. The Number of Processes (No P), the total Number of Iterations  

(No It), the computation time T, the averaged computation time per iteration T1 and the relative speed-

up S1 (computed from T1) 

No P No It 
Salomon Anselm Avitohol Enna 

T, s T1, s S1 T, s T1, s S1 T, s T1, s S1 T, s T1, s S1 

1 219 5631 25.71 – 10349 47.26 – 10975 50.11 – 15112 69.00 – 

2 356 4627 13.00 1.98 8213 23.07 2.05 8642 24.34 2.06 12259 34.44 2.00 

4 391 2702 6.91 3.72 4582 11.72 4.03 4813 12.31 4.07 6687 17.10 4.03 

8 439 1763 4.02 6.40 2962 6.75 7.00 2788 6.35 7.89 3809 8.68 7.95 

16 487 858 1.76 14.59 1439 2.95 15.99 1676 3.44 14.56 2613 5.35 12.89 

32 529 463 0.88 29.38 833 1.58 29.95 1059 2.01 24.99 2315 4.38 15.74 

64 535 292 0.55 47.11 506 0.95 49.87 517 0.97 51.76 2474 4.63 14.87 

The resulting computation times T correspond to general performance 

characteristics of processors in the used compute nodes, see Table 6 for the values 

from PassMark benchmarks [12]. On all computer platforms, the computation times 

scale down with the increasing number of parallel processes. However, on Enna, this 

behavior of the solver deteriorates on the highest numbers of used cores (32, 64), 

when the solver approaches limits given by communication subsystem of this shared 

memory NUMA multiprocessor. 

As expected, the number of PCG iterations grows with the increasing number 

of used cores. This effect is caused by the applied one-level additive Schwarz 

preconditioner AS1 and can be eliminated by involving a global coarse problem to 

make the two-level preconditioner AS2, which should stabilize the number of 

iterations and improve the efficiency of the solver. 

The relative speed-up S1 is computed from the averaged computation times per 

iteration T1. For smaller numbers of used cores (2-16), it grows almost ideally, when 

the whole calculation including communications runs within one compute node. 

After that, the relative speed-up gently decelerates due to increasing volume of 

communication and involving communications among compute nodes. Even in such 

case, the parallel implementation of the solver is very efficient when the computation 

time is reduced from more than 1.5 hour (one core) to less than 5 minutes (64 cores) 

on Salomon. 

Table 6. Brief CPU performance characteristics according to PassMark tests. The Number of 

Cores (No C), single thread rating STR, the averaged CPU mark AM and the used version of 

Fortran compilers (Intel Parallel Studio XE) 
Computer Processor No C STR AM Compiler 

Salomon E5-2680 V3 12 1872 18782 2017.1.132 

Anselm E5-2665 8 1510 11812 2015.3.187 

Avitohol E5-2650 V2 8 1655 13119 2017.2.050 

Enna E7-8837 8 602 11752 2016.1.056 
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Fig. 2 indicates the next step in the parallel solver optimization. With the 

increase of processes, the execution time of the most demanding MXV and PREC 

operations performed by worker processes scales down correspondingly, whilst the 

execution time of a coarse grid computation stays constant. In the example shown in 

Fig. 2, the described effect limits the possible speed-up of the solver only to three, 

instead of expected eight, which corresponds to the increase of the number of 

processes. 

 

Fig. 2. A coarse grid computation bottleneck in the original solver. Traces of one PCG iteration 

processing 4 and 32 subdomains 

Such negative effect can be eliminated by a coarse grid parallelization in a 

hybrid way, when not all processes perform the same calculations. On hundreds of 

computing elements (processors or cores), such hybrid parallelization includes the 

most of processes solving the subproblems corresponding to subdomains and only a 

few (units or tens) of processes performing coarse grid computations in parallel. It 

should not substantially decrease convergence properties of the applied AS2 

preconditioner, but dramatically increase the efficiency of the resulting PCG 

iterations. However, the described hybrid parallelization can bring difficulties how to 

treat optimal load balancing of processes. 
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6. Conclusions 

The paper demonstrates the need for high performance computing by focusing on one 

engineering application – investigation of fiber-reinforced concrete. The primary 

analysis is solving a microscale problem for homogenization within the range of 

linear material behavior. This basic problem can be modified (extended) in several 

directions and any of them substantially increases the computational demands. One 

extension, roughly described in this paper, is the solution of the inverse problem of 

identification of local material parameters or some level of deboning of the matrix 

and fibers. This problem is solved by an optimization procedure which requires 

repeated solution of the basic problem. The computational demands can increase 

about hundred times. Another extension is in solving not only selected and scanned 

samples of the concrete, but stochastic generation of a set of such samples and 

evaluation of the mean properties by Monte Carlo or multi-level Monte Carlo 

methods, see, e.g., [10]. The last extension is to consider strengths and nonlinear post 

peak behavior, which include damage mechanics techniques, see, e.g., [6] and the 

references there. 

The tests reported in Table 5 used highly parallelizable CG iterations with one-

level additive Schwarz preconditioner. The testing with two-level Schwarz method, 

which is a bit more demanding for interpretation, will be done in the near future. 
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