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Abstract: Intelligent Transport Systems (ITS) fall in the framework of cyber-
physical systems due to the interaction between physical systems (vehicles) and 
distributed information acquisition and dissemination infrastructure. With the 
accelerated development of wireless Vehicle-to-Vehicle (V2V) and Vehicle-to 
Infrastructure (V2I) communications, the integrated acquiring and processing of 
information is becoming feasible at an increasingly large scale. Accurate prediction 
of the traffic information in real time, such as the speed, flow, density has important 
applications in many areas of Intelligent Transport systems. It is a challenging 
problem due to the dynamic changes of the traffic states caused by many uncertain 
factors along a travelling route. In this paper we present a V2V based Speed Profile 
Prediction approach (V2VSPP) that was developed using neural network learning 
to predict the speed of selected agents based on the received signal strength values 
of communications between pairs of vehicles. The V2VSPP was trained and 
evaluated by using traffic data provided by the Australian Centre for Field 
Robotics. It contains vehicle state information, vehicle-to-vehicle communications 
and road maps with high temporal resolution for large numbers of interacting 
vehicles over a long time period. The experimental results show that the proposed 
approach (V2VSPP) has the capability of providing accurate predictions of speed 
profiles in multi-vehicle trajectories setup. 
Keywords: Cyber-Physical systems, Intelligent Transport systems, Vehicle-to-
Vehicle interaction (V2V), neural networks, speed profile prediction, traffic data. 

1. Introduction 

Cyber-Physical Systems (CPS) are emerging as an integrative research field aimed 
towards a new generation of engineered systems [22]. Cyber-Physical Systems 
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integrate computing and communication capabilities by monitoring and controlling 
the physical systems via embedded hardware and computers [20]. CPSs are mostly 
Distributed Parameter Systems (DPSs) and dynamic evolutions happen not only 
along the time axis but also along spatial axes.  

Today, CPS can be found in such diverse industries as aerospace, automotive, 
energy, healthcare, manufacturing, infrastructure, consumer electronics and 
communications. Building efficient CPSs of the future requires multi-disciplinary 
skills. In particular, the confluence of real-time computing, embedded systems, 
wireless sensor networks, control theory, signal processing and knowledge creation 
using artificial intelligence are required to create these new systems. 

Intelligent Transport Systems (ITS) fall in the framework of cyber-physical 
systems due to the interaction between physical systems (vehicles) and distributed 
information acquisition and dissemination infrastructure (wireless networks, 
sensors, actuators, processors and accompanying software). Networking in cyber-
physical systems creates new ways of avoiding accidents, respecting limited energy 
resources and reducing environmental pollution. Wireless ad hoc communication 
has been identified as a major component to enable cooperative safety and 
automation by major vehicle manufacturers. Heterogeneous networking: OBD [11] 
and CAN-Bus [2] have been developed for intra-vehicle communications. 
DSRC/WAVE [5] are defined for V2V and V2R communications.  

One of the cornerstones of ITS is the ability of vehicles and infrastructure to 
interact in meaningful ways to improve the safety and efficiency of the system. 
There are many applications in ITS which are being developed based upon vehicle 
to vehicle, and vehicle to infrastructure communication [28]. Wireless 
communication proposed in the applications involves sharing of perception data 
[17], position information [2], vehicle tracking [30], collision avoidance [29, 3], 
controller design [9] and cooperative driving challenges [14, 23]. Through inter-
vehicle communications, rear-end collision prevention is discussed in [1, 33].  

Accurate prediction of the traffic information is important in many 
applications of Intelligent Transport Systems in order to reduce the uncertainty of 
future traffic states, improve traffic mobility, providing the driver with realistic 
estimation of the travel times and expected delays, and alternative routes to 
destinations. The research of others showed that an accurately predicted vehicle 
speed profile of an intended route is important to achieve optimal fuel economy  
[6, 12] and estimated distance [19].   

There is much research being conducted about the behavior of drivers and 
techniques to predict this behavior [21, 8]. The Advanced Driver Assistance 
Systems (ADAS) are becoming increasingly popular in commercially available 
vehicles. There is also a great deal of interest in exploring the driver behavior in the 
area of ITS towards creating autonomous vehicles [28]. Deployment and adoption 
of these vehicles will require autonomous systems to interact with human drivers. 
The techniques for understanding and predicting driver’s behaviour are necessary 
for autonomous vehicles to be successful. 

In this paper we present the V2V based Speed Profile Prediction approach 
(V2VSPP) that was developed using neural network learning. There is also a great 
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deal of interest in exploring driver’s behaviour in the area of Intelligent 
Transportation Systems to predict the travelling speed profile for selected agents on 
the travelling routes. The V2VSPP was trained and evaluated by using traffic data 
provided by the Australian Centre for Field Robotics, which is introduced in [28].  
It contains vehicle state information, vehicle-to-vehicle communications and road 
maps with high temporal resolution for large numbers of interacting vehicles over a 
long time period. The forecasting is made based on the distance between vehicles, 
the received signal strength values for communications between pairs of vehicles. 
The V2VSPP can predict the traffic speed profile for each vehicle agent. The 
experimental results show that the proposed approach (V2VSPP) has the ability of 
providing accurate predictions of the speed profiles in multi-vehicle trajectories 
setup. 

2. Intelligent transportation systems  

Transportation systems consist of embedded control systems inside the vehicle and 
the surrounding infrastructure, as well as the interaction between the vehicles and 
the infrastructure [15]. In the field of mobility, i.e., transportation, an extensive 
networking of the different means of transportation is possible only if using cyber-
physical systems.  

The Intelligent Transportation Systems (ITS) have identified a number of key 
technological requirements for cyber-physical systems [16]:   

• Wireless communications. The wireless communication has become a large 
area. Wireless networks connect the devices, transmit data through signals and use 
any medium (radio wave, microwave) for transferring and sharing the data between 
nodes. Wireless communication has various sub domains, such as ad hoc networks, 
sensor networks, mesh networks, cellular networks, which are different in nature in 
terms of packet types, resources and infrastructure. WiFi/ZigBee/IEEE 802.15.4 is 
commonly assumed in such systems. 

• CPS networking can stem from hierarchically interconnected networks, 
mostly Internet, local area wired and wireless networks, and wireless sensor 
networks. Internet access to individual components of distributed embedded 
systems can be based on both wired and wireless LAN technologies, predominantly 
on IEEE 802.3 and related Ethernet standards, and on IEEE 802.11 WiFi and 
associated wireless LAN protocols. Particular embedded systems and their 
components can be attached directly to Ethernet with the help of TCP/IP protocol 
stack, but also indirectly or exclusively through various wired Fieldbuses or 
wireless technologies, such as IEEE 802.11b and IEEE 802.15.4 with related 
ZigBee. 

• Miniature hardware (nano-technology) can concurrently optimize both 
hardware (nm CMOS) and embedded software. Example: System on Chip (FPGA). 

• Computational Technologies. With the development of technologies, 
computational science is used in different fields. In intelligent transportation system 
the computational technologies provide a platform and development in architecture 
and software for real time applications. This type of a platform includes model-
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based process control, ubiquities computing and artificial intelligence [18]. The 
application of ITS has many real time operating systems, rich microprocessors, 
memories and hardware installed in vehicles.  

• Distributed IT architectures for ITS. Service-Oriented Architectures (SOA) 
refer to a new paradigm for building reliable distributed systems, where the 
functions are composed as services and all the interacting components are loosely 
coupled. Web services are used to implement software components in SOA [10]. 
On the other hand, cloud computing has become cost-effective and popular 
technology for using distributed resources efficiently as it allows to bind them 
together to process a large volume of data or to solve large scale problems [25]. 
Grid computing is another popular approach for accessing geographically 
distributed resources, such as computer, storage systems, data sources, services, 
equipments, etc. Grid computing utilizes the resources of multiple computers to 
solve a particular problem cooperatively, without tight coupling. In grid computing, 
a large problem is divided among several workstations in order to ensure the best 
use of available resources in a cost-efficient way. Researches of the last few years 
have shown that the aims of cloud and grid computing are overlapping with the 
goals of service oriented architectures based on web services. Therefore, it is 
natural to apply distributed systems technology to solve the problems of ITS. 

• Sensing Technologies. Sensing Technology in a transportation system is 
inevitable technology. The Wireless Sensor Networks (WSNs) have a large number 
of sensor nodes representing significant efficiency over traditional sensors [31]. 
Sensor technologies are designed for dissimilar scenarios in intelligent 
transportation system applications, for instance traffic condition monitoring. These 
applications run in real time; therefore, end-to-end delay and synchronization is 
critical for such systems [27]. In WSN the sensors or nodes, which are deployed for 
data gathering and one or more sink nodes are connected through different long 
range connections, i.e., satellite, WiFi, etc., [24]. Each autonomic node in a sensor 
network is equipped with: a radio transceiver or another wireless communication 
device, a processing unit which can be a small micro-controller, a sensing unit and 
an energy source and a mobilizer is needed to move a sensor node from the current 
position and carry out assigned tasks. 

ITSs are important applications of CPS. Methods and tools of artificial 
intelligence, which are used primarily in Intelligent Transport Systems, are: 
behavior predicting of the transportation systems, transportation optimization 
problems in control systems, clustering, planning process, decision making and 
pattern recognition. 

3. V2V based speed profile prediction using neural learning 

Intelligent Transportation Systems rely on understanding, predicting and affecting 
the interactions between vehicles. Development of such systems must be based on 
the data derived from the actual wireless Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communications in real world applications. Understanding of 
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how these interactions affect, for example the speed profile of vehicles, is also 
necessary to create robust systems.  

The speed profile can be estimated from historical data through analyzing 
limited traffic information from fields. For instance, the traffic data, such as 
distance, location, etc. from a vehicle (agent) could be linked with historical travel 
speed data. The various techniques, e.g., parametric models (neural networks, 
wavelet), semi-parametric models (Fuzzy theory, neuro-fuzzy), statistics and 
mathematical models, could be adopted to develop a parameter estimation model 
[26]. The research studies have displayed that the combination between historical 
data and estimation theory could provide well estimation capacity with a fluency 
traffic flow condition. However, for congested and changeful environment, a hybrid 
method might be needed for improving the accuracy of the estimation method. 

The predicted (or approximated) model of the output signal is presented by 
ොݕ  (1) ൌ ݂ሺ࢓ሺ݇ሻ, ሻ݌ ൌ  ∑ ሺ݇ሻெ࢓௜κሺ݌

௜ୀଵ , ,௜ߚ  ,௜ሻߛ
which can be considered as a nonlinear mapping from past data, representing the 
regressors, i.e., the elements of m(k), with the dilation parameters βi and translation 
parameters γi. Usually we are interested in the multi-variable case when m(k) 
consists of more than one element. Any multivariable function f0[.] can be 
approximated reasonably accurately by f [.] according to the above equation by 
selecting an appropriate κ[.] for a sufficiently large value of M. As the basis 
functions usually contain adjustable parameters, these model structures can also be 
considered as basis function network models. They are characterized by one mother 
basic function which defines the nonlinear network models, such as Artificial 
Neural Network (ANN) models, wavelet models or even classical nonlinear black-
box models [26] . 

3.1. Artificial neural networks  
Artificial Neural Networks (ANN), as universal approximates, are capable of 
modeling complex mappings between the inputs and outputs of a system up to an 
arbitrary precision. On the other hand, another important property of the neural 
network is its ability to learn complex nonlinear relationships between the inputs 
and outputs of the network [32]. Learning is a process, through which the implicit 
rules are extracted from the patterns of experience.  

Traffic information predictions, such as speed, flow and travel time are 
complex nonlinear spatial-temporal problems, for which the dynamics in free-
flowing or congested conditions are different. The learning capabilities of Neural 
Networks (NN) make them a suitable approach for solving the complicated 
nonlinear traffic prediction problem. The NN-based approaches are relatively less 
sensitive to erroneous or missing data and they are independent of the particular 
geometry of the prediction location. The main limitations of NN approaches are the 
static NN architecture, which may not capture the true dynamics of the real world 
traffic states. The neural network based approaches also require time-intensive 
training to learn from traffic training data [32]. 

Many prediction profiles projects in ITSs have been developed. In [7] the 
neural network prediction of the spot speed for the lost link’s speed based on 
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neighboring links’ speed is proposed.  The time-lag recurrent network to predict the 
spot speed and travel time at four sensor locations for up to 15 min prediction is 
presented in paper [4]. In paper [13] an Intelligent Traffic Modeling System (ITMS) 
was developed to predict the speed profile from the origin to the destination of a 
given route. 

Two of the most used feed forward networks are the MultiLayer Perceptron 
Networks (MLP) and the Radial Basis Function network (RBF), which is a special 
case of the Hyper Basis Function networks (HBF) [26]. In MLP Neural Network, 
there are one or more hidden layers, whose nodes are correspondingly called hidden 
neurons. The back-propagation learning algorithm network typically trains the 
network by employing the deviation of the outputs from the corresponding desired 
values to correct and update the weights of the previous layer. However, a more 
accurate result can be achieved by using methods like Levenberg-Marquardt 
learning algorithm [32].  

The concept of RBF neural networks is closely related to MLP-networks. 
However, RBF networks in contrast to MLP-networks were not biologically 
inspired, but rather originated from the interpolation of multivariable functions. 
Usually, the structure consists of an input layer for L0 inputs, one hidden layer with 
L1 neurons and an output layer consisting of L2 neurons corresponding to the 
number of model outputs.  

Herein the application of ANN architectures as an approximation tool for 
predicting the speed profile of V2V based interactions performance is assessed, 
including Multi-Layer Feed forward Networks (or Multi-Layer Perceptron (MLP)). 
In a MLPNeural Network there are one or more hidden layers, whose nodes are 
correspondingly called hidden neurons. The back-propagation learning algorithm 
network typically trains the network by employing the deviation of the outputs from 
the corresponding desired values to correct and update the weights of the previous 
layer. However, a more accurate result can be achieved by using methods as 
Levenberg-Marquardt learning algorithm [31]. 

The proposed methodology used to develop the V2VSPP is different from the 
published technologies in the following major aspects:  

• We addressed the problem by developing NNs for learning different vehicle 
traffic conditions for the received communication signal between the pairs of 
vehicles in order to predict the traffic speed. 

• The V2SPP was trained and validated on large amounts of real world traffic 
data. 

3.2. Data set 
In order to introduce new cooperative approaches and algorithms in ITS, it is 
necessary to have a rich dataset to experiment with. We used a detailed Warrigal 
dataset, presented in paper [28].This rich dataset, derived from the interactions of 
large trucks and smaller 4WD vehicles in an industrial setting, was collected by a 
fleet of 13 vehicles operating in a large quarry-type environment during a period of 
3 years. The dataset includes information about the vehicles’ state (e.g., position, 
speed and heading), as well as details of their peer-to-peer radio communications. 
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The data span is within a period of 3 years with a resolution of 1 Hz. It contains 
vehicle state information, vehicle-to-vehicle communications and road maps of high 
temporal resolution for large numbers of interacting vehicles over a long time 
period. Due to its size, the dataset is divided into daily periods. 

Peer-to-peer communication between vehicles is effected in two frequencies to 
improve the redundancy through the complementary properties of each frequency. 
All vehicles communicate at 2.4 GHz and 433 MHz.  The light vehicles are fitted 
with a single 2.4 GHz antenna and a single 433 MHz antenna. The heavy vehicles 
are fitted with a single 2.4 GHz antenna at the front of the vehicle and a pair of 433 
MHz antennas, one mounted at the front and the other at the rear. The overall 
structure of the multi-vehicle system is presented in Fig. 1. 

 

 
Fig. 1. The overall structure of the multi-vehicle system 

Any artificial neural network requires to be trained with adequate data, if it is 
to provide accurate prediction of the desired outputs from the given inputs. In this 
case the inputs are the distances between vehicles, the received signal strength for 
communications at 433 MHz frequency between pairs of vehicles for a particular 
day. The V2VSPP can predict the traffic speed profile for each vehicle agent.  The 
statistical parameters for the data sets are calculated and given in Tables 1-3. 

Table 1. Statistical parameters of the distance data set for different vehicle agents 
Distance 

(m) Date Agent 
52 38 74 

Min 
2014-03-07 

4,23 0 0 2014-04-26 
2014-05-23 

Max 
2014-03-07 

3425 3310 4421 2014-04-26 
2014-05-23 

Var 
2014-03-07 

28074 15933 14995 2014-04-26 
2014-05-23 

Mean 
2014-03-07 

106 67.84 82.41 2014-04-26 
2014-05-23 

 



 70

Table 2. Statistical parameters of the signal strength data set for different vehicle agents 

Signal strength Date Agent 
52 38 74 

Min 
2014-03-07 38 46 31 
2014-04-26 24 51 47 
2014-05-23 37 130 49 

Max 
2014-03-07 335 353 336 
2014-04-26 342 347 335 
2014-05-23 335 335 328 

Var 
2014-03-07 3956 3407 3665 
2014-04-26 3702 2484 2947 
2014-05-23 3151 1574 3074 

Mean 
2014-03-07 227 233 220 
2014-04-26 228 239 232 
2014-05-23 239 266 238 

 
Table 3. Statistical parameters of the velocity data set for different vehicle agents 

Velocity Date Agent 
52 38 74 

Min 
2014-03-07 0 0 0 
2014-04-26 0 0 0 
2014-05-23 0 0 0 

Max 
2014-03-07 11.9 11.8 11.8 
2014-04-26 11.9 12.2 11.9 
2014-05-23 12.10 11.8 11.5 

Var 
2014-03-07 13.66 11.04 10.18 
2014-04-26 7.44 5.80 7.00 
2014-05-23 18.80 6.21 12.58 

Mean 
2014-03-07 2.31 2.36 1.43 
2014-04-26 1.21 0.85 1.13 
2014-05-23 3.34 1.19 2.34 

4. Experiments and approach evaluation   

In this paper the MLP and RBF neural networks prediction was developed using the 
Matlab/NN toolbox in order to earn the same training data set. The training sessions 
for the ANN structures (for each vehicle agent) were performed by using the data 
for a selected vehicle agent from the sample pool. The performance and robustness 
of the different networks were compared, so that the best configuration in terms of 
accuracy, performance and cost could be selected among the available architectures. 

Three random dates from the Warrigal dataset were selected: 2009-03-07, 
2009-04-26 and 2009-03-23. For these dates, three agents and their interactions 
were considered and analyzed: agents 52, 38 and 74. The specified date routes for 
three agents are illustrated in Figs 2, 3 and 4.  

To achieve speed estimation, our neural network learned mapping from the 
combination of the signal strength and the distance between two vehicles to vehicle 
(agent) speed. The received signal strength data was divided in 7 equally distributed 
clusters labeled 1-7, based on the intensity of the signal. The set of input data 
consisted of 867 768 events for V2V communications during three selected days, 
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from which only the data related to the targeted agents was selected. The end matrix 
consisted of 120 321 communication events for agent 52, 7063 for agent 38 and  
127 023 for agent 74. 

 

 
Fig. 2. Map of the route for agent 52 for the       Fig. 3. Map of the route for agent 38 for the 

specified date                                                          specified date 
 

 

Fig. 4. Map of the route for agent 74 for the specified date 
 

The collected data were divided into two sub-samples, train samples (75%) 
and test/prediction samples (25%). We conducted some experiments with different 
parameters of MLP using Levenberg-Marquardt (LM) learning algorithm. MLP 
structures were defined with two inputs, one or two hidden layers, with tansig or 
purelin activation functions and with a total number of neurons in the hidden layers 
(10, 20 or 30). RBF networks were defined with 25 initial neurons and trained with 
different values of the Spread (S). 

The output layer of the neural network has one neuron, which presents the 
vehicle speed. The input signals for the neural network training for each agent are 
presented in Figs 5, 6 and 7. The simulation results for each vehicle can be found in 
Tables 4, 5 and 6. Each table is formed by individual output results obtained from 
different MLP and RBF structures for selected agents 52, 38 and 74. 
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Fig. 5. Input data (signal strength and distance) for training (Agent 52) 

 
Table 4. Results of the error for different neural network training for Agent 52  

NN 
Type NN LR Spread MNE Performance 

(MSE) 
Output error predict 

R2 RMSE 
MLP 10 0.001 n/a 500 6.26 0.2762 2.6350 
MLP 20 0.001 n/a 500 6.22 0.2730 2.3686 
MLP 30 0.001 n/a 1000 6.20 0.2851 2.3488 
MLP 10 0.01 n/a 500 6.35 0.2584 2.3923 
MLP 20 0.01 n/a 1000 6.21 0.2920 2.3375 
MLP 30 0.01 n/a 1000 6.13 0.2918 2.3378 
RBF 25 n/a 0.5 500 0.675 0.9053 0.8550 
RBF 25 n/a 0.1 500 0.087 0.9917 0.253 
RBF 25 n/a 0.05 500 0.029 0.9981 0.1211 

 

 

Fig. 6. Input data (signal strength and distance) for training (Agent 38) 
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Table 5. Results of the error for different neural network training for Agent 38  

NN 
Type NN LR Spread MNE Performance 

(MSE) 
Output error predict 

R2 RMSE 
MLP 10 0.001 n/a 500 12.7 0.5035 3.4311 
MLP 20 0.001 n/a 500 8.56 0.6872 2.7622 
MLP 30 0.001 n/a 500 10.4 0.6160 3.0175 
MLP 10 0.01 n/a 500 14.2 0.4072 3.7493 
MLP 20 0.01 n/a 500 6.52 0.6245 2.9838 
MLP 30 0.01 n/a 1000 8.37 0.6687 2.8026 
RBF 25 n/a 0.5 500 0.11 0.9962 0.3005 
RBF 25 n/a 0.1 500 0.065 0.9979 0.2218 
RBF 25 n/a 0.05 500 0.065 0.9979 0.2218 

 

 
Fig. 7. Input data (signal strength and distance) for training of agent 74 

 
Table 6. Results of the error for different neural network training for Agent 74  

NN 
Type NN LR Spread MNE Performance 

(MSE) 
Output error predict 

R2 RMSE 
MLP 10 0.001 n/a 500 5.43 0.2482 2.1992 
MLP 20 0.001 n/a 500 5.50 0.2394 2.2120 
MLP 30 0.001 n/a 1000 5.36 0.2357 2.2173 
MLP 10 0.01 n/a 500 5.31 0.2436 2.2059 
MLP 20 0.01 n/a 1000 5.37 0.2563 2.1873 
MLP 30 0.01 n/a 1000 5.38 0.2516 2.1941 
RBF 25 n/a 0.5 500 0.2 0.9868 0.3345 
RBF 25 n/a 0.1 500 0.034 0.9997 0.0436 
RBF 25 n/a 0.05 500 0.001 1.000 0.0108 

 
During the neural network training for MLP networks we used a fixed number 
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and changed the Number of Neurons in hidden layers (NN), the maximum number of 
epochs (MNE) and the Learning Rate (LR). We recorded the targets performances. 

During the neural network training for RBF networks with 25 initial neurons, 
the target performance after 500 epochs was calculated. Three training attempts 
were made while the Spread (S) parameter was modified. 

For each neural network configuration we calculated the Root Mean Square 
Error (RMSE), Equation (2) and the coefficient of determination (R2). Equation (3) 
for the parameters between the real vehicle speeds and values from the neural 
network learning of the prediction set. 

(2)  RMSE ൌ ටଵ
௡

∑ ሺݕ௜െ ௜݂ሻଶே
௜ୀଵ , 

(3)  ܴଶ ؠ 1 െ ௌௌ౨౛౩
ௌௌ౪౥౪

;  ܵܵ୰ୣୱ ൌ ∑ ሺݕ௜െ ௜݂ሻଶ
௜ ;  ܵܵ୰ୣୱ ൌ ∑ ሺݕ௜െݕത௜ሻଶ

௜ , 
where yi and fi are the experimental and forecasted values, respectively and n is the 
total number of the test data. 

According to the results in Tables 4, 5 and 6, the best network configurations 
with minimum values of  RMSE and R2, achieved by the trained MLP and RBF 
network configurations for each of the three agents are presented in Table 7. 

 
Table 7. The best neural network parameters for the selected three agents 

Agent 

Number  
of analyzed samples 

MLP with the best  
training performance 

RBF with the best  
training performance 

Training Prediction R2 RMSE Parameters R2 RMSE Parameters 

Agent 54 1805 601 0.2920 2.3375
NN =20  

LR = 0.001 
MNE=1000

0.9981 0.1211 S=0.05  
MNE=500 

Agent 38 1325 447 0.6872 2.7622
NN =20  

LR= 0.01  
MNE=1000

0.9979 0.2218 S=0.05  
MNE=500 

Agent 74 1465 488 0.2516 2.1941
NN =20  

LR = 0.01 
MNE=1000

1 0,0108 S=0.05  
MNE=500 

 
ANN output results have shown very accurate prediction of the new samples. 

The results were compared in terms of their training effort and network 
performance when encountering new data. MLP structures for each vehicle agent, 
with two hidden layers with 20 neurons in the hidden layers, trained through 1000 
epochs, produced the best combination of accuracy and a low cost of training. RBF 
structures for each vehicle agent, with a spread value of 0.05 trained through 500 
epochs, have given the best results.  

Figs 8, 9 and 10 show examples of the comparison between the best 
performance results obtained from the trained ANN models using MLP and RBF 
neural network structures for each vehicle agent 52, 38 and 74, respectively. 
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(a)                                                                           (b) 

Fig. 8. The best performance for agent 52 data using:  MLP NN (a); RBF NN (b) 
 

 
(a)                                                                           (b) 

Fig. 9. The best performance for agent 38 data using:  MLP NN (a); RBF NN (b) 
 

 
(a)                                                                           (b) 

Fig. 10. The best performance for agent 74 data using:  MLP NN (a); RBF NN (b) 

5. Conclusion and future work 

We have presented an intelligent transport system based on the multi-vehicle 
interaction prediction analysis of the traffic speed. In this paper we analyze a few 
V2V interactions, each of them having its own evaluation agent. In order to test the 
prediction feasibility of the proposed multiagent intelligent systems, a case study of 
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a large data set is used and discussed. A new prediction speed approach (V2VSPP) 
was developed using an extensive data set from the Australian Centre for Field 
Robotics. It contains vehicle state information, vehicle-to-vehicle communications 
and road maps of high temporal resolution for large numbers of interacting vehicles 
over a long time period (3 year). The forecasting is made based on the distance 
between the vehicles and the Received Signal Strength Indicator (RSSI) values for 
communications between pairs of vehicles. The V2VSPP can predict the traffic 
speed profile for each vehicle agent.  

The significance of this is that such an ANN can enable extensive parametric 
studies to be carried out inexpensively, in order to predict the speed profiles based 
on V2V cooperative interactions in multi-vehicle trajectories setup. At the next 
stage, we will test the system proposed with a large number of vehicle agents in 
order to help the operators in the traffic centers to identify the optimal global 
control action.  
 
Acknowledgements: The paper is partially supported by TUD COST TU 1102 “ARTS – Towards 
Autonomic Road Transport Support Systems” and FP7 Project 316087 ACOMIN “Advance 
Computing and Innovation”. 

R e f e r e n c e s  
1. C h e n, L.-W., Y.-H. P e n g, Y.-C. T s e n g. An Infrastructure-Less Framework for Preventing 

Rear-End Collisions by Vehicular Sensor Networks. – IEEE Commun. Lett., Vol. 15, 2011, 
No 3, pp. 358-360. 

2. Controller Area Network (CAN-Bus).  
http://www.gaw.ru/data/Interface/CAN_BUS.PDF 

3. H a f n e r, M., D. C u n n i n g h a m, L. C a m i n i t i, D. D. V e c c h i o. Cooperative Collision 
Avoidance at Intersections: Algorithms and Experiments. – IEEE Trans. Intell. Transp. Syst., 
Vol. 14, 2013, No 3, pp. 1162-1175. 

4. D i a, H. An Object-Oriented Neural Network Approach to Short-Term Traffic Forecasting. – Eur. 
J. Oper. Res., Vol. 131, 2001, No 2, pp. 253-261. 

5. IEEE 1609-Family of Standards for Wireless Access in Vehicular Environments (WAVE).  
http://vii.path.berkeley.edu/1609_wave/ 

6. K a t s a r g y r i, G.-E., I. V. K o l m a n o v s k y, J. M i c h e l i n i. Optimally Controlling Hybrid 
Electric Vehicles Using Path Forecasting. – In: Proc. of Amer. Control Conf., 2009,  
pp. 4613-4617. 

7. L e e, E., J. K i m, W. Y o o n. Traffic Speed Prediction under Weekday, Time, and Neighboring 
Links’ Speed: Back Propagation Neural Network Approach. – In: Lecture Notes in Computer 
Science. Berlin, Germany, Springer-Verlag, 2007, pp. 626-635. 

8. L e v i n s o n, J., J. A s k e l a n d, J. B e c k e r, J. D o l s o n, D. H e l d, S. K a m m e l, J. K o l t e r, 
D. L a n g e r, O. P i n k, V. P r a t t, M. S o k o l s k y, G. S t a n e k, D. S t a v e n s,  
A. T e i c h m a n, M. W e r l i n g, S. T h r u n. Towards Fully Autonomous Driving: Systems 
and Algorithms. – In: Proc. of IEEE Intelligent Vehicles Symposium (IV), 2011,  
pp. 163-168. 

9. M i l a n é s, V., J. P e r e z, E. O n i e v a, C. G o n z a l e z. Controller for Urban Intersections 
Based on Wireless Communications and Fuzzy Logic. – IEEE Trans. Intell. Transp. Syst., 
Vol. 11, 2010, No 1, pp. 243-248. 

10. N a s i m, R., A. K a s s l e r. Distributed Architectures for Intelligent Transport Systems: A 
Survey. – In: Proc. of 12th IEEE 2nd Symposium on Network Cloud Computing and 
Applications, 2012. 

11. On-Board Diagnostics (OBD).  
http://www.epa.gov/otaq/regs/im/obd/index.htm 



 77

12. P a r k, J., Y. L. M u r p h e y, J. G. K r i s t i n s s o n, R. M c G e e, M. L. K u a n g, T. P h i l l i p s. 
Real Time Vehicle Speed Prediction Using a Neural Network Traffic Model. – In: Proc. of  
IEEE IJCNN, 2011, pp. 2991-2996. 

13. P a r k, J., Y. L. M u r p h e y, R. M c G e e, J. G. K r i s t i n s s o n, M. L. K u a n g, A. M. 
P h i l l i p s. Intelligent Trip Modeling for the Prediction of an Origin–Destination Traveling 
Speed Profile. – IEEE Transactions on Intelligent  Transportation Systems, Vol. 15,  
2014. 

14. P l o e g, J., S. S h l a d o v e r, H. N i j m e i j e r, N. V a n  d e  W o u w. Introduction to the 
Special Issue on the 2011 Grand Cooperative Driving Challenge. – IEEE Trans. Intell. 
Transp. Syst., Vol. 13, 2012, No 3, pp. 989-993. 

15. Q i u, W., L. Z h a n g. Integration of Cyber Physical System Based on Aspect Oriented. – JCIT, 
Vol. 7, 2012, No 22, pp. 368- 375. 

16. Q u r e s h i, K. N., A. H. A b d u l l a h. A Survey on Intelligent Transportation Systems. – Middle-
East Journal of Scientific Research, Vol. 15, 2013, No 5, pp. 629-642. 

17. R a u c h, A., S. M a i e r, F. K l a n n e r, K. D i e t m a y e r. Inter-Vehicle Object Association for 
Cooperative Perception Systems. – In: Proc. of 16th Int. IEEE Conf. Intelligent 
Transportation Systems, 2013, pp. 893-898. 

18. S a d e k, A. W. Artificial Intelligence Applications in Transportation. Transport Research 
CIRCULAR, Number EC-113, 2007. 

19. S c h u l z e, M., J. Z. R i v e r o s. Impact of Electrical Vehicles on Strategic Planning of Energy 
Infrastructure. – In: Proc. of Int. Conf. POWERCON, 24-28 October 2010, pp. 1-6. 

20. Sang, C., U. Suh, J. Tanik, J. N. Carbone, A. Eroglu. (Eds) Applied Cyber-Physical Systems. 
Springer, 2014. 

21. S i v a r a m a n, S., M. M. T r i v e d i. Towards Cooperative, Predictive Driver Assistance.  
– In: Proc. of 16th Int. IEEE Conf. Intelligent Transportation Systems, 2013, pp. 1719-1724. 

22. S o n g, Z., Y. Q. C h e n,  C. R. S a s t r y, N. C. T a s.  Optimal Observation for Cyber-Physical 
Systems. Springer, 2009. 

23. S o t e l o, M., J. W. C. V a n  L i n t, U. N u n e s, L. V l a c i c, M. C h o w d h u r y. Introduction 
to the Special Issue on Emergent Cooperative Technologies in Intelligent Transportation 
Systems. – IEEE Trans. Intell. Transp. Syst., Vol. 13, 2012, No 1, pp. 1-5. 

24. T a c c o n i, D., et al. Using Wireless Sensor System Networks to Support Intelligent 
Transportation Systems. – Ad Hoc Networks, Vol. 8, 2010, No 5, pp. 462-473. 

25. T r i v e d i, P., K. D e s h m u k h, M. S h r i v a s t a v a. Cloud Computing for Intelligent 
Transportation System. – International Journal of Soft Computing and Engineering (IJSCE), 
Vol. 2, 2012, Issue 3, ISSN: 2231-2307. 

26. U n b e h a u e n, H. Identification of Nonlinear Systems, Control Systems. – Robotics and 
Automation. Vol. VI. Identification of Nonlinear Systems – Encyclopedia Of Life Support 
Systems (EOLSS), 2009. 

27. V e r d o n e, R., et al. Wireless Sensor and Actuator Networks: Technologies, Analysis and 
Design. –Academic Press. Ad Hoc Networks, Vol. 8, 2010, No 5, pp. 462-473. 

28. W a r d, J., S. W o r r a l l, G. A g a m e n n o n i, E. N e b o t. The Warrigal Dataset: Multi-Vehicle 
Trajectories and V2V Communications. – IEEE Intelligent Transportation Systems 
Magazine, Vol. 109, 2014. 

29. W o r r a l l, S., G. A g a m e n n o n i, J. N i e t o, E. N e b o t. A Context-Based Approach to 
Vehicle Behavior Prediction. – IEEE Intell. Transp. Syst. Mag., Vol. 4, 2012, No 3,   
pp. 32-44. 

30. W u a, F.-J., Y.-F. K a o b, Y.-C. T s e n g. From Wireless Sensor Networks Towards Cyber 
Physical Systems. – Pervasive and Mobile Computing, Vol. 7, 2011, Vol. 9, 2009, No 11,  
pp. 8824-8830. 

31. Y a n g, X., M. B e h r o o z i, O. A. O l a t u n b o s u n. A Neural Network Approach to Predicting 
Car Tyre Micro-Scale and Macro-Scale Behaviour. – Journal of Intelligent Learning Systems 
and Applications, 2014, No 6, pp. 11-20. 

32. Y e, F., M. A d a m s, S. R o y. V2V Wireless Communication Protocol for Rear-End Collision 
Avoidance on Highways. – In: Int’l Conf. Communications, 2008, pp. 375-379. 


