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Abstract: Playing computer games is a predominantly emotional than rational 

process. Video games with affect-based adaptation measure player’s behavior 

signals and recognize player’s emotional states in order to adapt specific game 

features in a dynamic manner and to improve player’s engagement, immersion, 

excitement, and challenge. The present review deals with models for the presentation 

of emotions, techniques for measuring behavioral signals, emotion recognition and 

adaptation mechanisms applied in video games with affective feedback including 

methods for their assessment and validation. Studies using self-reports, observational 

methods and psychophysiological measurements of both autonomic and central 

nervous systems including processing and interpretation of signals are systematically 

reviewed with regard to their results concerning emotional adaptation in games. 

Next, the article provides a comparative analysis of affect-based adaptation methods 

and techniques applied in 14 adaptive video games developed in last ten years. Based 

on this comparison, we summarized future directions in research, design and 

evaluation of video games with affective adaption. 
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1. Introduction 

The term affective computing was proposed by P i c a r d [1] as a type of computing 

that “relates to, arises from, or influences emotions”. In the past 20 years, a plea for 

novel, emotionally intelligent systems and applications was proposed, based on 

affective computing models for recognition, processing, interpretation, visualization, 

simulation and stimulation of affective experiences [2]. With the evolution of 

affective systems, biofeedback [3] gained popularity with various methods of 

obtaining users’ awareness of certain aspects of individual physiological reactions to 

physical and/or psychic stress. Next to biofeedback, B e r s a k  et al. [4] coined the 

term affective feedback by imposing the idea for “an active intelligent participant in 

the biofeedback loop”. More precisely, affective feedback was defined as direct 

biofeedback influencing the user not only by information about his/her personal  
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“bio-state” but mostly by the way of its presentation. In fact, affective feedback was 

used earlier by P o p e, B o g a r t, and B a r t o l o m e [5] in order to detect negative 

emotional states by measuring electroencephalographic signals and, next, to select 

specific features for calculating an index of operator engagement used to make 

decisions how to reconfigure automated tasks. Besides measuring activity of the 

Central Nervous System (CNS) by using electroencephalography [6] or other brain 

imaging technologies [7], biofeedback systems register changes in signals produced 

by the Autonomic Nervous System (ANS) such as heart rate variability, blood 

pressure, and skin conductance response. For a detailed review of ANS measures [8]. 

Modern affective feedback computing systems move the focus of applying 

information about user affect from adapted task automation to dynamic adjustment 

of game difficulty level [9] and adaptation of audio-visual effects [10]. Among the 

variety of affective feedback systems, affective 3D visual spaces and video games 

gained ever growing popularity worldwide by engaging players in emotionally 

intensive interactions [11]. Affective feedback design was used in both entertainment 

video games and serious games specially dedicated to education, training, and 

rehabilitation therapies [12]. G i l l e a d e, D i x and A l l a n s o n [13] defined 

affective gaming as a specific form of gameplay “where the player's current 

emotional state is used to manipulate gameplay”. Affective 3D visual spaces and 

player-centered video games rely on specific design of the environment in order to 

affect the user’s mental state and to adjust some system features according to the 

induced affect. They appeal to users by rewarding them for moving to desired 

psychophysiological states and, thus, create more dynamic and unpredictable 

gameplay and generate personalized and situated game experiences [14].  

Affective video games measure physiological signals and use them for 

recognizing player’s emotional states for enabling more spectacular and exciting 

forms of gameplay [15]. Emotion-based games are reported to improve player’s 

engagement, immersion, excitement, and challenge [16, 17] by dynamically adapting 

specific game features according to the recognized emotions or directly to the 

measured physiological signals within a feedback loop [18]. Y a n n a k a k i s  and 

T i g e l i u s  [19] define three basic system requirements for a successful 

implementation of the affective loop within adaptive games: (1) tailoring 

emotionally-adaptive games to affective response patterns of each individual player; 

(2) implicit to players adaptation process at run time; and (3) affect-based interactions 

should match game context, adaptable game features, individual subjective input, and 

objective data obtained from alternative player modalities. 

Emotionally-based adaptation is capable of inducing desired emotional player 

states such as excitement or engagement and, at the same time, to avoid other, 

undesired states like boredom or overload [20] Affective video games with emotion-

based adaptation use three types of mechanisms for dynamic adaptation during the 

gameplay, namely: 

 adjustment of explicit, implicit, or player-driven game tasks [21] and their 

managed appearance in the game flow [22]; 

 adaptation of difficulty towards player’s anxiety [23] or skill level [20]; 

 adjustment of audio-visual properties such as ambient light [24]. 
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There are several detailed reviews in the area of adaptive games presenting state-

of-the-art experience-driven procedural content generation [19], personalized gaming 

in general [25], adaptive serious games for education [26], and dynamic difficulty 

adjustment in computer games [27]. Other reviews discuss affective games 

concerning mainly fundamentals of physiological computing [28], 

psychophysiological methods in game research [15], methods for data fusion and 

system adaptation using ANS responses [29], and a historical view of technological 

advancements in affective gaming [30]. In contrast to them, the present article 

provides a review on adaptation models, mechanisms and practices used in affective 

video games including ways of their application, assessment and experimental 

validation. Section 2 presents fundamentals of affective feedback and its application 

in affective games. The targets of adaptation are discussed, i.e. gaming features 

adapted according to recognized player’s affective states via a physiology-based 

methods for affect inference. Section 3 is dedicated to the player representation in 

adaptive affective games, required for detecting changes in the emotional state of 

human players. There are both discrete and dimensional modelling perspectives of 

studying emotions. Next, flow, immersion and motivation are introduced as 

psychological concepts important for effective design and evaluation of affective 

games. Section 4 discusses measuring and recognizing emotions in player-centric 

adaptive games. Self-reports, observational methods and psychophysiological 

measurements are analysed with regards to their advantages and disadvantages as 

emotion measurement strategies. There is a discussion regarding the types of 

measurements of physiological signals produced by ANS and CNS, which are highly 

used in affective games. Both processing and interpretation of physiological signals 

are outlined with respect of their use for emotion recognition. Section 5 provides a 

discussion about adaptation in modern affective games. 14 video games with affect-

based adaptation developed in last ten years are analysed and compared according 

various criteria concerning properties of affective video games, technological and 

methodological issues of game realisation and, as well, experimental validation, 

outcomes and impact of the affect-based adaptation. Finally, the conclusions 

demarcate directions in research, design and evaluation of future adaptive affective 

video games (Section 6). 

2. Affective adaptation in video games 

Since the time of their advent, video games apply adaptive techniques according to 

data about player’s performance. Player-centric adaptive gameplay possesses 

essential advantages compared to the static, non-adaptive gameplay, as far as an 

appropriately adaptive game succeeds in matching essential cognitive features of the 

player. They increase stepwise game difficulty level according to player’s results and 

skills demonstrated during gameplay. However, playing a game is mainly an 

emotional process and, therefore, adaptation based on player performance is not 

sufficient in terms to adjust the game features to goals, preferences, emotions and 

expectations of each individual player. R o u s e  [31] formulates the central problem 

of computer games regarding their highly interactive nature as a necessity to  
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“give players the power to make their own choices, decisions which effect which 

emotions they may feel immediately or later in the game”. This makes emotionally-

based adaptation methods used in affective games especially significant, as they deal 

with dynamic game balancing in order to adjust specific game elements and 

parameters in an appropriate way. 

2.1. Application of affective feedback in video games 

Traditional biofeedback defines a standard biofeedback loop, where users learn to 

control their physiological state based on information provided by bio-sensors and 

presented on a device or a given media. On other hand, as stated by B e r s a k  et al. 

[4] computers should have “the ability to recognize, react to, and affect our 

physiological state in a meaningful way”. The authors created a racing game called 

Relax-to-Win and using player's galvanic skin responses for measuring current level 

of relaxation of given player and, next, controlling the speed of a dragon within the 

gameplay according to this relaxation’s level. Therefore, they demonstrated the so 

called affective feedback loop where the computer (but not the user) learns how 

environments affect the psycho-physiological user’s state and adjusts its behaviour 

according to these changes. The users start feeling more and more involved in the 

process, while their emotions are reinforced. The affective loop does not represent 

how the system infers users’ emotional states, however, for reacting appropriately to 

the communicated emotional expressions, the systems has either to classify or to 

estimate the physiological responses received from the users [29].  

G i l l e a d e, D i x and A l l a n s o n [13] defined affective game as a game 

supporting the affective feedback loop, which differs from the standard biofeedback 

loop in terms of propagation of uncontrolled affective information. As they noted if, 

after sufficient practicing the game, players becomes skilful enough to control their 

normal physiological responses, then this awareness of volitional control will convert 

the affective game into a game with “straight-forward biofeedback”. Such 

biofeedback games are defined by N a c k e  et al. [32] as games with “direct 

physiological control” meaning direct (voluntary) manipulation and control of 

actions in the virtual world by the player using muscle flexion, eye gaze or input from 

temperature sensor (through blowing hot air on it). In contrast, indirectly-controlled 

physiological games are manipulated in an indirect (involuntary) by player’s body 

activations such as heart rate and galvanic skin response. The direct-indirect 

dichotomy of physiological control is similar to the approach of K u i k k a n i e m i  et 

al. [33] who applied both implicit and explicit biofeedback mechanisms within a 

First-Person Shooter (FPS) game. They used explicit for the player control over game 

dynamics making him/her aware about game manipulation, which resulted in 

increasing player’s immersion, while the implicit control was based on player’s 

physiological state without players to be conscious about the changes.  

A more precise processing model of player-centric adaptation in affective video 

games is proposed by P a r n a n d i  and G u t i e r r e z-O s u n a  [34] based on 

concepts from classical control theory. The model shows how a game parameter  

(e.g., game difficulty level) is controlled by the level of player’s arousal estimated by 

measuring a physiological response (Electro-Dermal Activity, or EDA) of the player. 
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By using the affective loop (Fig. 1), the model tries to keep the value of EDA 

measured at time t (indicated as r(t)), i.e., current player’s arousal, at an optimal set-

point level (denoted as r0 in the figure); s(t) stands for game stimuli level (e.g., game 

difficulty level) in time t and is used as emotional stimulus for the player, and Є(t) is 

the error presenting the difference between value of EDA during time t and the chosen 

set-point level.  

 

Fig. 1. Block-diagram of an adaptive affective game [34] 

This adaptive scheme shown in Fig. 1 uses a negative feedback control – it keeps 

player’s arousal near the optimal level to offer improved player’s attention and 

therefore higher performance during the game play. In this way, negative control 

loops reduce the difference (the error) between the real-time psychophysiological 

measure and the desired level (standard) of player’s emotional state and, thus, create 

behavioural stability during gameplay by keeping the player within a safe zone of 

stability of performance effectiveness [28]. Contrary to the negative feedback, 

positive physiological feedback control is discrepancy-enlarging and acts as an 

amplifier of the difference between the measured psychophysiological input and the 

desired player’s standard one, leading to performance instability. When applying 

positive feedback control, the biocybernetic system may steadily increase the desired 

level of player’s emotion, for reaching greater performance and pleasure thanks to 

elicited creative impulses [35]. Within combined scenarios, the affective feedback 

loop may toggle between positive and negative control dynamics [28], where positive 

feedback used for relatively shorter gameplay aiming at skill acquisition is alternated 

with longer time intervals of “performance stability and skill consolidation” possible 

only under negative feedback control. 

2.2. Targets of affective adaptation in video games 

Affective loop explains how game adaptation creates emotion stimuli resulting in 

emotion elicitation from the player. Therefore, it is crucially important to outline 

possible targets of adaptation in affective game design, which elicit player’s emotions 

and hence evoke physiological responses. As real-time physiological responses vary 

between players with different profiles regarding their gaming experiences and 

affective personality traits, G i l l e a d e, D i x and A l l a n s o n [13] proposed a 

vertical approach to the classification of the targets of game adaptation consisting of 

three high-level design heuristics for dynamic adjustment of affective gaming: “assist 

me-challenge me-emote me”. Players might be assisted at any problematic situations 

during the gameplay, for example such with rising frustration measured by the game 
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[36], or by using adaptive companions changing their behaviour – between cautious, 

supporting and aggressive one – according to player’s experience for reaching more 

meaningful and engaging gameplay [37]. The challenge me heuristic represents base 

for research in adaptive games concerning Dynamic Difficulty Adjustment (DDA) 

instead simple increasing of difficulty level, for balancing game challenge according 

player’s skills [38]. The last heuristic (emote me) is only sketched in [13], however, 

it reveals a great potential to provoke desired emotions by changing design aesthetics 

and multimedia content of a video game based on actual emotions of the player. In 

such biofeedback-controlled games and environments, player’s emotions are detected 

through physiological signals and used further for controlling some audio-visual 

aspects of the game, like adapting game sound for supporting greater player’s 

immersion and sense of presence [39].  

The “assist me-challenge me-emote me” game design model corresponds 

semantically to other design triangles proposed in other researchers and game 

developers. The most distinguished of them is probably the MDA (standing for 

Mechanics, Dynamics, and Aesthetics) paradigm coined by H u n i c k e and 

C h a p m a n [40], where mechanics stand for game formal rules, their enforcement 

mechanisms, data representation and algorithms embedded within game components; 

dynamics describe the run-time behaviour of the mechanics; and aesthetics present 

emotional responses evoked in players by the dynamics like excitement, frustration 

or motivational intensity. On the other hand, MDA levels are mapped clearly to three 

main categories of game adaptation summarized by N o v a k, M i h e l j and M u n i h 

[29] as: (1) adaptive automation of tasks with possible provision of automated 

assistance; (2) adjustment of game difficulty level (often abbreviated as DDA from 

dynamic difficulty adjustment) for balancing challenge with player skills; and,  

(3) adaptation of audio-visual effects. 

2.2.1. Adaptive automation of tasks 

Adaptive task automation techniques start automated assistance for game tasks when 

high player’s workload is discovered or maintain an optimal level of vigilance during 

tasks execution [34] by operating negative feedback loop increasing task allocation 

when players become hypo-vigilant and vice versa. In addition, tasks’ sequencing in 

gameplay can be monitored according to physiological responses measured by 

biometric sensors in order to provoke or suppress specific player emotions. In 

general, game tasks can be divided into three types [21]: 

1) explicit tasks – such as objectives, goals and missions posed to the player as 

part of the gameplay;  

2) implicit tasks – not explicitly stated by the game interface but expected to be 

fulfilled; such as “stay alive”, “maximize your skills”, or “collect as many items as 

possible”;  

3) player-driven tasks – created by the player thanks to his/her creativity within 

existing limitations of given game mechanics and leading to so called emergent 

gameplay [41] typical for Minecraft™ and other video games with no predefined 

narratives.  

For the three types of tasks, game difficulty level can be adjusted automatically. 
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2.2.2. Adjustment of game difficulty level 

Traditional approaches of DDA, or so called dynamic game balancing, use player’s 

performance as a base for dynamic control of task’s difficulty by using a positive 

feedback loop [9]. Player performance allows straightforward realizations of DDA 

without any additional devices. In addition, interactive affective systems rely on 

affective loop adaptation [18] for reaching rich gameplay experiences. In a similar 

way, R a n i, S a r k a r  and  L i u [23] combined player’s anxiety feedback for DDA 

by using negative feedback loop, with the traditional performance feedback for 

dynamic adaptation of game difficulty. In the same work, the feedback based on 

anxiety was found to be more effective than that one based on performance in regard 

of an immersive and challenging gameplay. Player’s immersion was found to be 

strongly increased by using explicit, conscious player’s control over game dynamics 

[33] unlike exploiting unconscious player’s control. N a c k e  et al. [32] used indirect, 

non-voluntary player’s control based on physiological signals to manipulate 

successfully some game mechanics by changing values of game environmental 

variables.  As L i u  et al. [9] highlighted, methods for DDA applying only affective 

state information may appear not optimal. They propose experimenting with versatile 

DDA mechanisms considering “player’s performance, his or her personality, and the 

context and complexity of the game among other issues to generate a rewarding 

gaming experience”. Generally, approaches to DDA might be categorized in three 

types according to the method of adaptation [27]:  

1. DDA by means of automatic level generation – uses methods for Procedural 

Content Generation (PCG), summarized by Y a n n a k a k i s and T o g e l i u s [19] 

typically for platform games such as Nintendo’s Super Mario Bros and its public 

domain clone Infinite Mario Bros. Textual and multimedia game content such as 

narrative, dialogues, quests, camera profiles, levels, textures, etc. – but excluding 

artificial intelligence for Non-Player Characters (NPC) – is created automatically by 

means of algorithmic procedures. PCG was initially introduced to the computer game 

offline, however, there are more and more recent approaches for online dynamic 

adaptation of content to changes of the player model.  

2. DDA by means of modification of Artificial Intelligence (AI) – based on 

dynamic adaptation of difficulty of an intelligent NPC by picking out AI behaviour 

most relevant to the current state of the player’s abilities and emotions. Modifications 

of NPC behaviour can include dynamic scripting (on-the-fly generation of different 

scripts for intelligent agents according to the player’s behaviour), machine learning 

for NPC construction using genetic algorithms, or using adaptive agents [27]. 

3. DDA by means of adjusting level content, i.e., game items for player 

interactions – means dynamic adaptation of level of inventory interacted by the player 

for specific game context according to player’s skill acquisition. Within Hamlet – a 

DDA system built using Valve’s Half Life game engine – H u n i c k e and 

C h a p m a n [40] define adjustment actions and policies for player’s inventory. 

Reactive actions are used for adjusting “on stage” game items, while proactive 

actions adjust “off stage” (inactive) items.  
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2.2.3. Adaptation of audio-visual effects 

Finally, adaptation of audio-visual effects reflecting user’s emotional state has 

initially been exploited within multimedia applications like affective music players, 

recommendation systems and online chat applications [29]. D e k k e r and 

C h a m p i o n [10] first tried enhancing the gameplay and display of a horror game 

mapping directly physiological player’s responses to audio-visual game properties. 

Next, G r i g o r e  et al. [24] used stochastic algorithms for adapting ambient light in 

rooms within a video game by using psychophysiological features, namely player’s 

heart rate and skin conductance. G a r n e r  [39] explored various psychophysiological 

approaches and sound design practices for creating greater emotional experiences in 

adaptive audio-centric gameplay, with a special focus on correlations between fear 

and game sound. Together with car steering and speed, road visibility was 

dynamically adjusted in a car racing game [34]. 

Besides the vertical classifications of the targets of dynamic adjustment of 

affective gaming consisting of three design levels as discussed over, another possible 

approach is to focus considerations primary on possible emotion elicitors in games. 

Y a n n a k a k i s and P a i v a  [42] proposed a horizontal classification of target of 

adaptation in affective games including two main sources of possible emotion 

reactions: content adaptation and agents/NPC adaptation. They regard game content 

from a high level perspective considering here not only the game environment, plot, 

camera profiles, audio-visual settings and effects, but also game mechanics, 

dynamics and any types of content that can be adjusted to particular player’s 

emotional state and, next, can affect player’s gaming experience. The approaches of 

automatic and dynamic content generation as discussed over provide further 

opportunities towards affect-driven game content creation for synthesizing 

personalized experiences in the context of both entertainment and serious games [43]. 

On the other hand, the adaptation of game agents and NPCs with their complex 

cognitive, social and emotional behaviour is the second main source of emotion 

elicitations. Various types of NPC such as artificial tutors, companions, competitors, 

and crowds can be adapted according to game domain knowledge [44], player’s 

emotional state [45] or player’s experience and performance [37]. NPC behaviour 

includes reactive triggering emotional states as a response to a particular event as far 

as proactive expressing of emotions, which can be augmented by means of 

appropriate adaptive game content generation [42]. Both the adjustments of game 

content and agents/avatars/NPC go through adaptations of game mechanics, 

dynamics, and aesthetics. 

3. Player representation in affective game 

Together with the issues regarding possible targets of game adaptation in order to 

create stimuli for emotional elicitation at particular player, the affective loop poses 

the problem of detection and interpretation of emotions. Detecting changes in 

emotional state of a human player is a rather complex and challenging task, which 

requires establishing and exploitation of appropriate representation of the game 

player. 
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3.1. Modelling human emotions 

Emotions are usually easily understood by people, but their automatic recognition 

and measurement continues to be a complex and intricate problem. Human emotions 

are studied mainly from dimensional and discrete perspectives [7]. The most popular 

discrete categories of emotions used in systems for expression recognitions are the 

Big Six basic emotions: “happiness”, “sadness”, “fear”, “anger”, “disgust” and 

“surprise”, as proposed by E k m a n, S o r e n s o n  and  F r i e s e n [46]. The Big Six 

emotions are regarded as being innate, basic and determined in both psychological 

and biological sense. In some studies [47, 48], alongside this core set of emotions, 

another one or the “neutral” expression is proposed. In contrast to basic emotions, 

complex emotions such as pride, shame, and guilt have a much complex behavioural 

manifestations which substantially challenge their measuring [11]. Emotional 

expressions are strongly dependent on current personal moods – less specific and less 

intense than emotions but longer lasting and not consciously connected with a 

specific purpose [49]. As well, emotions are determined by personal affective 

disposition and affective personality traits – relatively permanent affective tendencies 

like the big-five five personality traits: neuroticism, extraversion, openness to 

experience, agreeableness, and conscientiousness [50]. 

In contrast to the discrete perspective, dimensional models organize emotional 

responses within a space with two or three fundamental dimensions. The Russell’s 

circumplex model of affect [51] defines a two-dimensional core emotional space, 

where emotional valence (x-axis) is the bipolar subjective evaluation of emotional 

feeling, and arousal (y-axis) represents bipolar degree of mental activation or 

alertness. Besides valence and arousal, approach-avoidance motivations are used as 

behaviour functions presenting tendencies respectively to approach stimuli (reward 

acquisition) or to avoid stimuli (punishment avoidance) and, therefore, guiding 

behaviour either toward “maximizing acquisition of fitness-enhancing rewards” or 

towards “minimizing exposure to fitness-threatening punishers” [52] as shown in  

Fig. 2. Both the punishment avoidance and reward acquisition reflect behaviour 

activities of the affected person and are useful from decision-maker’s  

perspective [53]. 

 

Fig. 2. The core emotional space with motivations to approach or avoid a stimulus [51, 53] 
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Following the Russell’s circumplex model, M e h r a b i a n and R u s s e l l [54] 

proposed a 3D environmental emotional scale of nearly independent bipolar 

dimensions abbreviated as PAD and including: (1) pleasure – indicates emotional 

valence, i.e., the extent of feeling happy or not; (2) arousal – measures the level of 

affective stimulation caused by the environment; and (3) dominance – refers to the 

degree of personal feeling of having control over a specific situation. As a whole, 

dimensional models effectively represent non-discrete emotional states and their 

variations over time [55] supposing discrete emotions do not have a specific 

biological basis, i.e., lacking brain region uniquely engaged with elicitation of given 

emotion. 

3.2. Flow, immersion and motivation 

Like other end-use products addressed to broader audience, modern video games aim 

at creating absorbing and engaging user experiences and, as well, positive and 

pleasurable feelings. While attempting to explain the origins of human happiness and 

creativity, M i h a l y  C s i k s z e n t m i h a l y i [56] developed the fundamental 

concept of flow, within a broad, long-lasting inter-racial study at many countries 

worldwide. During gameplay, the flow process of optimal experience – sometimes 

refereed as zone [38] or stretch zone [18] – has a balance between the inherent 

challenge of the game activity and the player’s ability required for its execution  

(Fig. 3). When the challenge required by given game activity goes beyond player’s 

skills, that activity becomes too overwhelming and starts provoking worry, anxiety, 

and arousal [57]. Low challenges failing in engaging the player fully evoke apathy 

and boredom, respectively for lower and middle player’s skills; otherwise, such low 

challenges elicit feeling of relaxation and control. In general, people like being in a 

state of control due to feeling security and safety and, on the other hand, hate boredom 

[58]. The flow zone starts only if player’s skills (ability to cope with the challenge) 

are higher-than-average and, at the same time, the challenge is above-average, i.e., 

above and to the right of the central point representing average flow and skills in  

Fig. 3. The flow zone for novice players is shifted to the control sector, while the flow 

zone for professional players is moved to the arousal sector. One possible shift to the 

flow zone is from apathy and boredom (if required challenge is relatively low 

compared to player’s skills) through relaxation and control. While being in the flow 

zone, newly offered game challenges may surpass current player’s skills, which will 

move the player to the arousal and anxiety sectors. Then, an adaptive adjustment of 

difficulty with strong decrease of challenge might bring the player again into the 

boredom sector.  

Based on the flow concept, S w e e t s e r  and  W y e t h [14] proposed a model 

for evaluating player enjoyment in computer games called GameFlow. Their model 

includes eight elements: concentration, challenge, skills, control, clear goals, 

feedback, immersion, and social interaction – all contributing essentially to player's 

enjoyment. The GameFlow model was revisited with detailed heuristics especially 

aimed for real-time strategy video games [22], where immersion is supported by 17 

heuristics for narrative, graphics, sound, and gameplay. Unlike flow, immersion does 

not necessarily have a goal, but may be graduated. For defining levels of player’s 
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immersion in game, B r o w n and C a i r n s [59] used the grounded theory within a 

qualitative study of analysis of players’ feelings and identified three successive 

immersion levels: engagement, engrossment, and total immersion. While 

engagement is the initial level where player learns how to play, engrossment stays 

for player’s familiarization with the game control. On the other hand, total immersion 

– sometimes used interchangeably with the concept of presence in complex virtual 

environments [60] – is distinguished with focusing on game modalities and allocation 

of mental resources to a given stimulus [15].  

 

Fig. 3. Mental state as function of challenge and player’s ability/skills [38, 57, 58] 

Flow activities are autotelic and intrinsically motivated, therefore, the flow 

concept is strongly connected to motivation. Intrinsic motivation was defined by the 

self-determination theory [61] as “motivation based in the inherent satisfactions 

derived from action”. The dynamic relation between the effort and the demand level 

is described as motivational intensity. With increasing the effort, it goes consequently 

through boredom, engagement, zone and overload (as shown by the white arrows’ 

cycle in Fig. 3) and offers a model of motivational intensity for straightforward game 

adaptation [20]. Stretch zone [28] is defined for both high engagement and distress 

(overload of player’s processing capacity) and is used by the adaptation controller for 

different adaptive responses for two states of low engagement – at low distress task 

demand which should be increased, and vice versa. 

4. Emotions in player-centric games 

4.1. Measurement of emotions 

In last decades, various methods for measurement of emotions have been proposed 

depending on both the context and purpose of the assessment. Emotion measurement 

strategies are usually divided into three main groups [49]: self-reports, observational 

methods, and psychophysiological measurements.  

4.1.1. Self-reports 

Self-reports provide details about emotions by asking subjects specially constructed 

surveys or interviews to describe their emotions during passed time period or at the 

present moment. B r a d l e y  and L a n g  [62] developed the Self-Assessment 

Manikin (SAM) as a flexible alternative to verbal self-report measures. SAM visually 
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depicts the three PAD dimensions (Pleasure, Arousal and Dominance) by 

representing each of them by five graphic characters along a nine-point scale. SAM 

was successfully used for assessment of player’s valence and arousal within 

controlled experiments with the Pacman emotionally adaptive game [63]. Similarly 

to SAM, AffectButton [64] was proposed as another method for reliable and valid 

affective self-report by asking the user to select an emotional state interpretation of 

values of the three PAD dimensions shown as facial expression. While practical 

application of SAM requires considerable explanations of meaning of the dominance 

dimension (ibid), the AffectButton needs no user interpretation of all the three PAD 

dimensions 

Another very popular instrument for psychometric self-report measurement of 

positive and negative affect (emotional valence) is the Positive and Negative Affect 

Schedule (PANAS) method proposed in [2]. This method consists of ten 

psychometric scales for lexical measuring emotional valence, namely excited, proud, 

inspired, and determined for positive affect, and scared, hostile, upset, and jittery for 

negative one. The PANAS method is proven in balanced research on emotions on 

both positive and negative emotional valences [65]. 

As a self-report measure of engagement in playing video games, the Game 

Experience Questionnaire (GEQ) was developed [66]. GEQ includes a core module 

dealing with actual experiences during gameplay, a social presence module covering 

gaming with others, and a post-game module concerning post-play player’s 

experiences. GEQ was validated as a powerful instrument for assessing game 

engagement continuum in terms of adequate separation, rating scale functioning, and 

dimensionality [48, 60]. For measuring self-reported mood, the UWIST Mood 

Adjective Checklist (UMACL) was proposed [67], which indexes energetic arousal, 

tense arousal, and hedonic tone. 

Generally, self-reports represent cheap, convenient and well-accepted methods 

for measurement of emotions thanks to their self-referential nature and high face 

validity [49], however, they may be biased among certain groups of individuals who 

are not aware of (or competent in) revealing their emotional status [7] and might 

report on their beliefs about emotions rather than the emotions, which have occurred 

in reality. Self-reports are also limited by innate restrictions of human language and 

individual understanding of emotion labels [2]. 

4.1.2. Observational methods 

Observational methods are based on observation, recording and interpretation of 

body movements or facial behaviour in order to infer specific emotions. In the last 

couple of years, many arguments and conclusions about game player experiences 

have been successfully inferred on the base of analyses of facial expressions [48, 68, 

69]. E k m a n, S o r e n s o n  and  F r i e s e n [46] developed recognition methods for 

facial expressions of six primary universal emotions as a basis for nonverbal 

behaviour and communication among people of various cultures. Next, a detailed 

Facial Action Coding System (FACS) was elaborated as a taxonomy system 

presenting movements of human facial muscles by coding characteristics of their 

changes and describing individual movements of the face muscles by action units 
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[70]. Though FACS has been proven as a useful standard for categorization and 

measuring of emotional expressions [68], FACS-coded automatic recognition of 

facial expressions has different levels of recognition across cultures and even 

systematic miscategorisation of certain facial expressions in specific cultures because 

of some limitations like facial deformations and skin colour [71]. 

Feature-based approaches for facial observation classify different facial 

expressions by using facial feature trackers and analysing a small amount of features 

such as facial distances and angles limited between six and thirty [72]. H u p o n t, 

B a l d a s s a r r i and C e r e z o [47] used a correlation-based feature selection 

technique in order to select most useful features from an initial set of distances and 

angles obtained from twenty characteristic facial points. Model-based approaches for 

facial expression recognition were conducted within unconstrained video 

environments with changes in illumination and face location showing high 

recognition accuracy and robustness [69]. T a n, B a k k e s  and  P i s a n [48] 

conducted experiments with a FPS game (Portal 2) and with a social drawing trivia 

game, in order to infer joy, surprise, and anger, plus neutral expressions. Recently, 

facial expression recognition SDK’s are used for modelling and unobtrusively 

inferring player affective state and player experience, based on analysis of facial 

expressions [73]. 

As a whole, facial and body movements’ observation provide rich data and, 

though being expensive and time consuming [49], are very useful for examining the 

expression of emotions. On other hand, their validity in some cases might be 

problematic in terms of subjective issues such as gender and personal expressiveness 

[7]. Inferring human emotions based on facial expression recognition of the subjects 

may be problematic when emotions are intentionally expressed, suppressed or even 

hidden during the observation, which varies between cultures, races and social 

environments [74]. Therefore observational methods should supplement self-reports 

but not replace them totally. 

4.1.3. Psychophysiological measurements 

Physiological signal analysis is a method providing a more natural way for human 

emotions recognition as far as physiological activities and changes are direct 

reflections of processes in central and autonomic nervous systems. Physiological data 

are translated to psychological states by extraction of some specific features from 

measured physiological signals [75]. Next, the most popular features are picked out 

in order to be used for classification or estimation of discrete emotion classes by 

means of various machine learning methods or statistical approaches [29]. Adaptive 

affective games mainly use several groups of physiological signals (monitoring 

modalities). These measured physiological responses are either produced by ANS 

reflecting cardiovascular, electro-dermal, and muscle activities are indicators of CNS 

functioning representing electrical activity of human brain. 

The most popular ANS measures used in adaptive player-centric games are the 

ones of cardiovascular, electro-dermal, and muscle activities. Traditionally, 

cardiovascular activity is measured by means of electrocardiography (ECG). ECG is 

used to extract the subject’s Heart Rate (HR) and Heart Rate Variability (HRV). HRV 
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represents adaptation changes in the time intervals between adjacent heartbeats in 

response with environmental and/or internal stimuli [76]. The adaptation mechanisms 

of HRV are in response to activities of the sympathetic and parasympathetic nervous 

systems, where [77] provides a detailed review of origins, methods, and caveats about 

HRV. Another, less popular than ECG, way to calculate HRV is based on measuring 

Blood Volume Pulse (BVP) signal [78]. BVP is a relative measure and represents 

percent of blood vessel pressure [16] using a less obtrusive sensor than ECG. Time 

needed for BVP to return to its normal level indicates the extent of feeling the 

emotion. 

Electro-Dermal Activity (EDA), often referred to as Galvanic Skin Response 

(GSR), is a measure of skin conductance response. The epidermis has a pronounced 

activity that is directly related to the activity of the sweat glands, which are regulated 

by the sympathetic nervous system [79]. EDA represents the electrical conductivity 

of the skin, which is directly dependent on the activity of the sweat glands, which in 

turn is related to the function of the sympathetic nerve. EDA contains two main 

components: tonic skin conductance meaning response baseline during absence of 

any specific discrete environmental changes, and phasic skin conductance applying 

to possible events that happen [9]. Thanks to its simplicity and low cost measuring 

techniques, EDA continues enjoying wide popularity – alone or combined with other 

techniques [80] – for finding correlations with the player experience and affective 

changes in player state. Applying only EDA measurements for inferring emotional 

arousal and stress has a proven strong content validity [28].  

Electromyography (EMG) is a non-invasive electro-diagnostic method for 

registration of electrical activity produced by muscles of the skeleton and/or the face 

[81]. Electromyograms represent graphically electrical potentials recorded by surface 

electrodes and produced by muscles as reaction of electrical or neurologic stimuli. 

Together with EDA and HRV, EMG features were employed for real time adjustment 

of game speed in an emotionally adaptive version of Pacman [63] resulting in larger 

movements in the zygomaticus major muscle with more positive valence reports for 

higher speeds. In [78] this algorithm was compared to the EDA-based algorithm for 

stress detection proposed by H e a l e y  and P i c a r d  [82] in the research context of 

biofeedback-based relaxation training. Both the algorithms are proven to have similar 

effectiveness, which makes the authors suppose they will produce similar results in 

biofeedback games. 

Besides employing physiological responses reflecting cardiovascular, electro-

dermal, and muscle activities, affective applications may use some other ANS 

measures for emotional-based adaptation. RESPiration (RESP) rate and skin 

TEMPerature (TEMP) may be affected by arousal and emotional states like joy, anger 

and anxiety [9, 83]. Rarely, an adaptive affective game may use KEYBoard pressure 

(KEYB) [63] as a measure indicating changes in individual player effort or emotion 

at playing the game. 

In contrast to the ANS methods, electroencephalography (EEG) and other 

neuroimaging methods measure electrical activity caused spontaneously by 

functioning of the central nervous system. They try to extract information relevant to 

human thoughts and emotions in a non-invasive way by placing electrodes on the 
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scalp and amplifying the signal. Cognitive psychology and physiology measures 

event-related potentials provoked as reaction to external physical stimuli [6]. EEG is 

a method for observing rhythmic macroscopic neural oscillations produced by 

synchronized activity of brain neurons. These oscillations are observed in specific 

frequency ranges named as alpha (8-13 Hz), delta (1-4 Hz), theta (4-8 Hz), beta  

(13-30 Hz) and gamma (30-70 Hz) frequency bands and are highly used for studying 

neuropsychiatric diseases [84]. EEG is known by its high temporal resolution – on 

the order of milliseconds – which requires sampling higher rates, however, it offers 

low spatial resolution of the brain [85]. On other side, neuroimaging methods [7] such 

as magnetoencephalography (MEG), functional Magnetic Resonance Imaging 

(fMRI) and Positron Emission Tomography (PET) are proven as being more precise 

in assessment of brain activity location and hence to identify brain structures 

responsible to specific emotions. They provide better temporal resolution but are 

more expensive and used primarily for clinical research. A much cheaper, safer, and 

highly portable alternative to fMRI is the multi-wavelength optical spectroscopy 

technique called functional Near Infrared Spectroscopy (fNIR), which measures 

hemodynamic brain responses resulting from intentional sensory, motor, or cognitive 

activities [86]. fNIR serves for assessment of temporal progression of brain activity 

and offers good spatial resolution. 

4.2. Processing and interpretation of physiological signals 

The work of  P i c a r d,  V y z a s  and  H e a l e y [75] gave rise to hundreds of other 

studies in emotional and cognitive inferences based on physiological responses were 

conducted by reflecting these four criteria to a greater or lesser extent. All of them 

include measuring physiological signals, extraction of specific features from the 

measured responses, selection of the most appropriate features, using them for 

psychophysiological inference and, finally, adapting the affective computing system 

according to the inferred emotions of individual user in a smart way [28]. N o v a k, 

M i h e l j  and  M u n i h [29] provided a more detailed presentation of the general 

process of measuring, interpreting and using ANS responses in physiologically 

adaptive computing systems, in particular adaptive affective games. As presented in 

Fig. 4, measured raw physiological signals are recorded at the first stage of the 

process. At the second stage, they are used for extracting a number of features 

relevant for the type of psychophysiological measure. Next, extracted 

psychophysiological feature may be optionally normalized in term of reducing both 

intra- and inter-subject variability and possible differences in numerical ranges, by 

means of subtraction of (or division to) the baseline value or by subtracting the mean 

value and dividing the result by the standard deviation of all feature vectors. 

Dimension reduction is the second optional stage in the process, where the most 

relevant features are identified and selected in order to decrease both the cost and 

complexity of next data processing. At the third stage of the process, the feature 

vector (with possibly reduced size) is used at the data fusion stage, which is defined 

as “classification or estimation of psychological states from multiple 

psychophysiological relevant features obtained from different physiological signals”. 
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Finally, the inferred psychological states are used for appropriate system adaptation 

at the fourth process stage.  

 

Fig. 4. Stages in measuring and processing psychophysiological signals in affective systems [29] 

As shown in Fig. 4, classification and estimation are two alternative ways for 

making data fusion, i.e., for assigning a psychological label to the feature vector. 

Classification is a process of determining a categorical label for the feature vector, 

which consists of one or more psychological classes like “boredom”, “arousal” or 

“worry”. Different classification methods are compared in [29] such as k-Nearest 

Neighbour (kNN), Bayesian Networks (BNT), Regression Trees (RT) and Decision 

Trees (DT) [9], Naïve Bayes Classifier (NBC) [86], Linear Discriminant Analysis 

(LDA) [87], and Support Vector Machines (SVM) [83], as well. As the authors note, 

direct comparison of their accuracy rates is dependent on types of extracted features, 

normalization method and ways for reducing features vector dimension. Usually, 

researchers implement several classifiers and compare their accuracy by means of 

cross-validation on the training data set. With regard to transparency, classification 

trees and LDA are mostly preferred, whereupon LDA has easiest implementation. 

Experiments with relatively small sample mostly use LDA, while for classifying 

larger samples SVM and ANN are preferred. On the other hand, estimation methods 

like linear regression [20, 88], fuzzy logic [89] and artificial neural networks [16] 

assign a continuous value within given numerical interval for the psychological state. 

Estimation appears preferable to classification, when the goal of adaptation is to 

adjust a continuous value like in the case of DDA [27, 89]. However, when game 

adaptation is based on several discrete levels of a psychological variable like arousal 

or valence, classification methods are employed [9]. 

5. Adaptation in modern affective games 

After providing a review of the methods and techniques of applying affective 

feedback in video games for realisation of specific targets of adaptation using 

emotion recognition based on models of player emotions, flow, immersion and 
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motivation, the study aims at investigation how modern affective games apply these 

adaptation methods and techniques in practice and how they are experimentally 

validated.  

5.1. Research questions 

After the pioneer work of by B e r s a k  et al. [4] with their Relax-to-Win affective 

game, there were created and experimented in controlled conditions many other 

affective computing applications recognizing changes in emotional state by 

measuring player’s physiological signals and reacting to them by adapting some 

application features. Other reviews in the area of affective computing are mainly 

focused on the fundamentals of physiological computing [28], automatic 

classification of emotions using physiological signals [80], or data fusion methods 

[29], but not on specific problems of adaptation in affective video games. With 

respect to the last, there have to be discussed not only details about emotional 

recognition such as measuring methods and classification accuracy but, as well, 

issues like targets of adaptation and type of adaptation strategies. Therefore, three 

main Research Questions (RQ) were identified, as follows:  

 RQ1. What types of emotionally adaptive video games have been created 

and what game features have been adapted using affect-based adaptation techniques? 

 RQ2. Which combination of sensors, hardware devices and methods are 

applied to obtain psycho-physiological measures and associated features in order to 

recognise specific emotions for being used for game adaptation? 

 RQ3. What are the objectives of conducted experimental studies and what 

outcomes of applying emotional adaptation in video games were found and 

practically validated regarding player experience? 

5.2. Method 

5.2.1. Literature research 

The literature research aimed at finding a great quantity of journal articles, conference 

papers, theses and technical reports concerning adaptation models, mechanisms and 

practices used in affective video games. For this purpose, online databases relevant 

to information technology and social sciences were searched for relevant literature, 

such as Google Scholar, Science Direct, ACM Digital Library, IEEE Xplore Digital 

Library, Emerald, BioMed Central, PsychInfo, ERIC (Education Resources 

Information Center), EBSCO, ResearchGate, ProQuest Dissertations and Theses 

(Index to Theses), OERCommons for open educational resources [90], and 

Academia. On the other hand, many studies were collected manually by following 

references of literature. 

There search terms addressing adaptive digital games with regards to the variety 

of existing computer games types and genres, were used, including terms like “video 

game”, “entertainment game”, “games for fun”, “serious game”, “applied game”, or 

“educational game”. Game search term were used in conjunction with terms 

addressing adaptation and affect, such as “affective gameplay”, “player-centric 

models”, “emotionally adaptive game”, “psychophysiological measure”, “feature 
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extraction”, “emotion recognition”, and “emotion inference”. Another conjunction 

was used regarding practical experiments conducted for validation of outcomes of 

affective adaptation – by applying search terms like “game based learning”, 

“satisfaction”, “immersion”, “motivation”, and “learnability”. 

5.2.2. Papers’ selection for inclusion in the review 

The research process was carried out in two stages: since September 2014 until 

January 2015 and, next, since August 2015 until the end of the year. There were 

systematically reviewed more than 300 papers relevant to the search terms. All of 

them presented research works in the field of behavioural signal processing used for 

emotion recognition; however, relatively few of them were developed in an 

ecologically valid context such as computer gameplay. On other hand, many of found 

studies of emotions in game play aimed only at discovering some elicited emotional 

responses to game events such as of arousal, valence, boredom, frustration or 

dominance [63, 89], or at exploring dependencies between physiological signals and 

gameplay preferences and experiences [16, 60]. All of this research demonstrates 

significant correlations between objectively measured affect signals and player’s 

experiences subjectively reported by means of self-report methods like SAM and 

GEQ, however, they do not apply the inferred emotions for adaptation of any game 

features [42]. 

In order to answer the three research questions, the review should embrace 

research trends especially in modern adaptive video games, where affective correlates 

to player’s physiology are actively used for adaptation of game mechanics, dynamics 

and aesthetics. With this purpose, several criteria were used for the papers’ selection 

for inclusion in the review: (1) the paper should present a video game adapted by 

means of affect-based adaptation techniques; (2) the study should reflect adaptation 

methods, psychophysiological measurement techniques and eventual features and 

devices applied to recognise specific emotions; (3) objectives of conducted 

experimental study, validation results and outcomes of affect-based game adaptation 

should be outlined; (4) papers reflecting different aspects of same study were treated 

together; (5) the paper should be written in English and published during last 10 

years. 

No other limitations concerning particular publication type or research methods 

were applied. From over 300 initially collected articles, only 14 studies were selected 

for comparison in the review. 

5.3. Findings and discussion 

Selected studies represent 14 video games with affect-based adaptation developed in 

last ten years and reveal the specific problems of adaptation in affective video games. 

Review findings are organised in three groups according to the research questions 

with categorisation dimensions as follows: 

1. Affective video game properties – include literature reference(s), name of the 

affective digital game, primary game purpose (for entertainment or applied game), 

game genre (incl. dimension of the space), delivery platform, gameplay mode (single- 

or multi-player), and adapted game features. 
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2. Technological and methodological issues of realisation of affective games – 

comprises affective feedback type – negative, positive, or Combined (C), measured 

psychophysiological signals, extracted features, biofeedback device, sampling rate 

(Hz), duration of time window (s), calibration period (min), applied signal filtering, 

recognized emotions, method for emotion classification or estimation, and achieved 

accuracy. 

3. Experimental validation, outcomes and impact of the affect-based adaptation 

– covers the objectives of the study (presented here in order to be juxtaposed to the 

results); chosen experimental method – such as Randomized Control Trial (RCT), 

Quasi-Experimental Design (QED), or case study; number of subjects (participants) 

in the experiment; age interval and age mean; gender balance; previous game 

experience of subjects (if any); number of game sessions and session time (min.); 

self-report means such as questionnaires and interviews and, finally, results and 

conclusions about adaptation benefits and shortcomings. 

Table 1 represents a comparison between the affective video game properties. 

Empty cells anywhere in the table mean no information is available on the respective 

issue. The majority of the studied affective games have as a primary purpose 

entertainment. Only two of these 14 games are created with applied purpose – in the 

area of team cognition, communication and coordination [91, 92] and clinical studies 

of concentration level [93]. The game genre is quite diverse, whereupon games either 

are variants of simple old arcade (archery, Pong and Pac-man) and puzzle (Tetris) 

games, or are modifications of popular FPS, platform or car racing games. All the 

games are desktop applications (in three of the cases, with additional game 

controllers) excluding game No 5, which is created using augmented-reality over the 

Playware playground platform [16]. Single-player appears to be the preferred mode 

for experimental games, with exclusion for games No 6 and 14 (two-player) and  

No 1 and 7 (multiple-player). 

For the arcade and puzzle games, one or few game features are adapted 

concerning only DDA. On other hand, more complex video games provide more 

opportunities for affect-based adaptation – not only concerning DDA but adjusting 

audio-visual properties [92] like environmental density and gravity [10], territorial 

control [93], tunnel vision effects [91], and visibility [34]. As well, some of them 

adapt skills of NPC [87] or other properties of opponents like enemy spawn, health 

and weapon control, and boss appearances [17].  

Table 2 reveals practical technological and methodological issues of realisation 

of the same affective games as these listed in Table 1. Adaptation mechanisms 

include mainly positive affective feedback – for increasing performance, fun and 

randomness of the game [34], or negative feedback – for creation of behavioural 

stability, during the play [94]. Some of the games use more complex adaptive 

algorithms switching from positive to negative biofeedback and vice versa in cases 

of specific emotional states and thresholds of the player, in order to keep the player 

in the flow zone. Affective adaptations are accomplished mainly by using ANS 

signals obtained by ECG, PPG, GSR, EMG or measuring of respiration rhythms, 

temperature or keyboard pressure. Only two of the analysed affective games make 

use of EEG, namely alpha and theta rhythms [20, 84]. Obviously, ANS measurements 
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appear to be more popular in affective gaming than using CNS signals, as far as ANS 

measures represent mainly emotional dimensions rather than discrete emotions [7]. 

CNS signals are used for extracting relatively small number of features (two or three), 

while the features of ANS signals (M=4.60, SD=5.08) are found to vary from 1 to 17 

[9] per signal. In cases of more extracted features, feature selection is accomplished 

aiming at finding an optimal set of signal features. Among the various methods for 

future selection, the Sequential Feature Selection (SFS) appears to be mostly used 

with respect to maximization of the classification performance [29]. 

Table 1. Properties of affective video games 

N 
Refe-

rences 
Game name 

Game 

purpose 

Game 

genre 

Delivery 

platform 
Mode Adapted game features 

1 [92] 

PhysiRogue (on 

Rogue Signals 
game) 

applied 2D action 
desktop, GPS-

location-aware 

multi-

ple-
player 

Seekers’ desirability of 

predators, player visual 
representation 

2 [10] Half-Life 2 
entertain-

ment 
3D FPS desktop 

single- 

player 

Avatar speed, sound volume, 

environmental density, gravity, 
and transparency; weapon 

damage; red and b/w filters; 

NPC creation 

3 
[63, 

96] 

EMO-Pacman 
(on Pac-Man 

game) 

entertain- 

ment 
2D arcade desktop 

single- 

player 
Objects’ speed 

4 [83] Tetris 
entertain- 

ment 
2D puzzle desktop 

single- 

player 
Speed of falling Tetris blocks 

5 
[16, 

97] 

Bug-Smasher  

(a Playware 

ambient game) 

entertain- 

ment 

physical 

platform 

Playware 

playground 

platform 

single- 

player 

Bugs’ speed and the entropy of 

bug-visited tiles 

6 [9] Pong 
entertain- 
ment 

2D arcade desktop 
two- 
players 

Speed and size of both ball and 

paddle; sluggish or 

overresponsive keyboard 

7 
[86, 
93] 

MindTactics 

(Unity3D 

game) 

applied 
3D 
strategy 

desktop 

single/ 

multi-

player 

Territorial control and 
distractors 

8 [87] 
A 3D games on 
TORCS1 

entertain- 
ment 

racing desktop 
single-
player 

Opponent skill 

9 [32] 
2D Xbox360 

FPS game 

entertain- 

ment 

2D side-
scrolling 

shooter 

desktop with 
Microsoft Xbox 

360 controller 

single- 

player 

Enemy target size, flame 

length, speed and jump height, 

weather conditions and boss 
speed 

10 [20] Tetris 
entertain- 
ment 

2D puzzle desktop 
single- 
player 

Speed of falling Tetris blocks 

11 [84] Archery game 
entertain- 

ment 
shooting desktop 

single- 

player 
Archery focus level 

12 
[88, 
91] 

VANISH 
entertain- 
ment 

3D FPS desktop 
single- 
player 

Event probabilities, PCG and 

tunnel vision effects; 
character’s movement speed, 

stamina, and sanity level 

13 [34] 
Car racing 

game 

entertain- 

ment 
3D racing 

desktop, 
Logitech G27 

racing wheel 

single- 

player 
Visibility, steering, and speed 

14 [94] 

BioPong (based 

on the Pong 
game) 

entertain- 

ment 
2D arcade desktop 

two- 

players 
Ball speed, paddle size 

 

                                                 
1 The Open Racing Car Simulator (TORCS) 
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Table 2. Technological and methodological issues of realisation of affective games 

No FT2 Measured signals F3 
Biofeed-back 
device 

Rate 
(Hz) 

Time 
win-
dow 
(s) 

Cali-
bra-
tion 
(min) 

Signal filtering 
Recognized 
emotions 

Classifi-
cation / 
estima-tion 

Accu-
racy 
(%) 

1 + 

Phasic EMG 
Phasic EDA 
Tonic EMG 
Tonic EDA 

1 
1 
1 
1 

ProComp2 
(Thought 
Techn.) 

10 
0,33 
10 
0,33 

1 
30 
6 
300 

  Kalman filter Stress level 
Direct 
mapping 

 

2 + 
HRV (ECG) 
HR 
EDA 

2 
2 
2 

Lightstone 
(Wild Divine) 

  2 5 
Average 
downsampling at 
2 s 

Horror 
Direct 
mapping 

 

3 – 

BVP 
EDA 
EMG  
RESP 
KEYB 

4 
NeXus and 
Biotrace+ 
(Mind Media) 

128 
32 
1024 
32 
100 

180   

High-pass 
Chebyshev 20Hz 
filter; smoothing 
filter 

Boredom, 
frustration and 
enjoyment 

Direct 
mapping 

 

4 C 

EDA 
BVP 
HR 
RESP 
TEMP 

4 
2 
3 
3 
2 

Biosemi 
Active 2 

1024 20 1.5 
Moving average 
filters  

Boredom, 
anxiety, and 
engage-ment 

SVM 53.33 

5 + 
HR 
BVP 
EDA 

13 
7 
13 

ProComp Inf. 
(Thought 
Techn.) 

256 45 0 
Discrete Fourier 
Transform 
(DFT) filter 

Entertainment 
value 

ANN 79.76 

6 C 

ECG 
PPG 
EDA 
EMG  
TEMP 

17 
3 
5 
16 
3 

Biopac 
(BIOPAC 
Systems) 

1000 

 
 
0.025 
0.1 
 

 
Low-pass filters, 
DFT, wavelets 

Anxiety level 

RT 
kNN 
BNT 
SVM 

88.5 
80.4 
80.6 
88.9 

7 + fNIR 4 
Bespoke fNIR 
device 

2048 16.5 0.33 
Low-pass cut-off 
frequency filter 
(0.14 Hz) 

Attention level 
kNN 
NBC 

73.77 
57.37 

8 + 

BVP 
ECG 
EDA 
RESP 
TEMP 

11 
11 
11 
11 
11 

ProComp 
Infinity 
(Thought 
Techn.) 

2048 
2048 
256 
256 
256 

60 1 Horror 
Preference 
level 

LDA 74 

9 + 

BVP 
EDA 
ECG 
EMG  
RESP 
TEMP 

1 
1 
1 
1 
1 
1 

Flexcomp 
Infinity 
(Thought 
Techn.), 
TTLAPI 

2048   10 

Chebyshev type 
II filters, 
downsampling 
by 64 

Preference 
level 

Direct 
mapping 

 

10 C 
Alpha & theta 
(EEG) 

2   2 2  
Boredom, 
engage-ment, 
flow, overload 

Linear 
estima-tion 

 

11 C Alpha (EEG) 3 
Bespoke 
device 

256 2 3 
FFT band-pass 
filter (0.5~50 Hz) 

Focus level 
Direct 
mapping 

 

12 C 
BVP 
EDA 
EMG 

2 
2 
1 

Nexus-10 
(Mind Media) 
and 
BioTrace+ 

32 
32 
1024 

2 
5 
0.125 

5 
Smoothing filter 
(moving 
average) 

Arousal and 
valence levels 

Linear / 
nonlinear 
regre-sions 

85 

13 + EDA 1 
FlexComp 
(Thought 
Techn.) 

1 30 8   Arousal 
Direct 
mapping 

 

14 C 
EDA 
HR 

1 
1 

Arduino    0   Arousal 
Direct 
mapping 

 

 

With regard to biofeedback devices, three types of hardware are used: (1) simple 

and cheap (up to several hundreds of USD) commercial devices like U3-HV by 

LabJack Corp. and Lightstone by Wild Divine; (2) powerful, multichannel and 

expensive (up to several thousands of USD) commercial systems such as ProComp 

Infinity of Thought Technologies; (3) custom home-made devices, e.g., based on 

Arduino platform [94]. The measurement sampling rate varies highly – from 0.33 Hz 

up to 2048 Hz, although rates greater than 200-400 Hz are recommended for 

psychophysiological measurements [95]. Signals measured with a sample rate higher 

                                                 
2 Feedback Type (FT) 
3 Features (F) 
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than 1 kHz are next down-sampled for feature extraction. The time window for 

analysed signal features differs from 0.025 s to 180 s (M=26.05, SD=48.18) and 

depends on measured signal, extracted feature and adaptation purpose. Adoption of 

a rather short time window hides risks of strong influence of sudden fluctuations in 

measured signal value, which may compromise the experiment. On other hand, 

choosing a rather long time window reduces the sensitivity of the adaptive loop [20]. 

Eventually, the duration of time window may depend on the time of field trial 

sessions, which vary from several minutes for arcade and racing games up to hours 

for video games like MindTactics [86]. Calibration periods are applied only in nine 

of the experiments with calibration time (M=3.98, SD=3.31) from 0.33 up to 10 min. 

In eleven of the studies, raw signals are filtered for removing noise and/or for 

separating high from low frequency bands. Extracted signal features either are used 

for emotion inferencing (in cases of emotion-based adaptation) or are directly 

mapped to the adapted features of the affective game, without any recognition of 

emotions. Half of the reviewed studies apply directly mapping of threshold values of 

the measured signals or extracted features to values of the adapted game features, as 

this is an easy and straightforward way of achieving adaptiveness. As methods for 

data fusion, emotion inferencing uses either linear estimation or regression methods 

[88, 91], or emotion classification through kNN, SVM, ANN, LDA, BNT and NBC, 

with classification accuracy being dependent on the method and experimental context 

and having extreme values for SVM – 53.33% [83] and 88.9% [9]. The choice of 

discrete emotions depends strongly on the primary purpose and the genre of the 

effective game. On the other hand, many adaptive games use more straightforward 

approaches of direct mapping of physiological signals correlated to one or several 

discrete emotions or simply to the arousal level [34, 94]. Raw signal or its features 

are mapped to adjusted game properties or features, either by establishing linear 

dependency between them or by setting signal thresholds for switching on or off 

given game features. 

Classification accuracy depends strongly on the context of executed 

experiments such as training data set, use of cross-validation, and number of analysed 

participants (subjects) played the game. Table 3 provides comparison regarding 

experimental validation, outcomes and impact of the affect-based adaptation. Almost 

all the studies use quasi-experimental design with repeated treatment approaches 

having pre-test and post-test measures each time, with exclusion of the study of [10], 

which applies randomized control trial. For the 14 compared games, the number of 

subjects varies from 5 [93] up to 75 [87] excluding the first game (although lack of 

experimental data, it was included here due to its technological merits). Although 

experiments with too few subjects can bring valuable informative about further 

research directions, they do not have statistical significance and remain unconvincing 

[15]. The subject age interval depends on the goal of the study and varies from 8-10 

years [16] up to 18-54 years [9] and has mean values M between 19 and 35 and 

standard deviations SD ranges between 13.0 and 14.8. The gender balance (males to 

females ratio) is in favour of men (M=2.39, SD=1.39) and varies between 0.67 and 

4.33. In four of the experiments, subjects have been required to have previous game 

experience, while in other three experiments various game experience has been 
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registered but not required. Repeated treatment approaches imply several play 

sessions (M=5.17, SD=6.16) playing non-adaptive and adaptive versions of the same 

game. Each session has lasted from 1.5 up to 10 min. (M=3.82, SD=2.40). 

The last column of Table 3 provides a summary of the results on the  outcome 

and impact of emotional adaptivity obtained by means of custom questionnaires, 

GEQ, SAM, UMACL, or other means for self-report. The results obtained by 

questionnaires demonstrate that the adapted game version creates more fun at the 

players than the static game [16, 32] and brings better performance of the majority of 

the participants [9]. What is more, affect-based game adaptation makes gameplay 

more challenging and more satisfying than performance-based DDA, where the 

satisfaction index is defined as a sum of the values of challenge, enjoyment, and 

reported performance appraisal. Combining negative and positive affective feedback 

types contributes essentially for reaching a higher satisfaction and keeping the player 

in the flow zone, while avoiding both player’s boredom and anxiety. As stated in 

[83], “the challenge should be corrected to maintain a state of pleasure and 

involvement, showing the importance of having games that increase their difficulty 

according to the competence and emotions of the player”. 

Table 3. Experimental validation, outcomes and impact of the affect-based adaptation 

No Study objectives 
Met- 
hod 

No  
sub- 
jects 

Age 
Age 
M 

Males- 
Fema-
les 

Gen-
der  
bala-
nce 

Game  
expe- 
rience 

NG4 
Game  
time  
(min) 

Question-
naires  
and inter-
views 

Results and conclusions 

1 

To apply 
physiological 
measures for 
inferring player’s 
stress (activation) 
and, next, for 
dynamic 
adjustment of some 
game features 

          

Game adaptation to player's 
stress (activation) may lead to 
higher immersion, new forms 
of focused involvement and, as 
well, to new game play 
strategies 

2 

To study how 
appliance of 
biometric sensory 
devices would 
allow incorporation 
of player’s 
biometric 
information into a 
commercial 
computer game for 
achieving more 
dynamic, 
personalized and 
situated game 
experiences 

RCT 14 
15-
50 

 13-3 4.33 various 2 5 

7 q. custom 
questionnai
r and post-
session 
interview 

Evaluation results demonstrate 
biometric adaptation can 
improve the situated feeling of 
horror. While variation of 
biometric information between 
male was found to be wide, the 
same was almost constant for 
females. Biometric adaptation 
of game mechanics and audio 
effects increases player 
engagement, but only for these 
players who do enjoy the game  
genre 

3 

To investigate how 

changes in game 

speed produce 

emotional 

responces 

accompanied by 

specific emotion-

data 

QED 24 
23-

46 
29.7 19-5 3.80 yes 3 2 

Custom 

questionnai

-res (incl. 

parts of 

SAM), 

semi-

structured 

post-game 

interview  

Changing game speed inducted 

boredom, frustration and 

enjoyment, where slow speed 

was considered boring and fast 

speed was enjoyable for some 

players but frustrating for 

others. Experimental data 

should be further analyzed for 

variance, kurtosis and 

skewness. For an emotionally 

adapted Pacman game, initial 

or previous emotional states 

should be considered, together 

with accurate emotion-data on 

flow crossing-border events 

                                                 
4 Number of played Games (NG) 
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Table 3 (c o n t i n u e d) 

No Study objectives 
Met- 
hod 

No  
sub- 
jects 

Age 
Age 
M 

Males- 
females 

Gen-
der  
Bala-
nce 

Game  
expe- 
rience 

N G 
Game  
time  
(min) 

Question-
naires  
and inter-
views 

Results and conclusions 

4 

To validate usefulness 
of boredom, anxiety, 
and engagement by 
modulating challenge 
by adjusting game 
difficulty, where 
playing at different 
difficulty levels 
provokes different 
emotional states (H1), 
which can be assessed 
via central and 
peripheral signals 
(H2); increasing skills 
moves the player 
from engagement to 
boredom  (H3) 

QED 20  27 13-7 1.86 various 6 5 

30 q. 
custom 
question-
nair about 
emotions 
and involv-
ment, 
SAM 

Player engagement may 
decrease if game difficulty is 
not modulated for a longer 
period. Player disengagement 
in hard conditions should  be 
solved increasing challange 
according detected emotion, 
current level of difficulty and 
the direction of its last change. 
Analysis of measured signals 
should be conducted not only 
for the complete session time, 
but on an event basis 

5 

To demonstrate how a 
subjective model of 
reported entertainment 
using statistical 
features derived from 
playeŕ s physiological 
state can be applied 
for modulation of 
game parameters in 
order to enhance 
player satisfaction 

QED 72 8-10  13-11 1.18 no 4 1.5 

4 
alternative 
forced 
choice  
(4-AFC) 
protocol 

Real-time adaptation can 
significantly increasy 
entertainment value of a game 
for children. At the same time, 
individual differences 
regarding preferences and 
playing behavior make inter-
subject generalization not 
possible and, thus, limit the 
predictive ability of player 
models. As well, erroneous 
adjustments of levels of both 
curiosity and challenge within 
the game may have an 
influence on preference of 
children for adaptation 

6 

To analyse player’s 
physiological signals 
in order to infer 
anxiety level and to 
study how it can be 
used as target affective 
state for DDA of 
game in real time 

QED 15 
18-
54 

 8-7 1.14 yes 24 2 
Anxiety 
self-report 

RT classifier demonstrated 
highest accuracy in predicting 
player’s anxiety level. Most 
participants perceived the 
gameplay with the affect-
based DDA to be more 
challenging and satisfying 
than the one with 
performance-based DDA 

7 

To determine if fNIR 
biomarkers of neural 
activity, which are 
generated by 
intentional cognitive 
activity, can be 
applied to indicate 
directly the brain effort 
within an ecologically 
valid environment 
using compelling 
brain-computer 
intefaces for game 
design 

QED 5 
24-
27 

  4-1 4.00 no 1 2.83 

Effor self-
assessment 
screen     
(0-10) 

The success rate of 
classification algorithms varies 
between subjects revealing the 
fact subjects use closed loop 
systems in different ways.  
Future brain research needs 
incorporation of more players 
with emphasis on team work 
in order to analyze not only 
individual but group dynamic, 
as well. Game sessions can be 
played most effectively in 
online game environments 
allowing better control of data 
acquisition and user feedback 

8 

To develop a 
methodological 
framework for 
estimation of player’s 
preference among 
racing game 
experiences using 
playeŕ s physiological 
state 

QED 75 
18-
30 

23.4 60-15 4.00 various 7 3 

General 
question-
naire and 
enjoyment 
preference 
2-AFC 
question-
naire 

Only 42% of subjects had 
consistent agreement on 
preferring opponent as skilled 
as the player. Ths, game 
preference shold be regarded 
as a personal issue, therefore, it 
is hard to design a priori game 
experience (e.g., by changing 
opponent skills) that appears 
to match needs of all the 
players. Further experiments 
should modify game 
experience in real time in 
order to keep player 
satisfaction to a high level 
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Table 3 (c o n t i n u e d) 

N Study objectives 
Met- 
hod 

No  
sub- 
jects 

Age 
Age 
M 

Males- 
females 

Gender  
balance 

Game  
expe- 
rience 

N G 
Game  
time  
(min) 

Questio-
nnaires  
and inter-
views 

Results and conclusions 

9 

To study how direct 
and indirect 
physiological sensor 
input can be applied 
to augment traditional 
game control and to 
find out best mapping 
between measured 
signals and game 
mechanics 

QED 10 
21-
40 

25.8 7-3 2.33 yes 3 10 

Demograp
hics 
questionna
ire and 
game-play 
experience 
survey 

Physiological augmentation of 
game interaction creates better 
fun experience than traditional 
game control. Participants do 
prefer direct (rather than 
indirect) physiological control in 
games because of its visible 
responsiveness when  mapped 
intuitively to reflect actions in 
the virtual world. Indirect 
physiological input serves better 
for modifying passive reactions 
and peripheral features of the 
game world 

10 

To investigate ways 
of “constructing a 
biocybernetic loop 
that is both 
scientifically valid and 
effective from the 
perspective of user 
experience”, namely 
conservative, liberal, 
normal and manual 
game agjustment 
according to EEG 
deviations from 
baseline 

QED 10   4-6 0.67 no 4 5 

UMACL 
and 
immersion 
question-
naire 

Experimental results showed 
biocybernetic game playing 
experiences in conservative 
mode have an enhanced 
alertness compared to the liberal 
mode. On other hand, players 
reported the manual game 
mode as more immersive than 
the others, that was explained 
by optimal level of challenge 
provided in manual mode 

11 

To demonstrate how 
a custom wearable 
EEG-based device 
with dry EEG sensors 
can be used for 
cognitive state 
monitoring within 
adaptive gaming 

QED 10 
24-
27 

   no    

Experimental results proved 
that the focus feature of EEG 
alpha rhythm is a reliable 
indicator of player focus state. 
The proposed algorithm for 
measuring user focus level can 
be useful not only for short-term 
memory tasks, but for long-
term activities, as well 

12 

To study different 
models of adjustment 
of game mechanics 
combined with direct 
and indirect 
biofeedbacks 

QED 24 
19-
28 

22.5 16-8 2.00 yes 3 1.5 

Arousal 
and 
valence, 
GEQ, 
biofeed-
back 
condition 

There was created and 
experimentaly tested a robust 
and completely game-
independent framework of an 
indirect biofeedback system. It 
was proven the framework 
“contributes significantly to the 
player affection towards the 
game” 

13 

To model interactions 
between player 
arousal derived by 
physiological 
measures and game 
difficulty as a control 
problem using 
proportional and 
proportional-integral-
derivative control, and 
to validate the 
approach by adapting 
game mechanics of a 
car-racing game in 
real time 

QED 25 
18-
33 

   no 2 5  

Authors found speed adaptation 
is more effective than the other 
two mechanics and, as well, 
between the two control modes. 
They proved  proportional-
integral-derivative control 
results in impreved adaptation 
and decreased oscillations in a 
loop with negative feadback 
compared to proportional-only 
control 

14 

To study whether a 
biofeedback version 
of the Pong game 
would improve user 
experience and 
performance 
compared to the non-
adaptive version 

QED 8   4-4 1.00 no 3 3 

Custom 
questionna
ire about 
game 
experience 

Experimental results 
demonstrated that physiological 
data leads to an improved user 
experience, however, user 
performance within a two-
players gameplay remains the 
same with applying 
biofeedback. Further studies 
should investigate the difference 
between displaying and not 
showing the physiological 
player’s state in the game 
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6. Conclusion 

Since its advent in the end of the last century, affective computing has never stopped 

being attractive and challenging for researchers, engineers and software developers 

who try to create emotionally-based applications and products. As discussed above, 

there are reported many experimental approaches for inferring user emotions 

according to measured physiological signals. Model-based approaches derived from 

theoretical frameworks for mapping player’s modalities to emotional state can be 

confronted to model-free approaches accepting that mapping is unknown and using 

either a statistical model, a static or a dynamic machine learning for discovering the 

mapping function and inferring emotions according to input modalities [19]. The 

majority of adaptive physiological systems use static data fusion methods [29], where 

machine learning methods are employed for training and cross-validation, which are 

performed once and in advance to the system adaptation. To a large extent, this is 

determined by the fact that software applications for automatic classification such as 

IBM SPSS do not allow online application. On the other hand, dynamic data fusion 

systems learn on-the-fly or analyse history of the measured signals and extracted 

features.  

Though there are at present plenty of affective research papers in the context of 

video games, relatively few of them really apply recognized emotions for adapting 

some game features and properties in real time. The creation of precise models 

describing player behaviour and applying them practically during both controlled and 

uncontrolled gameplay is crucial for accurate recognition of emotions and, therefore, 

for an effective affect-based adaptation of entertainment games or applied games for 

technology-enhanced learning [98]. In order to deal with the manifestation of affect 

specific for any individual player, affective behavioural models should include a real 

time learning module for tracking the behaviour of the player and extracting and 

analysing available affective patterns [11]. Thus, such player models will accumulate 

valuable information about affective state of the player by using direct observations 

and will be able to monitor the player’s behaviour in an effective way, and even to 

predict it. Such predictive models can be based on ANN for relating game features 

regarding mechanics, dynamics and aesthetics of the game, to entertainment values 

like fun, curiosity and challenge [16]. Dynamic models of player behaviour focused 

on tracking and monitoring of player interactions can be used for both recognition of 

player’s emotions and inducing appropriate emotions during gameplay. What is 

more, they can be applied for generation of emotional NPC’s appropriate for specific 

player’s behaviour. 

The affective player models can include various strategies for adjusting game 

features according to physiological state of the player in real time. Besides player’s 

responses from ANS and CNS activity (physiological modality) and behavioural 

expressions like face grimaces, speech and gesture (expressive modality), adaptation 

strategies should take into account other player’s modalities such as cognitive 

(interpretive) modality concerning appraisal aspects of emotion generation and, as 

well, experiential (subjective) modality dealing with conscious emotional 

experiences of individual users [45]. The complex, multi-modal nature of human 
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emotions supposes that all types of emotion signatures should be detected and 

analyses all of them together, however, not all of them rely on non-obtrusive and 

appropriate measuring methods. For example, emotion recognition using facial 

expression will have a worse accuracy if the user is not still or inclined to the screen 

more or less than the required angle [73]. What is more, standard sensors such as 

fixed finger-tip caps for measuring GSR or HRV are less appropriate for active game 

play than wireless and wearable sensors [30] allowing physical contact with the body 

by being incorporated in gloves, shoes, glasses, helmets or other accessories. Finally, 

seamless contact sensors incorporated into traditional devices like computer mouse 

are very promising and much more appropriate for an advanced multi-modal 

biometric recognition of emotions. 

Until recently, adaptation mechanisms have been mainly explored in affective 

games using single-player mode because it creates less variability and potential 

problems with influencing player reaction by collaboration with other players [10]. 

Experiments with adaptive multi-player games may reveal interesting phenomena of 

dependencies between DDA and biometric responses of individual players in context 

of cooperative gameplay. Emotional-based adaptation may produce a different effect 

on the player depending on showing and hiding player’s physiological state in single 

player mode [94] or in a multi-player gameplay, which can make the player realizing 

better the adaptation mechanism and starting to control his/her physiological changes. 

In general, future research should investigate various ways for augmenting gaming 

experience through recognition of player’s affective state and applying it for dynamic 

adaptation of game features.  

Affective gaming has not yet gained enough popularity among the casual 

gamers and remains mostly restricted to laboratory experiments [15]. Latest 

developments in the area of affect-adaptive gaming pave the way from controlled and 

restricted laboratory experiments proving both the desirability and effectiveness of 

adjusting game features according to player’s affect, to commercial entertainment 

and serious video games with emotion-based adaptation. Further research in affect-

based adaptation should envisage more realistic and complete modelling and 

profiling for monitoring strategic and tactical player behaviour, providing a basis for 

multi-modal affective gaming with enhanced adaptation and representation of game 

environment, player’s avatar and NPC’s in the game. Future adaptive affective video 

games are expected to use appropriate and affordable sensors and devices, and to 

have proven ecological validity in more statistically representative field trials 

maximally closed to everyday game play. 
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