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Abstract: Due to some drawbacks of the cross entropy between Single Valued 
Neutrosophic Sets (SVNSs) in dealing with decision-making problems, the existing 
single valued neutrosophic cross entropy indicates an asymmetrical phenomenon or 
may produce an undefined (unmeaningful) phenomenon in some situations. In order 
to overcome these disadvantages, this paper proposes an improved cross entropy 
measure of SVNSs and investigates its properties, and then extends it to a cross 
entropy measure between interval neutrosophic sets (INSs). Furthermore, the cross 
entropy measures are applied to multicriteria decision making problems with single 
valued neutrosophic information and interval neutrosophic information. In decision 
making methods, through the weighted cross entropy measure between each 
alternative and the the ideal alternative, one can obtain the ranking order of all 
alternatives and the best one. The decision-making methods using the proposed 
cross entropy measures can efficiently deal with decision making problems with 
incomplete, indeterminate and inconsistent information which exist usually in real 
situations. Finally, two illustrative examples are provided to demonstrate the 
application and efficiency of the developed decision making approaches under 
single valued neutrosophic and interval neutrosophic environments. 
Keywords: Neutrosophic set, single valued neutrosophic set, interval neutrosophic 
set, cross entropy; multicriteria decision making. 

1. Introduction 

Cross entropy is an important tool to judge the relation between two objects. 
Therefore, it can be widely applied to data analysis and classification, decision 
making, pattern recognition and so on. Therefore, many researchers have proposed 
various cross entropy measures. Z a d e h [1, 2] firstly introduced fuzzy entropy 
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concept. S h a n n o n [3] developed a cross entropy approach as information theory. 
K u l l b a c k  and  L e i b l e r [4] proposed a measure of the “cross entropy distance” 
between two probability distributions. After that, L i n [5] introduced a modified 
cross entropy measure. Shang and Jiang [6] presented a fuzzy cross entropy 
measure and a symmetric discrimination information measure between fuzzy sets. 
As a generalization of D e  L u c a  and  T e r m i n i [7] nonprobabilistic entropy, 
V l a c h o s and S e r g i a d i s [8] have proposed an intuitionistic fuzzy cross entropy 
measure and applied it to pattern recognition, medical diagnosis and image 
segmentation. Then, Z h a n g and J i a n g [9] defined a vague cross entropy measure 
by analogy with the cross entropy of probability distributions and applied it to 
pattern recognition and medical diagnosis and then Y e [10] further applied the 
cross entropy of vague sets to the fault diagnosis problem of turbine. Also, Y e [11] 
has applied the intuitionistic fuzzy cross entropy to multicriteria fuzzy decision-
making problems. As a generalization of the vague cross-entropy [9], Y e [12] 
proposed an interval-valued intuitionistic fuzzy cross-entropy measure and applied 
it to multicriteria decision-making problems. Since a Single Valued Neutrosophic 
Set (SVNS) is an extension of an intuitionistic fuzzy set, Y e [13] extended the 
intuitionistic fuzzy cross entropy to SVNSs and proposed a single valued 
neutrosophic cross entropy measure, and then applied it to multicriteria decision-
making problems with single valued neutrosophic information. However, the single 
valued neutrosophic cross entropy defined by Y e [13] has some drawbacks in some 
situations. For instance, it indicates an asymmetric phenomenon of the cross 
entropy measure of SVNSs or may produce an undefined (unmeaningful) 
phenomenon in some situations (details are given in the next section). In order to 
overcome these disadvantages, the paper proposes an improved cross entropy 
measure of SVNSs and investigates its properties, and then extends it to a cross 
entropy measure between Interval Neutrosophic Sets (INSs). Furthermore, the cross 
entropy measures of SVNSs and INSs are applied to multicriteria decision-making 
problems with single valued neutrosophic information and interval neutrosophic 
information.  

The rest of the paper is organized as follows. Section 2 briefly describes some 
concepts of SVNSs, the cross entropy between SVNSs and its drawbacks in some 
cases. In Section 3 we propose an improved cross entropy measure between SVNSs 
and investigate its properties. Section 4 extends the improved cross entropy 
measure of SVNSs to the cross entropy measure of INSs. Section 5 applies the cross 
entropy measures of SVNSs and INSs to multicriteria decision making problems 
with single valued neutrosophic information and interval neutrosophic information. 
In Section 6 two illustrative examples are provided to demonstrate the application 
and efficiency of the developed decision making approaches under single valued 
neutrosophic and interval neutrosophic environments. Section 7 gives conclusions 
and perspectives of future work. 

2. Single valued neutrosophic cross entropy 

The neutrosophic set proposed firstly by S m a r a n d a c h e [14] generalizes an 
intuitionistic fuzzy set and an interval-valued intuitionistic fuzzy set from 
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philosophical point of view. It can represent uncertainty, imprecise, incomplete and 
inconsistent information, which the intuitionistic fuzzy set and the interval-valued 
intuitionistic fuzzy set cannot express. From scientific or engineering point of view, 
the neutrosophic set will be difficult to be applied in real science and engineering 
areas [15]. Therefore, as an instance of the neutrosophic set, W a n g et al. [15] 
proposed a SVNS concept and set-theoretic operators for real scientific and 
engineering applications. SVNS is a generalization of an intuitionistic fuzzy set and 
gives us an additional possibility to represent uncertainty, imprecise, incomplete, 
and inconsistent information, which exists in real world, and then it would be more 
suitable to be applied in indeterminate information and inconsistent information 
measures. In the following discussion, we introduce the definition of SVNS [15]. 

Definition 1 [15]. Let X be a space of points (objects) with generic elements in 
X denoted by x. A SVNS A in X is characterized by a truth-membership function 
TA(x), an indeterminacy-membership function IA(x),

 
and a falsity-membership 

function FA(x), where TA(x), IA(x), FA(x) ∈ [0, 1] for each point x in X. Therefore, a 
SVNS A can be expressed as 

{ },|)(),(),(, XxxFxIxTxA AAA ∈=  
whereas, the sums of TA(x), IA(x) and FA(x) satisfy the condition  

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 
The following inclusion, equality, complement for SVNSs A and B are 

defined, respectively, as follows [15]: 
(1) A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥IB(x), FA(x) ≥ FB(x) for any x in X, 
(2) A = B if and only if A ⊆ B and B ⊆ A, 
(3) { }.|)(),(1),(, XxxTxIxFxA AAA

c ∈−=  
As the extension of the intuitionistic fuzzy cross entropy, Y e [13] has 

introduced a cross-entropy measure between SVNSs, which provides a better and 
more efficient mathematical framework in handling uncertain and inconsistent 
information.  

For two SVNSs A and B, Y e [13] defined the following single valued 
neutrosophic cross entropy measure between A from B. 

Definition 2 [13]. Let { }XxxFxIxTxA iiAiAiAi ∈= |)(),(),(,  and 

{ }XxxFxIxTxB iiBiBiBi ∈= |)(),(),(,  be two SVNSs A and B in a universe of 
discourse X = {xl, x2, …, xn}. Then, a single valued neutrosophic cross-entropy 
measure between A from B is defined as 
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which also indicates the discrimination degree of A from B. Then, it satisfies the 
following properties [13]: 

1) E(A, B) ≥ 0, 
2) E(A, B) = 0 if and only if TA(xi) = TB(xi), IA(xi) = IB(xi), and FA(xi) = FB(xi), 

xi∈X, 
3) E(Ac, Bc) = E(A, B). 

However, one can find some drawbacks of Equation (1) as follows: 
1) For two SVNSs A and B, if one of the three functions TA(xi), IA(xi), FA(xi) is 

equal to 0 or one of the three functions TA(xi), IA(xi) and FA(xi) is equal to 1 for any 
xi in X (i = 1, 2, …, n), Equation (1) is undefined or unmeaningful. In this case, one 
cannot utilize them to calculate the cross entropy between A from B. 

2) For two SVNSs A and B, there is E (A, B) ≠ E (B, A). This means that  
E(A, B) is not symmetric.  

As for the asymmetric problem of E(A, B), Y e [13] has modified it into a 
symmetric discrimination information measure for SVNSs: 
(2)   ).,(),(),( ABEBAEBAD +=  

The bigger the difference between A and B is, the larger D(A, B) is. 
As for the disadvantages of Equation (1), we shall propose another form of 

single valued neutrosophic cross entropy in the following section to overcome the 
disadvantages. 

3. Improved single valued neutrosophic cross entropy 

This section defines an improved cross entropy measure of SVNSs to overcome the 
aforementioned disadvantages in the existing single-valued neutrosophic cross-
entropy measure [13]. 

Definition 3. For any two SVNSs A and B in a universe of discourse  
X = {x1, x2,…, xn}, the cross entropy between SVNSs A from B is defined as 
follows: 
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Thus, we can derive the following Theorem 1 from the cross entropy measure 
of SVNSs A and B. 
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Theorem 1. For any two SVNSs A and B in a universe of discourse  
X = {x1, x2,…, xn}, the cross entropy measure N(A, B) satisfies the following 
properties: 

1) N(A, B) ≥ 0, 
2) N(A, B) = 0 if and only if TA(xi) = TB(xi), IA(xi) = IB(xi), and FA(xi) = FB(xi), 

xi∈X, 
3) N(Ac, Bc) = N(A, B), 
4) N(A, B) = N(B, A). 
P r o o f: 

1) Since there exists the inequality 
222
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+ yxyx  for all real numbers 

x and y, one can yield N(A, B) ≥ 0. 

2) The inequality 
222

22 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≥

+ yxyx  becomes the equality 

222

22 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
=

+ yxyx  if and only if x = y, thus there is N(A, B) = 0 if and only if  

A = B, i.e., TA(xi) = TB(xi), IA(xi) = IB(xi), and FA(xi) = FB(xi), xi∈X. 

3) It is obvious that N(Ac, Bc) = N(A, B) is true. 
4) It is obvious that N(A, B) = N(B, A) is true. 
Therefore, these proofs are completed. ■ 
It is clear that the proposed single valued neutrosophic cross entropy measure 

can overcome the drawbacks of the one proposed by Y e [13]. 
Let us consider the following example to demonstrate the efficiency of the 

proposed cross entropy measure. 
Example 1. Let A and B be two SVNSs in the universe of discourse X, which 

are given by A = {〈x, 1, 0, 0〉| x ∈ X} and B = {〈x, 0.5, 0.4, 0.2〉| x ∈ X}. 
Obviously, Equation (1) is undefined in this case. Then, one can obtain  

N(A, B) = N(B, A) = 0.3736 by using Equation (3). Thus, the proposed cross entropy 
can overcome the disadvantages of Equation (1). Hence, Equation (3) is more 
reasonable and more efficient than Equation (1).  

When the differences of importance are considered in the elements in the 
universe, one needs to take the weight of the element xi, i = 1, 2, … , n, into 
account. In the following, we introduce a weighted cross entropy measure of 
SVNSs. 

Let wi be the weight for each element xi, i = 1, 2, … , n, wi ∈ [0, 1] and 
1

1
=∑ =

n

i iw , then the weighted cross entropy measure between SVNSs A from B can 

be defined by 
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It is obvious that Nw(A, B) also satisfy the four properties of Theorem 1. 
Theorem 2. Let wi be the weight for each element xi, i = 1, 2, …, n,  

wi ∈ [0, 1], and 1
1

=∑ =

n

i iw , then the weighted cross entropy measure Nw(A, B) also 

satisfies the following properties: 
1) Nw(A, B) ≥ 0, 
2) Nw(A, B) = 0 if and only if TA(xi) = TB(xi), IA(xi) = IB(xi), and FA(xi) = FB(xi), 

xi∈X, 
3) Nw(Ac, Bc) = Nw(A, B), 
4) Nw(A, B) = Nw(B, A). 
Since the process to prove these properties is similar to that in Theorem 1, it is 

not repeated here. 

4. Cross entropy measure of INSs 

For real scientific and engineering applications, W a n g et al. [16] have also 
introduced the concept of an INS, which is also a subclass of the neutrosophic set, 
and give the definition of an INS. 

Definition 4 [16]. Let X be a space of points (objects) with generic elements in 
X denoted by x. An INS A in X is characterized by a truth-membership function 
TA(x), an indeterminacy-membership function IA(x), and a falsity- 
membership function FA(x), where TA(x) = [infTA(x), supTA(x)] ⊆ [0, 1],  
IA(x) = [infIA(x), supIA(x)] ⊆ [0, 1], and FA(x) = [infFA(x), supFA(x)] ⊆ [0, 1] for each 
point x in X. Then, an INS A can be expressed as 

{ }
[ ] [ ] [ ]{ }.|)(sup),(inf,)(sup),(inf,)(sup),(inf,

|)(),(),(,
XxxFxFxIxIxTxTx

XxxFxIxTxA

AAAAAA

AAA

∈=
=∈=

 

Obviously, the sum of TA(x), IA(x) and FA(x) satisfies the condition  
0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3. 

Especially, when the upper and lower ends of the interval values of TA(x), IA(x) 
and FA(x) in an INS A are equal, the INS A reduces to SVNS A. However, both 
SVNSs and INSs are the subclasses of neutrosophic sets. 
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The following expressions for INSs A and B are defined as follows [16]: 
1) The complement Ac for an INS A is denoted as TA

c(x) = FA(x) =  
=[infFA(x), supFA(x)], IA

c(x) = [1 − supIA(x), 1 − infIA(x)], and FA
c(x) = TA(x) = 

=[infTA(x),  supTA(x)] for any x in X. 
2) A ⊆ B if and only if infTA(x) ≤ infTB(x), supTA(x) ≤ supTB(x),  

infIA(x) ≥ infIB(x), supIA(x) ≥ supIB(x), infFA(x) ≥ infFB(x), and supFA(x) ≥ supFB(x) 
for any x in X. 

3) A = B if and only if A ⊆ B and B ⊆ A. 
Since the existing literature does not deal with the cross entropy of INSs, we 

can extend the improved cross entropy measure of SVNSs to the cross entropy 
measure of INSs. 

Definition 5. For any two INSs A and B in a universe of discourse  
X = {x1, x2,…, xn}, the cross entropy between INSs A from B is defined as follows: 
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Similarily, M(A, B) also satisfies the four properties of Theorem 1.  
Theorem 3. For any two INSs A and B in a universe of discourse  

X = {x1, x2,…, xn}, the cross entropy M(A, B) satisfies the following properties: 
1) M(A, B) ≥ 0, 
2) M(A, B) = 0 if and only if TA(xi) = TB(xi), IA(xi) = IB(xi), and FA(xi) = FB(xi), 

xi∈X, 
3) M(Ac, Bc) = M(A, B), 
4) M(A, B) = M(B, A). 
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Since the proof process of these properties is similar to that in Theorem 1, it is 
omitted here. 

Taking the weight of the element xi, i = 1, 2, …, n,  into account, we can also 
introduce a weighted cross entropy measure between INSs. 

Let wi be the weight for each element xi, i = 1, 2, … , n, wi ∈ [0, 1] and 
1

1
=∑ =

n

i iw , then we have the weighted cross entropy measure between INSs  

A and B: 
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Especially, when TA(xi) = infTA(xi) = supTA(xi), IA(xi) = infIA(xi) = supIA(xi), and 
FA(xi) = infFA(xi) = supFA(xi) in the INS A and TB(xi) = infTB(xi) = supTB(xi),  
IB(xi) = infIB(xi) = supIB(xi), FB(xi) = infFB(xi) = supFB(xi) in the INS B for any  
xi, i = 1, 2, …, n, in X, the INSs A and B reduce to the SVNSs A and B, while (5) 
and (6) reduce, respectively, to (3) and (4).  

It is obvious that Mw(A, B) also satisfy the four properties of Theorem 2.  
Theorem 4. For any two INSs A and B in a universe of discourse  

X = {x1, x2,…, xn}, the cross entropy Mw(A, B) also satisfies the following 
properties: 

1) Mw(A, B) ≥ 0, 
2) Mw(A, B) = 0 if and only if TA(xi) = TB(xi), IA(xi) = IB(xi), and FA(xi) = FB(xi), 

xi∈X, 
3) Mw(Ac, Bc) = Mw(A, B), 
4) Mw(A, B) = Mw(B, A). 
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Since the process to prove these properties is similar to that in Theorem 1, it is 
not repeated here. 

5. Multicriteria decision-making methods using the cross entropy 
measures 

A multicriteria decision making problem, where the alternatives can be evaluated 
according to multiple criteria, is the process of finding the best alternative among 
all of the feasible alternatives. In general, the multicriteria decision-making problem 
usually includes uncertainty, imprecise, incomplete and inconsistent information, 
which exists in real world. Then SVNSs and INSs can represent and handle the 
information. In this section multicriteria decision making methods, using the 
proposed cross entropy measures are developed under single valued neutrosophic 
and interval neutrosophic environments. 

For a multicriteria decision-making problem, usually, there is a set of m 
alternatives A = {A1, A2,  … , Am}, which are to be evaluated based on a set of n 
criteria C = {C1, C2, …, Cn}. Assume that the weight of the criterion Cj,  
j = 1, 2, …, n, entered by the decision-maker, is wj, wj ∈ [0, 1] and ∑ =

=
n

j jw
1

1 . 

Following, two multicriteria decision-making methods using the cross entropy 
measures of SVNSs and INSs are developed under single valued neutrosophic and 
interval neutrosophic environments. 

5.1. Decision-making method using the cross entropy measure of SVNSs 

In the multicriteria decision-making problem with single valued neutrosophic 
information, the characteristics of an alternative Ai, i = 1, 2, … , m, on a criterion Cj, 
j = 1, 2, …, n, can be represented by the form of a SVNS: 

},,...,2,1,|)(),(),(,{ njCCCFCICTCA jjAjAjAji iii
=∈〉〈=  

where )( jA CT
i

, )( jA CI
i

, )( jA CF
i

∈ [0, 1] and 0 ≤ )( jA CT
i

 + )( jA CI
i

 + )( jA CF
i

 ≤ 3 for 

Cj ∈ C, j = 1, 2, …, n, and i = 1, 2, …, m. 
For convenience, the values of the three functions )( jA CT

i
, )( jA CI

i
, )( jA CF

i
 in 

an SVNS Ai are denoted by a Single Valued Neutrosophic Value (SVNV)  
dij = 〈Tij, Iij, Fij〉, i = 1, 2, …, m, and  j = 1, 2,…, n, which is usually derived from the 
evaluation of an alternative Ai with respect to a criterion Cj by the expert or decision 
maker. Thus, we can elicit a single valued neutrosophic decision matrix D = (dij)m×n. 

For the ranking order of the alternatives in the decision-making problem, each 
ideal SVNV is defined as dj

*
 = 〈1, 0, 0〉, j = 1, 2, …, n, in the ideal alternative  

A* = {d*
1, d*

2,…, d*
n}. Then, based on Equation (4), the cross entropy between an 

alternative Ai, i = 1, 2, …, m, and the ideal alternative A* can be expressed by 
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Then the smaller value of the cross entropy Nw(Ai, A*), i = 1, 2, …, m, indicates 
that an alternative is closer to the ideal alternative. Therefore, the ranking order of 
all the alternatives can be determined according to the increasing order of the cross 
entropy measure values. The alternative with the smallest cross entropy measure 
value is the best one. 

5.2. Decision-making method using the cross entropy measure of INSs 

In the multicriteria decision-making problem with interval neutrosophic 
information, the characteristics of an alternative Ai, i = 1, 2, …, m, on a criterion Cj, 
j = 1, 2,…, n, can be expressed by the following INS form: 
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where )( jA CT
i

, )( jA CI
i

, )( jA CF
i

⊆ [0, 1] and 0 ≤ )(sup jA CT
i

 + )(sup jA CI
i

 + 

)(sup jA CF
i

 ≤ 3 for Cj ∈ C, j = 1, 2, …, n, and i = 1, 2, …, m. 
For convenience, the interval values of the three functions 

)],(sup),([inf)( jAjAjA CTCTCT
iii

=  )](sup),([inf)( jAjAjA CICICI
iii

= , 

)](sup),([inf)( jAjAjA CFCFCF
iii

=  in an INS Ai are denoted by an interval 

neutrosophic value (INV) [ ] [ ] [ ] ,,,,,, U
ij

L
ij

U
ij

L
ij

U
ij

L
ijij FFIITTr =  i = 1, 2, …, m, and  

j = 1, 2,…, n, which is usually derived from the evaluation of alternative Ai with 
respect to a criterion Cj by an expert or decision maker. Thus, one can obtain an 
interval neutrosophic decision matrix R = (rij)m×n. 
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In the multicriteria decision-making method, an ideal INV can be defined as 
[ ] [ ] [ ] [ ] [ ] [ ] ,0,0,0,0,1,1,,,,, ******* == U
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U
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L
jj FFIITTr  j = 1, 2, …, n, in the ideal 

alternative A* = {r*
1, r*

2,…, r*
n}. 

Hence, by applying Equation (6) the weighted cross entropy between an 
alternative Ai, i = 1, 2, …, m, and the ideal alternative A* is given by the following 
formula: 
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Thus, the smaller value of the cross entropy Mw(Ai, A*), i = 1, 2, …, m, indicates 
that an alternative is closer to the ideal alternative. Therefore, the ranking order of 
all the alternatives can be determined according to the increasing order of the cross 
entropy measure values. The alternative with the smallest cross entropy measure 
value is the best one. 

6. Illustrative examples 

This section provides two illustrative examples for multicriteria decision making 
problems to demonstrate the application and efficiency of the proposed decision 
making methods under single valued neutrosophic and interval neutrosophic 
environments. 

6.1. Single valued neutrosophic decision-making problem on selecting global 
suppliers 

Let us consider that the multicriteria decision-making problem adopted from Ye 
[13] is concerned with a manufacturing company, which wants to select the best 
global supplier according to the core competencies of suppliers. Now, suppose that 
there are four suppliers {A1, A2, A3, A4} whose core competencies are evaluated by 
means of four criteria: (1) C1 is the level of technology innovation; (2) C2 is the 
control ability of the flow; (3) C3 is the ability of management; (4) C4 is the level of 
service. Then, the weight vector for the four criteria is w = (0.3, 0.25, 0.25, 0.2)T. 
The decision matrix of the suppliers is made up according to the four evaluating 
criteria. Therefore, the single valued neutrosophic decision matrix of the candidates 
[13] can be obtained as follows: 
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.

1.0,2.0,7.02.0,3.0,4.05.0,2.0,2.02.0,1.0,6.0
2.0,2.0,6.04.0,0.0,5.03.0,1.0,5.01.0,3.0,4.0
2.0,3.0,5.01.0,0.0,9.04.0,2.0,3.03.0,2.0,4.0
1.0,2.0,3.02.0,1.0,7.04.0,1.0,5.03.0,1.0,5.0

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=D  

The proposed single valued neutrosophic decision-making method is applied 
to select the most desirable supplier. 

By using Equation (7), one can obtain the values of the cross entropy  
Nw(Ai, A*), i =1, 2, 3, 4: 

Nw(A1, A*) = 0.2439, Nw(A2, A*) = 0.2792, Nw(A3, A*) = 0.2580 and  
Nw(A4, A*) = 0.3034. 

According to the cross entropy measure values, the order of the four suppliers 
is A1, A3, A2, and A4. Hence, the best supplier is A1.  

For convenient comparison, we show the decision making results and the ones 
in [13] in Table 1.  

Table 1. Results of single valued neutrosophic decision-making methods  
Measure/Ranking Proposed method Ye’s method [13] 

Measure result 

Nw(A1, A*) = 0.2439 
Nw(A2, A*) = 0.2792 
Nw(A3, A*) = 0.2580 
Nw(A4, A*) = 0.3034 

D(A1, A*) = 1.1101 
D (A2, A*) = 1.1801 
D(A3, A*) = 0.9962 
D(A4, A*) = 1.2406 

Ranking order A1, A3, A2, A4 A3, A1, A2, A4 
 

From the results of Table 1, one can see that the ranking order of the four 
alternatives and the best choice are different from the results of Ye’s method [13] 
and indicate the difference between A1 and A3. Obviously, the different measure 
methods may yield different results. However, since the improved cross-entropy 
measure in this paper can overcome the shortcomings of the existing cross-entropy 
measure [13], the proposed method is more reasonable and simpler than the existing 
method [13]. 

6.2. Interval neutrosophic decision-making problem of investment alternatives 

Let us consider the multicriteria decision making problem discussed in [17]. There 
is an investment company, which wants to invest a sum of money in the best option. 
To invest the money, there is a panel with four possible alternatives: (1) A1 is a car 
company; (2) A2 is a food company; (3) A3 is a computer company; (4) A4 is an arms 
company. The investment company must take a decision according to the three 
criteria: (1) C1 is the risk; (2) C2 is the growth; (3) C3 is the environmental impact. 
The weight vector of the three criteria is given by w = (0.35, 0.25, 0.4)T [17]. 

When the four possible alternatives are to be evaluated by the expert under the 
above three criteria in the form of INVs, one can obtain the following interval 
neutrosophic decision matrix R [17]: 

.

]7.0,6.0[],7.0,6.0[],9.0,8.0[]3.0,1.0[],2.0,1.0[],7.0,6.0[]2.0,1.0[],1.0,0.0[],8.0,7.0[
]5.0,4.0[],8.0,6.0[],9.0,7.0[]4.0,3.0[],3.0,2.0[],6.0,5.0[]4.0,3.0[],3.0,2.0[],6.0,3.0[
]6.0,3.0[],7.0,5.0[],9.0,8.0[]3.0,2.0[],2.0,1.0[],7.0,6.0[]3.0,2.0[],2.0,1.0[],7.0,6.0[
]9.0,7.0[],8.0,7.0[],5.0,4.0[]4.0,2.0[],3.0,1.0[],6.0,4.0[]4.0,3.0[],3.0,2.0[],5.0,4.0[

⎥
⎥
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⎤

⎢
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⎣

⎡

=R  
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Then, the developed interval neutrosophic decision-making approach is 
utilized to obtain the most desirable alternative(s). 

By using Equation (8), one can obtain the values of the cross entropy  
Mw(Ai, A*), i = 1, 2, 3, 4: 

Mw(A1, A*) = 0.5872, Mw(A2, A*) = 0.3643, Mw(A3, A*) = 0.4895, and  
Mw(A4, A*) = 0.3724. 

Thus, the ranking order of the four alternatives is A2, A4, A3 and A1. Therefore, 
the alternative A2 is the best choice among the four alternatives. 

For convenient comparison, we also show the decision making results and the 
ones in [17] in Table 2. It is worth noting that since the alternative with the largest 
similarity measure value in Ye’s methods (1) and (2) [17] indicates the best one, the 
similarity measure values in [17] should be ranked in a decreasing order. 

Table 2. Results of interval neutrosophic decision-making methods  
Measure/Ranking Proposed method Ye’s method (1) [17] Ye’s method (2) [17] 

Measure result 

Mw(A1, A*) = 0.5872 
Mw(A2, A*) = 0.3643 
Mw(A3, A*) = 0.4895 
Mw(A4, A*) = 0.3724 

S1(A1, A*) = 0.7667 
S1(A2, A*) = 0.9542 
S1(A3, A*) = 0.8625 
S1(A4, A*) = 0.9600 

S2(A1, A*) = 0.7370 
S2(A2, A*) = 0.9323  
S2(A3, A*) = 0.8344  
S2(A4, A*) = 0.9034. 

Ranking order A2, A4, A3, A1 A4, A2, A3, A1 A2, A4, A3, A1 
 

From the results of Table 2, one can see that the ranking order of the four 
alternatives and the best choice are in agreement with the results of Ye’s method (2) 
[17] and indicate the efficiency of the proposed method. Then, the ranking orders 
between the proposed method and Ye’s method (1) [17] and between Ye’s methods 
[17] only indicate the difference between A2 and A4 in different measure methods. 

For the above two examples, one can see that the multicriteria decision making 
methods using the cross entropy measures proposed in this paper are more suitable 
for real scientific and engineering applications because the proposed cross entropy 
measures of SVNSs and INSs cannot produce undefined phenomena. 

7. Conclusion 

To overcome the drawbacks of the cross entropy measure defined in [13], this paper 
has developed an improved cross entropy measure of SVNSs and investigated its 
properties, and then extended it to the cross entropy measure of INSs. Furthermore, 
the proposed cross entropy measures of SVNSs and INSs have been applied to 
multicriteria decision-making problems with single valued neutrosophic 
information and interval neutrosophic information. In the two decision-making 
methods, through the cross entropy measure between each alternative and the the 
ideal alternative, one can obtain the ranking order of all alternatives and the best 
one. Finally, two illustrative examples demonstrate the application and efficiency of 
the decision making approaches in a single valued neutrosophic setting and interval 
neutrosophic setting. The proposed decision making methods can efficiently deal 
with decision making problems with single valued neutrosophic information and 
interval neutrosophic information since the proposed cross entropy can overcome 
the drawbacks of the cross entropy defined in [13]. In future, we shall apply the 
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cross entropy measures of SVNSs and INSs to other domains, such as pattern 
recognition, clustering analysis, and medical diagnosis. 
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