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Abstract: According to traditional rough set theory approach, attribute reduction 

methods are performed on the decision tables with the discretized value domain, 

which are decision tables obtained by discretized data methods. In recent years, 

researches have proposed methods based on fuzzy rough set approach to solve the 

problem of attribute reduction in decision tables with numerical value domain. In 

this paper, we propose a fuzzy distance between two partitions and an attribute 

reduction method in numerical decision tables based on proposed fuzzy distance. 

Experiments on data sets show that the classification accuracy of proposed method 

is more efficient than the ones based fuzzy entropy. 

Keywords: Fuzzy rough set, fuzzy equivalence relation, fuzzy distance, decision table, 

attribute reduction, reduct. 

1. Introduction 

Attribute reduction is an important issue of data preprocessing steps in data mining 

and knowledge discovery. The aim of attribute reduction is eliminated redundant 

attributes to enhance the effectiveness of data mining algorithms. Rough set theory 

of Pawlak is an effective tool to solve the attribute reduction problem in decision 

tables and the one that researchers has performed for a long time. Rough set based 

attribute reduction methods are performed on decision tables with discretized value 

domain [2-4]. In fact, the attribute value domain of decision tables often contains 

numerical values and continuous values. For example, the attribute of body weight 

and blood pressure in patient data tables is usually numerical value, continuous value. 

When performing attribute reduction methods based on rough set, data needs to be 

discretized. However, these discretized methods do not preserve the initial difference 

mailto:ccnghia@gmail.com
mailto:demetrovics@sztaki.mta.hu
mailto:nlgiang@ioit.ac.vn
mailto:vdthi@vnu.edu.vn


 14 

between objects in the original data, so it reduces the classification accuracy after 

attribute reduction. To solve the issue of attribute reduction in decision tables with 

numerical value and continuous value, in recent years, researches have proposed new 

methods based on fuzzy rough set approach. 

D u b o i s  and  P r a d e  [1] proposed fuzzy rough set theory is a combination 

of rough set theory and fuzzy set theory in order to approximate fuzzy sets based on 

fuzzy equivalence relation. The fuzzy equivalence is determined by the attribute 

value domain. Traditional rough set based on similarity relation to approximate sets. 

In rough set theory, two objects are called equivalent on the attribute set (the 

similarity is 1) if their attribute values are equal on all attributes. Conversely, they are 

not equal (the similarity is 0). The fuzzy rough set theory has used the fuzzy 

equivalence relation to replace the equivalence relation. The value similarity in the 

range [0, 1] shows the close or similar properties of two objects. Therefore, the fuzzy 

equivalence preserves the difference or the similarity of objects. Attribute reduction 

methods based on fuzzy rough set approach has the potential to preserve the 

classification accuracy after implementing attribute reduction methods. 

In recent years, the topic of the attribute reduction based on fuzzy rough set has 

attracted many researchers [5-14]. With attribute reduction issue directly on the 

decision table based on fuzzy rough set, these related researches are concerning in 

two main directions: fuzzy positive region approach and fuzzy entropy approach. 

Based on fuzzy positive region, H u, X i e and Y u [8] proposed FAR-VPFRS 

algorithm to find one fuzzy positive region reduct which use the fuzzy membership 

function. The experimental data sets show that the classification accuracy of FAR-

VPFRS algorithm is better than the one of algorithm which use the membership 

function according to traditional rough set. Q i a n  et al. [14] proposed FA_FPR 

algorithm, which is an improvement of FAR-VPFRS [8] in terms of executed time. 

According to fuzzy entropy approach, H u, Y u and X i e [7] proposed the fuzzy 

entropy which is based on entropy Shannon and introduces FSCE to find one reduct 

using fuzzy entropy. D a i  and X u  [6] proposed fuzzy gain ratio based on fuzzy 

entropy and introduces GAIN_RATION_AS_FRS to find one reduct using fuzzy 

gain ration. The experimental data sets show that the classification of FSCE, 

GAIN_RATION_AS_FRS algorithms are better than the ones based on traditional 

rough set. Q i a n  et al. [14] who proposed FA_FSCE algorithm, is an improvement 

of  FSCE algorithm [7] in terms of executed time. In both direction approaches, 

authors in [14] have never evaluated the classification accuracy after implementing 

improved algorithms FA_FPR, FA_FSCE. With direct reduction attribute on the 

decision table based on fuzzy rough set, the aim of this paper is to propose a new 

method which improves the classification accuracy more than the previous ones. 

In this paper, we propose the heuristic algorithm to find a best reduction of the 

decision table with numerical attribute value domain using a fuzzy distance. The 

fuzzy distance is constructed between two partitions. The experimental results in data 

sets from UCI [17] show that the classification accuracy of proposed algorithm is 

better than FA_FSCE and FA_FPR algorithms [14]. The structure of this paper is as 

follows. Section 2 presents some basic concepts of fuzzy rough set theory. Section 3 

presents the method of constructing the fuzzy distance between two attribute sets. 
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Section 4 presents an attribute reduction method using fuzzy distance measure. 

Section 5 presents experimental results. Finally, Section 6 gives a conclusion of this 

paper and subsequent developments. 

2. Basic concepts 

In this section, we introduce some concepts in rough set theory, fuzzy rough set 

theory and some related concepts in fuzzy partition space. 

A decision table is a pair  DS ,U C D  , where U  be a non-empty finite set; 

C is called conditional attribute set,  D is called decision attribute set with .C D   

DS is called the numerical decision table where the value domain of c C  is the 

numerical for any c C .  

Pawlak’s traditional rough set theory [15] used an equivalence relation to 

approximate sets. A subset P C  determines equivalence relation on attribute value 

domain, denote by IND(P), 

        IND , , ,P u v U U a P a u a v       

 a v is denoted as the value attribute a in object v; IND(P) determines the partition 

on U, denoted by  / INDU P  and the equivalence class of u, denoted by  
P

u . The 

lower approximation set and the upper approximate set of X U  related to P C

is defined as   P
PX u U u X    and   P

PX u U u X    . 

D. Dubois and others proposed the fuzzy rough set which used fuzzy equivalent 

to approximate the fuzzy sets. The decision table with numerical attribute domain 

 DS ,U C D  , the relation R  defined on U  is called fuzzy similarity relation if 

it satisfies the following conditions [14]: 

1) Reflectivity:  , 1R x x  . 

2) Symmetry:    , ,R x y R y x . 

3) Max-min transitivity:       , min , , ,R x z R x y R y z , for any 

, , .x y z U  

Let U  be a non-empty finite set and PR  và QR  be a fuzzy equivalence relation 

on U if for any , ,x y U  we have: 

1)    , ,P Q P QR R R x y R x y   , 

2)       , max , , ,P Q P QR R R R x y R x y R x y    , 

3)       , min , , ,P Q P QR R R R x y R x y R x y    , 

4)    , ,P Q P QR R R x y R x y   . 
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The relation matrix of PR  denoted by ( ) [ ]P ij n nM R p   is defined as 

11 12 1

21 22 2

1 2

...

...
( )

... ... ... ...

...

n

n
P

n n nn

p p p

p p p
M R

p p p

 
 
 
 
 
 

, 

where  ,Pij i jp R x x is the fuzzy relation value of ix  and jx on P,  0,1ijp  . 

Let  DS ,U C D   be a decision table with numerical attributes and 

, .P Q C  According to [11] we have P aa PR R 
 
and P Q P QR R R   , it 

means that       , min , , ,P Q P QR x y R x y R x y   for any , .x y U  Suppose that 

 P ij n n
M R p


    and ( )Q ij n n

M R q


    are relational matrices of PR , QR

corresponding, then the relational matrix on the attribute sets S P Q   is defined 

as 

 ( )S P Q ij n n
M R M R s


      with  min ,ij ij ijs p q . 

For P C ,  1,..., nU x x , the fuzzy partition   / PP U R   on U can be 

generated from the fuzzy equivalence relation PR : 

         1
1

/ ,...,
P P P

n

P P i nR R Ri
R U R x x x


   , 

where   1 1 2 2/ / ... /
Pi i i in nR

x p x p x p x     is a fuzzy set, is called a fuzzy 

equivalence of object ix . The membership function of objects is determined by 

       , ,
Pi RP

Pj i j i j ijx R
x x x R x x p     for any jx U . Then, the cardinality of 

fuzzy equivalence  
Pi R

x is calculated [11] as  

 
1

.
P

n

i ijR
j

x p


  

Let  is called a set of all of fuzzy partitions on U which determined by fuzzy 

equivalence on attribute sets. Then  is called a fuzzy partition space on U. Thus, 

the fuzzy partition space is determined by fuzzy equivalence relation which chose 

from the attribute value domain. Let       1 ,...,
P P

P nR R
R x x  be a fuzzy 

partition where   1 1/ ... /
Pi i in nR

x p x p x   . Specially, if 0,ijp   , ,i j n  then 

  0
Pi R

x   and the fuzzy partition  PR  is called the finest one, write as    . 

Then,       1 ,..., nx x
 

    where  
1

/ , , , 0.
n

i ij j ijj
x x i j n


 


    If 
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1ijp  , , ,i j n  then   ,
P

i R
x U  i n , and the fuzzy partition  PR  is called 

the coarsest one, write as    . Then,       1 ,..., nx x
 

    where 

 
1

/ , , , 1.
n

i ij j ijj
x x i j n


 


    

is a fuzzy partition space on U,  for  PR ,  QR  , the partial order 

relation  

:         , , , ,
P Q

P Q i i ij ijR R
R R x x i n p q i j n         

denoted by P QR R . Furthermore,  

        , , , ,
P Q

P Q i i ij ijR R
R R x x i n p q i j n         

denoted by P QR R ; 

       P Q P QR R R R     and    P QR R  , 

denoted by P QR R . 

Example 1. Let  

 1 2,U x x ,       1 2,
P P

P
R R

R x x  ,       1 2,
Q Q

Q
R R

R x x  , 

      1 2, ,
S S

S
R R

R x x   where  1 1 20.1/ 0.2 /
PR

x x x  , 

 2 1 20.2 / 0.3 /
PR

x x x  ,  1 1 20.2 / 0.3 /
QR

x x x  ,  2 1 20.3 / 0.4 /
QR

x x x  , 

 1 1 20.3 / 0.4 /
SR

x x x  ,  2 1 20.4 / 0.6 / .
SR

x x x   

Then we have 

 1 0.1 0.2 0.3
PR

x    ,   2 0.2 0.3 0.5
PR

x    ,  1 0.2 0.3 0.5
QR

x    , 

 2 0.3 0.4 0.7
QR

x    ,   1 0.3 0.4 0.7
SR

x    ,  2 0.4 0.6 1
SR

x    , 

   1 1 0.3
P QR R

x x  ,     2 2 0.5
P QR R

x x  ,    1 1 0.5
Q SR R

x x  , 

   2 2 0.7
Q SR R

x x  ,    1 1 0.3
P SR R

x x  ,    2 2 0.5
P SR R

x x  . 

3. Fuzzy distance between two fuzzy partitions and its properties 

3.1. Fuzzy distance between two fuzzy sets 

Firstly, we have proposed a distance measure between two fuzzy sets, called a fuzzy 

distance. 

Lemma 1. Let  a, b, m be three real numbers with .a b  Then, we have 

   min , min ,a b a m b m   . 
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P r o o f: It is easy to see that    min , min ,a b a m b m    satisfies: 

, ,m a b m a m b    . This completes the proof. 

Lemma 2. Let , ,A B C  be three fuzzy sets on the same universe U. Then, we 

have: 

1) If A B  then B B C A A C     . 

2) If A B  then C C A C C B     . 

3) A A B C C A C C B        . 

P r o o f:  

1) Because of A B , for any ix U  we have    .i iB A
x x   According to 

Lemma 1, we have 

             min , min ,i i i i i iB A B C A C
x x x x x x           

        

    

1 1 1

1

min ,

min ,

U U U

i i i iB A B C
i i i

U

i iA C
i

x x x x

x x

   

 

  



   

 

  


 

.B A B C A C B B C A A C             

2) Because of A B , for any ix U , we have  

   i iB A
x x           min , min ,i i i iB C A C

x x x x      

             min , min ,i i i i i iC A C C B C
x x x x x x          

      
1 1

min ,

U U

i i iC A C
i i

x x x  
 

      

≥       
1 1

min ,

U U

i i iC B C
i i

x x x  
 

  C C A C C B      . 

3) From A C A  ,  according to property 1) we have  

(*)  .A A B A C A C B        

Furthermore, from A B A  , according to property 2) we have 

(**)  C C A B C C A      . 

From (*) and (**) we have 

A A B C C A A C A C B C C A               

C A B C C C A       . 
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Proposition 1. Let  ,A B  be two fuzzy sets on the same universe U. Then, 

 , 2d A B A B A B     is a distance measure between A  and B . 

P r o o f: Obviously, from A A B   and B A B   to  , 0d A B  . 

Furthermore,    , ,d A B d B A . We need to prove the triangle inequality; without 

loss of generality, one needs to prove      , , ,d A B d A C d B C  . According to 

Lemma 2 (Part 3), we have: 

(***)  A A B C C A C C B        , 

(****)  A A C B B A B B C        . 

It is inferred from (***) and (****), we have 

   2 2 2A B A B A C A C B C B C           , similarly 

     , , ,d A B d A C d B C  . 

Therefore,  ,d A B  is a distance measure between fuzzy set A  and fuzzy set 

,B  called fuzzy distance. We have proposed a distance between two fuzzy partitions 

based on fuzzy distance. 

3.2. Fuzzy distance between two fuzzy partitions and its properties 

Theorem 1. Let  DS ,U C D   be a decision table, where  1 2, ,..., nU x x x
 
and 

 PR ,  QR
 
be two fuzzy partitions induced by two fuzzy equivalence PR , QR  

on ,P Q C . Then 

(1)       
       

1

21
,

P Q P Q
n

i i i iR R R R
P Q

i

x x x x
D R R

n n
 



   
 


 
 
 

  

is a fuzzy distance between  PR , and  QR . 

P r o o f: Obviously,     , 0P QD R R    and  

         , ,P Q Q PD R R D R R    . 

We need to prove the triangle inequality, without loss of generality, for any 

     , ,P Q SR R R    , and we prove  

              , , ,P Q P S Q SD R R D R R D R R       . 
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It is inferred from Proposition 1, for any ix U
 
we have  

              , , ,
P Q P S Q S

i i i i i iR R R R R R
d x x d x x d x x  . 

Then 

         , ,P Q P SD R R D R R    =

       

1

21 P Q P Q
n

i i i iR R R R

i

x x x x

n n

   
 

 
 
 
 



       

1

21 P S P S

n
i i i iR R R R

i

x x x x

n n

   
  
 
 



         
1 1

, ,1 1P Q P S

n ni i i iR R R R

i i

d x x d x x

n n n n 

   

    
    

1

,1
, .

Q S
n i iR R

Q S

i

d x x
D R R

n n
 



   

It is easy to see that  

    , 0P QD R R       P QR R  ; 

    , 1P QD R R         PR    and    QR   , (or     ,PR    

and    QR   ). Therefore,     0 , 1P QD R R   . 

Proposition 2. Let  PR   be a fuzzy partition on .  Then, we have 

         , , 1P PD R D R       . 

P r o o f: Suppose that         1 2, ,...,
P P P

P nR R R
R x x x  . Then

      2
1

1
,

P

n

P i R
i

D R x
n

  


  ,        2
1

1
,

P

n

P i R
i

D R K n x
n

 


  . Then, 

we have          , , 1P PD R D R       . 

Example 2. Continuing from Example 1. According to Theorem 1, we have  

    , 0.1P QD R R   ,     , 0.125,Q SD R R    

    , 0.225.P SD R R    
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Therefore:  

              , , , ,P Q Q S P SD R R D R R D R R        

              , , , ,P Q P S Q SD R R D R R D R R      

              , , , .Q S P S P QD R R D R R D R R        

4. A fuzzy distance based attribute reduction method in decision tables 

with numerical attributes 

In this section, we introduce a fuzzy distance based attribute reduction method which 

performs directly on the decision tables with numerical attributes. The new fuzzy 

distance is defined between two fuzzy partitions (see Section 3). 

Let  DS ,U C D  be a decision table with numerical attributes, 

 1 2, ,..., nU x x x . We use a fuzzy equivalence relation defined on conditional 

attributes. For any p C , the following fuzzy equivalence relation pR
 
is often used 

to construct relational matrix  p ij
n n

M R p


    [6] 

(2)   

       

max min max min

1 4 , 0.25,

0 otherwise,

i j i j

ij

p x p x p x p x

p p p p p

  
  

   



 

where  ip x
 
is the value of the attribute p in object ix ; max min,p p are maximum value, 

minimum value of the attribute p, corresponding. 

We use an equivalence relation  IND D
 

and an equivalence matrix 

  IND ij
n n

M D d


    on the decision attribute set, 1ijd 
 
if  j i D

x x
 
and 0ijd 

 

if  j i D
x x . In other words, an equivalence class  i D

x
 
can be seen as a fuzzy 

equivalence class, denoted by  i D
x , the membership function     1

i D
jx

x 
 
if  

 j i D
x x

 
and     0

i D
jx

x   if  j i D
x x . 

Then, the fuzzy partition denoted by  

         1
1

,...,
n

i nDD Di
D x x x


  . 

Based on the fuzzy equivalence relation, we propose a fuzzy distance between 

the conditional attribute set and the decision attribute set. In Section 3, the attribute 

set P C  determined a fuzzy partition  PR . Thus, for simplicity we replace the 

concept fuzzy distance between two partitions with the concept fuzzy distance 

between two attribute sets. 
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Definition 1. Let  DS ,U C D   be a decision table with numerical 

attributes,   ,PR   QR  be two fuzzy partitions induced by two fuzzy equivalence 

relations ,PR  QR  on ,P Q C . Then, fuzzy distance between P and Q, denote by 

 NF ,d P Q , is defined a fuzzy distance between two fuzzy partitions  PR  and 

  ,QR  it means that       NF , , .P Qd P Q D R R   

Proposition 3. Let  DS ,U C D   be a decision table with numerical 

attributes, where  1 2, ,..., nU x x x
 

and R  be a fuzzy equivalence relation 

determined on conditional attributes. Then, fuzzy distance between two attribute sets 

C and C D  which is determined as 

(2)    
     

NF

1

1
, .

C C

n
i i iR R D

i

x x x
d C C D

n n

  
  
 
 

  

P r o o f: From Definition 1 and Theorem 1, we have: 

      NF , ,C C Dd C C D D R R    

       

1

21 C C D C C D

n
i i i iR R R R

i

x x x x

n n

 



   
  
 
 



     

1

1 C C D

n
i i iR R R

i

x x x

n n

  
  
 
 



         

1

21 C C D C D

n
i i i i iR R R R R

i

x x x x x

n n

    
  
 
 


 

     

1

1
.

C C

n
i i iR R D

i

x x x

n n

  
 
 
 

  

It is easy to see that  NF

1
0 , 1d C C D

n
    ;  NF , 0d C C D  

   CR D   and  NF

1
, 1d C C D

n
       CR    and    i iD

x x  for 

1 i n  . 

Proposition 4. Let  DS ,U C D 
 

be a decision table with numerical 

attributes, where  1 2, ,..., nU x x x , B C  and R  be a fuzzy equivalence relation 

determined on conditional attributes. Then,    NF NF, , .d B B D d C C D    



 23 

P r o o f:  From ,B C  according to [14]  we have    C BR R  , which 

means that it can be inferred from    
C B

i iR R
x x  that    

C B
i iR R

x x
 
for 1 .i n   

For any xi  U, we have: 

                  
1 1

min , ,
C C i i iR R DC C

n n

i i i j j jx x xR R D
j j

x x x x x x  
 

    
 

                  
1 1

min , .
B B i i iR R DB B

n n

i i i j j jx x xR R D
j j

x x x x x x  
 

    
 

(1) For any  j i D
x x  we have     1

i D
jx

x  , therefore 

           0 .
C C B Bi i i i i iR R D R R D

x x x x x x       

(2) For any  j i D
x x  we have     0

i D
jx

x  , therefore 

         
C C C Bi i i i iR R D R R

x x x x x           .
B Bi i iR R D

x x x   

From (1), (2) we have:  

           
B B C Ci i i i i iR R D R R D

x x x x x x     

           

1 1

1 1 C CB B

n n
i i ii i i R R DR R D

i i

x x xx x x

n n n n 

     
   
  

   

  

 

   NF NF, ,d B B D d C C D    . 

It is easy to see that    NF NF, ,d B B D d C C D       
B Ci iR R

x x
 
for 

any .ix U  

In next part, we present an attribute reduction method of the decision table using 

the fuzzy distance measure in Proposition 3. Our method includes: defining the reduct 

based on fuzzy distance, defining the importance of the attribute and designing a 

heuristic algorithm to find the best reduct based on the importance of the attribute. 

Definition 2. Let  DS ,U C D  be a decision table with numerical attributes, 

B C  and R  be a fuzzy equivalence relation determined on conditional attributes. 

If 

1)    NF NF, ,d B B D d C C D   , 

2)      NF NF, ( , ) ( , ),b B d B b B b D d C C D        

then B is a reduct of C  based on fuzzy distance. 

Definition 3. Let  DS ,U C D   be a decision table with numerical 

attributes, B C  and b C B  . The importance of attribute b  with respect to B  
is defined as 

        NF NFSIG , , .B b d B B D d B b B b D       
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From Proposition 4, we have  SIG 0B b  . The importance of  SIGB b

characterizes the classification accuracy of attribute b with respect to decision 

attribute D. It is used as the attribute selection criterial for heuristic algorithms to find 

the best reduct. 

Algorithm F_DBAR (Fuzzy distance based on attribute reduction): A heuristic 

algorithm to find the best reduct by using fuzzy distance. 

Input: Decision table with numerical attributes  DS ,U C D  , fuzzy 

equivalence relation R . 

Output: The best reduct B  

Step 1. B  ;  ( ) 1B
n n

M R


 ; 

Step 2. Calculate relation matrix ( )CM R , calculate equivalence matrix 

  INDM D , calculate fuzzy distance  NF ,d C C D ; 

//Adding gradually to B an attribute having the greatest importance 

Step 3. While    NF NF, ,d B B D d C C D    do 

Step 4. Begin 

Step 5.        For each a C B   calculate  

        NF NFSIG , ,B a d B B D d B a B a D      ; 

Step 6.         Select ma C B   so that     SIG Max SIGB m B
a C B

a a
 

 ;   

Step 7.         mB B a  ; 

Step 8. End; 

//Remove redundant attribute in B 

Step 9. For each a B  

Step 10. Begin 

Step 11.        Calculate     NF ,d B a B a D   ; 

Step 12.         If       NF NF, ,d B a B a D d C C D      then  B B a  ; 

Step 13. End; 

Step 14. Return B; 

Example 3. Let  DS ,U C D 
 
be a decision table with numerical attributes 

(Table 1) where  1 2 3 4 5 6, , , , ,U u u u u u u ,  1 2 3 4 5 6, , , , ,C c c c c c c , the fuzzy 

equivalence relation R  is defined in the Formula (2). 

Table 1. The decision table with numerical attributes 
ci 

ui 
C1 C2 C3 C4 C5 C6 D 

u1 0.8 0.2 0.6 0.4 1 0 0 

u2 0.8 0.2 0 0.6 0.2 0.8 1 

u3 0.6 0.4 0.8 0.2 0.6 0.4 0 

u4 0 0.4 0.6 0.4 0 1 1 

u5 0 0.6 0.6 0.4 0 1 1 

u6 0 0.6 0 1 0 1 0 
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By using steps of F_DBAR algorithm to find the best reduct, we have 

B  ;  ( ) 1B
n n

M R


 ;  NF , 0.375,d D    

and we calculate some relation matrices  

1 2 3 4 5 6
( ), ( ), ( ), ( ), ( ), ( ), ( )c c c c c c CM R M R M R M R M R M R M R , 

and the equivalence matrix   INDM D : 

1

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

(

0 0 1 1 1

)

0

cM R

 
 
 
 

  
 
 
 
  

, 
2

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 1 1

(

0 0 0 1 1

)

0

cRM

 
 
 
 
 
 
 
 
  

 , 

3

1 0 0 1 1 0

0 1 0 0 0 1

0 0 1 0 0 0

1 0 0 1 1 0

1 0 0 1 1 0

(

0 0 0 0 1

)

1

cM R

 
 
 
 

  
 
 
 
  

, 
4

1 0 0 1 1 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 1 1 0

1 0 0 1 1 0

(

0 0 0 0 1

)

0

cRM

 
 
 
 
 
 
 
 
  

 , 

5

1 0 0 0 0 0

0 1 0 0.2 0.2 0.2
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Calculate  

 NF , 0,d C C D       NF 1 1 0.166667, ,d c c D   

    NF 2 2 0.166667, ,d c c D       NF 3 3 0.166667, ,d c c D   

    NF 4 4 0.111111, ,d c c D       NF 5 5 0.122222, ,d c c D   

    NF 6 6 0.122222, ;d c c D    1 0.20833SIG 3333,B c    2 0.20833SIG 3333,B c   
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 3 0.20833SIG 3333,B c    4 0.26388SIG 8889,B c    5 0.25277SIG 7778,B c   

 6 0.25277SIG 7778.B c   

Attribute  4c is selected.  

Similarity,  NF 4 1 4 1{ , },{ , 0}d c c c c D  , checked  

   NF 4 1 4 1{ , },{ , } , 0Fd c c c c D d C C D    , 

the algorithm finished and  4 1, .B c c  Consequently,  4 1,B c c  is the best reduct 

of DS . 

5. Experiments 

We select eight data sets with numerical attributes from the UCI repository [17] to 

test proposed algorithm in Table 2. Environmental testing is PC with Pentium 

Core i3, 2.4 GHz CPU, 2 GB RAM, using Windows 10 operating system. 

Table 2. Data sets in the exprimental analysis 

Id Data sets 
Number of conditional 

attributes 
Number 

of objects 

1 Ecoli 7 336 

2 Ionosphere 34 351 

3 Wdbc (Breast Cancer Wisconsin) 30 569 

4 Wpbc (Breast Cancer Wisconsin) 32 198 

5 Wine 13 178 

6 Glass 9 214 

7 Sonar (Connectionist Bench) 60 208 

8 Heart 13 270 

We select FA_FPR algorithm (Finding Reduct based on Fuzzy Positive Region) 

and FA_FSCE algorithm (finding reduct based on fuzzy entropy) in [14] to compare 

with F_DBAR proposed algorithm on the classification accuracy of reduct. The 

FA_FPR algorithm is an impovement of FAR-VPFRS algorithm in [8] on executed 

time, the FA_FSCE is an impovement of FSCE algorithm in [7] on executed time. 

According to fuzzy rough set approach, the classification accuracy of  FAR-VPFRS 

algorithm [8], FSCE algorithm [7] are almost higher than the ones in rough set 

approach after discretized data. However, authors [11] have not evaluated the 

classification accuracy for algorithms FA_FSCE, FA_FPR. For testing, we perform 

the following tasks: 

1) Code FA_FPR, FA_FSCE and F_DBAR algorithms by program C#. 

Algorithms used the fuzzy equivalence relation defined by the formula (2). 

2) Execute three algorithms on eight data sets by environment testing. 

3) Use C4.5 algorithm in WEKA [18] to evaluate the classification accuracy of 

three algorithms by selecting 2/3 first objects as training set and the remainder objects 

as testing set. 



 27 

Table 3 shows the testing results of eight data sets where |U| is the number of 

objects, |C| is the number of the conditional attribute, |R| is the number of attribute of 

the reduct for each algorithm. 

 

Table 3. The exprimental result of three algorithms FA_FSCE, FA_FPR, F_DBAR 

Id Data set |U| |C| 

FA_FSCE Algorithm FA_FPR Algorithm F_DBAR Algorithm 

|R| 
Classification 
accuracy of 
C4.5 (%) 

|R| 
Classification 
accuracy of 
C4.5 (%) 

|R| 
Classification 
accuracy of 
C4.5 (%) 

1 Ecoli 336 7 6 81.50 7 82.45 7 82.45 

2 Ionosphere 351 34 11 88.72 13 91.52 15 94.25 

3 Wdbc 569 30 16 95.2 17 90.46 19 92.84 

4 Wpbc 198 32 16 65.32 17 73.60 18 74.60 

5 Wine 178 13 5 88.72 9 91.57 10 89.25 

6 Glass 214 9 6 80.15 7 81.56 7 81.56 

7 Sonar 208 60 8 75.40 12 70.60 13 76.25 

8 Heart 270 13 8 74.62 9 76.95 10 78.65 

The average classification 

accuracy of C4.5 

 
81.2  82.33  83.73 

 

Fig. 1. The classification accuracy C4.5 of FA_FSCE, FA_FPR and F_DBAR  

The exprimental results in Table 3 and Fig. 1 show that the average classification 

accuracy of  F_DBAR (used the fuzzy distance) is highest, next to FA_FPR (used 

fuzzy positive region) and FA_FSCE  is lowest (used fuzzy entropy). For each data 

set, the classification accuracy of three algorithms are different. Consequently, the 

classification accuracy of algorithm F_DBAR is the best one of three algorithms. 

6. Conclusion 

The aim of attribute reduction in the decision table is to improve the accuracy of 

classification model. Among attribute reductions in the decision table with 

numerical value domain, related researches show that attribute reduction methods 

based on fuzzy rough set approach have the classification accuracy more higher 

than one based on traditional rough set. In this paper, we propose an attribute 

reduction method on the decision table with numerical attribute value which uses 

fuzzy distance based on fuzzy rough set. Our research includes: proposing a new 
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fuzzy distance between two fuzzy partitions, defining reduct and  importance of 

attributes based on fuzzy distance, proposing a heuristic algorithm to find the best 

reduct. The experimental results from data sets show that the classification accuracy 

of fuzzy distance method is higher than that of the ones using fuzzy positive region 

and fuzzy entropy. Our further research approach issue is finding the relation 

between reduct obtained by different methods to subgroup and overall evaluation 

of methods based on fuzzy rough set approach. 

Acknowledgements: This research has been funded by the Research Project, VAST 01.08/16-17. 

Vietnam Academy of Science and Technology. 

R e f e r e n c e s  

1. D u b o i s, D., H. P r a d e. Rough Fuzzy Sets and Fuzzy Rough Sets. – International Journal of 

General Systems, Vol. 17, 1990, pp. 191-209. 

2. D e m e t r o v i c s, J., V. D. T h i, N. L. G i a n g. An Efficient Algorithm for Determining the Set 

of All Reductive Attributes in Incomplete Decision Tables. – Cybernetics and Information 

Technologies, Vol. 13, 2013, No 4, pp. 118-126. 

3. D e m e t r o v i c s, J., V. D. T h i, N. L. G i a n g. On Finding All Reducts of Consistent Decision 

Tables. – Cybernetics and Information Technologies, Vol. 14, 2014, No 4, pp. 3-10. 

4. D e m e t r o v i c s, J., N. T h i, L. H u o n g, V. D. T h i, N. L. G i a n g. Metric Based Attribute 

Reduction Method in Dynamic Decision Tables. – Cybernetics and Information Technologies,  

Vol. 16, 2016, No 2, pp. 3-15. 

5. T s a n g, E. C. C., D. G. C h e n, D. S. Y e u n g, X. Z. W a n g, J. W. T. L e e. Attributes Reduction 

Using Fuzzy Rough Sets. – IEEE Trans. Fuzzy Syst., Vol. 16, 2008, pp. 1130-1141. 

6. D a i, J., Q. X u. Attribute Selection Based on Information Gain Ratio in Fuzzy Rough Set Theory 

with Application to Tumor Classification. – Applied Soft Computing, Vol. 13, 2013, pp. 211-221. 

7. H u, Q., D. R. Y u, Z. X. X i e. Information-Preserving Hybrid Data Reduction Based on Fuzzy-

Rough Techniques. – Pattern Recognit. Lett., Vol. 27, 2006, No 5, pp. 414-423. 

8. H u, Q., Z. X. X i e, D. R. Y u. Hybrid Attribute Reduction Based on a Novel Fuzzy-Rough Model 

and Information Granulation. – Pattern Recognit., Vol. 40, 2007, pp. 3509-3521. 

9. J e n s e n, R., Q. S h e n. Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy-

Rough-Based Approaches. – IEEE Trans. Knowl. Data Eng., Vol. 16, 2004, No 12, pp. 1457-1471. 

10. J e n s e n, R., Q. S h e n. Fuzzy-Rough Attribute Reduction with Application to Web 

Categorization. – Fuzzy Sets Syst., Vol. 141, 2004, pp. 469-485. 

11. J e n s e n, R., Q. S h e n. Fuzzy-Rough Sets Assisted Attribute Reduction. – IEEE Trans. Fuzzy 

Syst., Vol. 15, 2007, No 1, pp. 73-89. 

12. J e n s e n, R., Q. S h e n. New Approaches to Fuzzy-Rough Feature Selection. – IEEE Trans. Fuzzy 

Syst., Vol. 17, 2009, No 4, pp. 824-838. 

13. B h a t t, R. B., M. G o p a l. On Fuzzy-Rough Sets Approach to Feature Selection. – Pattern 

Recognit. Lett., Vol. 26, 2005, pp. 965-975. 

14. Q i a n, Y. H., Q. W a n g, H. H. C h e n g, J. Y. L i a n g, C. Y. D a n g. Fuzzy-Rough Feature 

Selection Accelerator. – Fuzzy Sets and Systems, Vol. 258, 2015, pp. 61-78. 

15. P a w l a k, Z.  Rough Sets: Theoretical Aspects of Reasoning about Data. London, Kluwer 

Academic Publisher, 1991. 

16. P a w l a k, Z., J. W. G r z y m a l a-B u s s e, R. S l o w i s k i, W. Z i a k o. Rough Sets. Commun. 

– ACM, Vol. 38, 1995, No 11, pp. 89-95. 

17. The UCI Machine Learning Repository.  

http://archive.ics.uci.edu/ml/datasets.html   

18. https://sourceforge.net/projects/weka/ 

http://www.cit.iit.bas.bg/CIT_2014/v14-4/1-2015-12-%20Demetrovics_VDThi_NLGiang-m-Gotovo.pdf
http://www.cit.iit.bas.bg/CIT_2014/v14-4/1-2015-12-%20Demetrovics_VDThi_NLGiang-m-Gotovo.pdf
http://archive.ics.uci.edu/ml/datasets.html
https://sourceforge.net/projects/weka/

