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1. Introduction 

The information and divergence (or distance) measures are of key importance in a 
number of theoretical and applied statistical inference and data processing 
problems. M a j i [13] presented generalized f-information measures as evaluation 
criteria for gene selection problem. 

The literature on the development and applications of information and 
divergence measures has expanded considerably in recent years. T a n e j a [18], 
B e s s e v i l l e [1], E s t e b a n and M o r a l e s [10] are good references to review the 
development of generalized information and divergence measures. Depending on 
the nature of the problem, the different information and divergence measures are 
suitable. So it is always desirable to develop a new information or divergence 
measure.  

In this paper we present a new parametric information measure and a 
corresponding parametric divergence measure which belongs to the class of 
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Csiszar’s f-divergences. In Section 2 some preliminaries are presented, in Section 3 
some approaches to develop new information and divergence measures are 
presented. A new parametric information measure and its axiomatic 
characterization is presented in Section 4. The main advantage of this new 
parametric measure of information is that its maximum value depends on parameter 
α and the disadvantage is that it is non-additive. S h a n n o n’s measure [17] is the 
limiting case of the proposed measure of information, therefore it has more 
flexibility of application than Shannon’s measure. In order to increase the flexibility 
of application of this measure of information, two parametric generalizations may 
be explored. A new parametric divergence measure and its characterization are 
presented in Section 5. The advantage of the new parametric divergence measure is 
that it is a distance measure and the value of divergence can be adjusted by 
adjusting the value of parameter α. Further, it is approximated in terms of 
P e a r s o n [14] divergence measure. In order to increase the flexibility of 
application of this divergence measure, two parametric generalizations may be 
explored. In Section 6 a new symmetric divergence (distance) measure is proposed 
and in Section 7 some bounds in terms of some well known divergence measures 
are presented. In Section 8 the approximation in terms of a well known divergence 
measure is obtained. 

2. Preliminaries 

2.1. Information measure 
The measure of information was defined by Claude E. Shannon in his treatise paper 
[17] in 1948: 
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finite discrete probability distributions. To improve the weakness of Shannon’s 
measure in certain situations R e n y i [15] took the first step and proposed a 
parametric measure of information 
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After Renyi many generalized information and divergence measures have been 
developed. T a n e j a [18], B a s s e v i l l e [1], E s t e b a n and M o r a l e s [10] and 
W a n g [21] can be consulted for survey of generalized information and divergence 
measures.  

2.2.  Divergence measure 
The relative entropy or the directed divergence is a measure of the distance between 
two probability distributions. In statistics it arises as the expected logarithm of the 
likelihood ratio. The relative entropy D(P, Q) is the measure of inefficiency 
assuming that the distribution is q when the true distribution is p. For example, if 
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we knew the true distribution of the random variable, then we could construct a 
code with average description length H(P). If, instead, we used the code for a 
distribution q, we would need H(P) + D(P, Q) bits on the average to describe the 
random variable, C o v e r and T h o m a s [3]. The relative entropy or Kullback 
Leibler distance  K u l l b a c k and L e i b l e r [12] between two probability 
distributions is defined as 
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A correct measure of directed divergence must satisfy the following 
postulates: 

(a)  D(P, Q) ≥ 0;  
(b)  D(P, Q) = 0  iff  P = Q;  
(c)  D(P, Q) is a convex function of both P = (p1, p2, p3, …, pn ) and  

Q = (q1, q2, q3, …, qn). 
If in addition symmetry and triangle inequality is also satisfied by D(P, Q), 

then it is called a distance measure. Properties (a)-(c) are essential to define a new 
measure of directed divergence. A parametric measure of directed divergence can 
also be characterized in terms of its parameter(s). 

3.  Approaches to develop information and divergence measures 

3.1.  From an entropy functional 

E s t e b a n and M o r a l e s [10] proposed a mathematical expression. Most of the 
information measures cited in literature can be obtained as a particular or limiting 
case of this entropy functional 1 2,
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where vi is the weight associated with the ix X∈  and 1 :[0,1) Rφ → , 2 :[0,1) Rφ →  
and :[0,1)h R→  are any suitable functions.  

Let H(P) be the entropy function and , nP Q∈Γ . Then the divergence measure 
of Jenson-Shannon type is given by  
(3.2)  J-S 1 2 1 2( , ) ( ) ( ) ( ),D P Q H P Q H P H Q= + − −λ λ λ λ  
where 1 2 1 2( , ), 0, 0= ≥ ≥λ λ λ λ λ  and 121 =+ λλ . 
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3.2. Csiszar’s f-divergences 
Csiszar’s f-divergence between two probability distributions introduced by 
C s i s z a r [5] and are defined as 
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where f is a convex function satisfying (1) 0, (1) 0, (1) 1.f f f′ ′′= = =    
A list of f-divergence measures is provided in S a l i c r u [16] and  

T a n e j a [19]. 

3.3. Bregman’s divergences 
Bregman divergences, introduced by B r e g m a n [2] and are defined for vectors, 
matrices, functions and probability distributions. The Bregman divergence between 
vectors is defined as 
(3.4) T( , ) ( ) ( ) ( ) ( ).D x y x y x y yφ φ φ φ= − − − ∇  

With φ  a differentiable strictly  convex function .ℜ→ℜd
 The symmetrised 

Bregman divergence is 
(3.5)  T( , ) ( ( ) ( )) ( ).D x y x y x yφ φ φ= ∇ −∇ −  

The Bregman matrix divergence is defined as 
(3.6)   T( , ) ( ) ( ) Tr( ( )) ( ).D x y X Y Y X Y= − − ∇ −φ φ φ φ   

For X, Y real symmetric d×d matrices, and φ  a differentiable strictly convex 
function .ℜ→dS  

3.4.  Mean divergences 
The divergence measure can be formed by taking the difference of some classical 
means and Greek means, suggested by T a n e j a [20]. Further T a n e j a [19] 
proposed their generalized version. These divergence measures also belong to the 
class of Csiszar’s f-divergences. 

4.  A new parametric measure of information 

We propose a new parametric information measure using entropy functional 
approach. In equation (3.1), taking 

1
1 21, ( ) sinh( log ), ( ) , ( ) (sinh( ))iv x x x x x h x x −= = − = =φ α φ α  

we have the following parametric measure of information: 

(4.1)  ( )1( ) sinh( log ) , 0,
sinh( ) i iH P p p= − >α α α

α
 

(4.2)  0lim ( ) ( ).H P H Pα α→ =  
Thus the Shannon measure (2.1) is the limiting case of the measure proposed 

in (4.1). 
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Theorem 4.1. For nP Γ∈ , the measure of information (4.1) satisfies the 
following properties: 

Symmetry. From (4.1) it is clear that )(PHα  is a permutationally symmetric 
function of  pi. 

Continuity. )1,( ppH −α  is a continuous function. 
Normality. Hα(1/2, 1/2)=1. 
Non-additive. ( * ) ( ) ( ), , .nH P Q H P H Q P Qα α α≠ + ∈Γ  
Monotonicity w.r.t. pi. ),...,( 21 npppHα   is a monotonic decreasing function 

of pi  for all  i=1, 2, 3, …, n. 
Monotonicity w.r.t. α. We have  
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α
≥ Therefore, )(PHα  is a monotonic increasing 

function of α. 
Concavity. The determining function for measure (9) is  

sinh( log )( ) , 0,
sinh( )

x xf x = − >
α α
α

 

which gives ( ) 0,f x′′ ≤  for all 0>α . 
Therefore, Hα(P) is a concave function. 

5. A new parametric divergence measure 

We propose a new parametric divergence measure using Csiszar’s f-divergence 
approach. Consider the function  

(5.1)  
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we have 

(5.2)  
cosh( log ) sinh( log )( ) , 0,

sinh( )
x xf x +′ = >

α α α α
α

 

(5.3)  
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x
+′′ = >
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From (5.1), (5.2) and (5.3) we have ( ) 0f x′′ ≥  for all x > 0, therefore f(x) is 
convex for x > 0 and a > 0.  

Also, f (1)=0, )1(f ′ = 0 , Here the condition )1(f ′′ =1 is to be relaxed. 
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Thus using (3.3) and (5.1) the new parametric non symmetric divergence 
measure is given by 

(5.4)  
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Here we observe that the axioms (a) and (b) in Section 2 are obviously 
satisfied. 

The following theorem is well known in literature [5], related to Csiszar’s  
f-divergences. 

Theorem 5.1. Let the function f: [0, ∞) →ℜ  be differentiable convex and 
normalized, i.e., if(1)=0, then the Csiszar’s  f-divergence, Cf (P, Q) is nonnegative 
and convex in the pair of probability distribution (P, Q) ∈ Гn×Гn. 

All the requirements in this theorem have already been satisfied, so  
Cf (P, Q) = Dα(P, Q) is convex in pairs probability distribution (P, Q) ∈ Гn×Гn. 
This proves axiom (c) of Section 2. Hence, Dα(P, Q) is a correct measure of 
divergence. 

The determining function of the new parametric divergence measure (5.4) is   
sinh( log )( ) , 0.

sinh( )
x xf x α α

α
= >  

The behaviour of the divergence measure (5.4) with increasing value of α is 
shown in Fig. 1. 

 
Fig. 1 

From Fig. 1 it is clear that Dα(P, Q) has a steeper slope for increasing  
values of α. 

6.  New parametric symmetric divergence (distance) measure 

The divergence measure proposed in (5.4) is non symmetric. Now we propose a 
symmetric divergence measure using (5.4) as follows: 
(6.1)  DJα(P, Q) = Dα(P, Q)+ Dα(Q, P). 

From the discussion carried in Section 5 and from (6.1) we conclude that: 
• ( , ) 0;D P Qα ≥    
• DJα(P, Q) = 0  iff   P = Q; 
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• DJα(P, Q) = DJα(P, Q). 
Now if the triangle inequality is satisfied, then DJα(P, Q) becomes a distance 

measure. For this we prove the following. 
Theorem 6.1. Let 
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From (6.6) and (6.7) we have 
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(6.10)   
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Clearly d(t) is positive for all t > 0 and α >0. 
Therefore the sign of h(t) depends on n(t). We have 

( )2

2

1( ) sinh( log ) cosh log
sinh( )

1 1cosh log sinh log .

n t t t

t
t t t

α α α α
α

αα α α

′ ⎡= − − + +⎣

⎤⎛ ⎞ ⎛ ⎞+ + ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎦

 

Thus, ( ) 0,n t′ ≤  for all t > 0 and α  > 0; n(t) is a monotonic decreasing function 
with n(1) = 0 therefore h(t) is a monotonic decreasing function with h(1) = 0, hence 
h(t) changes its sign at t=1 and it is observed that: 
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Now (6.5) can be written as 
(6.11)   2 ( ) ( ) ( ).pqrK r h t h tβ′ = +  

Now suppose β > 1, q > p, this gives: 

• for  t < 
β
1

 < 1: h(t)  and h(βt) both are positive; 

• for  t  >  1: h(t)  and h(βt) both are negative; 

• for 1 , 1t ⎛ ⎞
∈⎜ ⎟
⎝ ⎠β

: h(t) > 0  and h(βt) < 0. 

Since h (t) is a monotonic decreasing function, therefore for 

• 1 ,1t
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  we have h(t)  >  h(βt), this implies h(t) + h(βt) > 0; 

• for t > 1, h(t) < 0 and  h(βt) < 0  that is, h(t) + h(βt) < 0. 

Therefore ( ),pq pq
dK K
dr

′ =  indeed changes the sign at t = 1, r = p. Thus  there 

is a minimum at t = 1. 
Since h(t) is monotonically decreasing, this implies that ( ) 0,h t′ ≤  for all t > 0 

and we know that h(t) changes the sign only once. This gives  

( )( ) ( ) ( ) ( ) 0.d h t h t h t h t
dt

′ ′+ = + <β β β  

The case β < 1, q < p, can be investigated similarly. 

Now by symmetry ( )pq pq
dK K
dr

′ =  changes the sign at r = q. 

Hence the proof of (6.3) follows. 
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Next we prove the result for α = 0. 
When 0→α  then (6.2) reduces to 
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 < 1  : )(1 th   and )(1 th β  both are positive; 
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• for t > 1: )(1 th   and )(1 th β  both are negative; 

• for 1( , 1)t
β

∈ : )(1 th  > 0  and  )(1 th β < 0. 

Since h(t) is a monotonic decreasing function, therefore for 1( , 1),t
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h(t) > h(βt) this implies 0)()( 11 >+ thth β . 
• for t > 1, )(1 th < 0 and )(1 th β < 0, that is, 0)()( 11 <+ thth β . 

Therefore ( ) ( )pq pq
dT r T
dr

′ =  indeed changes the sign at t = 1, r = p. Thus there 

is a minimum at t = 1. 
Since h1(t) is monotonically decreasing, this implies that 0)(1 ≤′ th . For all  

t > 0 and we know that h(t) changes the sign only once. This gives  
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The case β < 1, q < p, can be investigated similarly. 

Now by symmetry ( ) ( )pq pq
dT r T
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changes the sign at r = q. 

Hence the proof of (6.13) follows. 
In view of this result we conclude that the new parametric symmetric 

divergence measure  
DJα(P, Q)= Dα(P, Q)+ Dα(Q, P) is a distance measure. 

7.  Information bounds of the new parametric divergence measure 

Many of the divergence measures used in statistics are of the f-divergence type. 
Often one is interested in the inequalities for one f-divergence in terms of another  
f-divergence. Such inequalities are for instance needed in order to calculate the 
relative efficiency of two f-divergences when used for testing goodness of fit but 
there are many other applications. 

First we cite a divergence measure in terms of which bounds are obtained in 
this section: 

• Hellinger Discrimination (H e l l i n g e r [11]) 
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Following the theorems provides bounds on Csisz r’s f-divergence measure. 
Theorem 7.1 (D r a g o m i r [6]). Let ℜ→ℜ+:f  be differentiable convex. 
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0 , 1, 2, ..., ,i
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then we have the inequality 
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Here we have the case in which 1== nn QP ,  f(1) = 0, p= P, q = Q  and   
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Theorem 7.2 (D r a g o m i r [6]). 
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and 0 , 1, 2,..., ,i

i

pr R i n
q

≤ ≤ ≤ < ∞ =  

then we have the inequality 
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Here we have the case in which 1,n nP Q= =   f(1) = 0,  p = P, q = Q  and   
If (p, q) = Dα(P, Q),  therefore the inequality (7.3) is reduced to 
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Theorem 7.3 (D r a g o m i r [7]). Assume that the generating mapping 
: (0,1)f →ℜ   is normalized, i.e., f (1) = 0 and it satisfies the assumptions: 

(i) f is twice differentiable on (r, R), where  0 ,r R< ≤ < ∞  
(ii) there exist real constants m, M, such that Mxfxm ≤′′≤ )(  for ( , ).x r R∈  
If P, Q are discrete probability distributions satisfying the assumption 
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then we have the inequality 
(7.5)    ( , ) ( , ) ( , ),fmD P Q I P Q M D P Q≤ ≤  
where D(P, Q) is Kullback Liebler’s divergence measure. 

Here we have If (P, Q) = Dα(P, Q), 
sinh( log )( ) , 0,

sinh( )
x xf x α α

α
= >  

(7.6)  
2cosh( log ) sinh( log )( ) , 0.

sinh( )
x xx f x α α α α α

α
+′′ = >   
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It can be observed that the minimum value of )(xfx ′′  is obtained at 

α

α
α 2

1

1
1
⎟
⎠
⎞

⎜
⎝
⎛

−
+

=x
 
provided that 1>α and the maximum value of )(xfx ′′  cannot be 

determined here. We can find m by putting this value of x in (7.6).  Consequently, 
we find a lower bound for Dα(P, Q) from (7.5) as follows: 
(7.7)   ( , ) ( , ).m D P Q D P Q≤ α   

Theorem 7.4 (D r a g o m i r [8]). Assume that the generating mapping 
: (0,1)f →ℜ   is normalized, i.e., f(1) = 0 and satisfies the assumptions: 

(i) f is twice differentiable on (r, R), where 0 1 ,r R< ≤ ≤ < ∞  
(ii) there exist real constants m, M such that 3/ 2 ( ) ,m x f x M′′≤ ≤  for 

( , ).x r R∈  
If P, Q are discrete probability distributions satisfying the assumption 

0 , 1, 2,..., ,i
i

i

pr r R i n
q

≤ = ≤ ≤ =  

then we have the inequality 
(7.8)   2 24 ( , ) ( , ) 4 ( , ),fmh P Q I P Q M h P Q≤ ≤  

where 2 ( , )h P Q  is Hellinger discrimination.  
Here we have If (p, q) = Dα(P, Q), 

sinh( log )( ) , 0,
sinh( )

x xf x α α
α

= >
 
 

(7.9)   
2

3/ 2 1/ 2 cosh( log ) sinh( log )( ) , 0.
sinh( )
x xx f x x

⎡ ⎤+′′ = >⎢ ⎥
⎣ ⎦

α α α α α
α

 

It can be observed that the minimum value of 1/ 2 ( )x f x′′  is obtained at 
1

2( 1)(2 1)
( 1)(2 1)

x
αα α

α α
⎛ ⎞+ +

= ⎜ ⎟− −⎝ ⎠
 provided that 1>α and the maximum value of 3/ 2 ( )x f x′′   

cannot be determined here. We can find m by putting this value of x in (7.9).  
Consequently, we find a lower bound for Dα(P, Q) from (7.8) as follows: 
(7.10)    24 ( , ) ( , ).mh P Q D P Qα≤   

The upper bound for Dα(P, Q) is given by the following 
Theorem 7.5 (D r a g m i r [6, 9]). Let the function ℜ→ℜ+:f   be 

differentiable convex and normalized, i.e.,  f(1) = 0. Then 
(7.11)   0 ( , ) ( , ),

ff CC P Q E P Q≤ ≤   

where  

(7.12)   
1

( , ) ( )
f

n
i

C i i
i i

pE P Q p q f
q=

⎛ ⎞
′= − ⎜ ⎟
⎝ ⎠

∑   for all  , .nP Q∈Γ   
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Let , nP Q∈Γ  be such that 0 , 1, 2, ..., ,i
i

i

pr r R i n
q

< = ≤ ≤ < ∞ =  then 

(7.13)    0 ( , ) ( , ),
ff CC P Q A P Q≤ ≤   

where 

(7.14)  1( , ) ( )[ ( ) ( )].
4fCA r R R r f R f r′ ′= − −   

Further, if we suppose that  0 1 , ,r R r R< ≤ ≤ < ∞ ≠  then 
(7.15)   0 ( , ) ( , ),

ff CC P Q B P Q≤ ≤  

where 

(7.16)  ( ) ( ) (1 ) ( )( , ) .
fC

R r f r r f rB r R
R r

− + −
=

−
  

Theorem (7.5) provides the upper bounds for Dα(P, Q). 

8.  Approximation of the new divergence measure  
in terms of χ2 divergence measure 

χ2
 divergence proposed by P e a r s o n s [14] 

2
2

1

( )( , ) .
n

i i

i i

p qP Q
q=

−
=∑χ  

In this section we shall bring the asymptotic approximation of the divergence 
measure given by (14) in terms of χ2

 divergence. 
Lemma 8.1. If f is twice differentiable at x =1 and ( ) 0,f x′′ ≥  f(1) = 0, 

then     

(8.1)   2(1)( , ) ( , ).
2f

fC P Q P Q
′′

≈ χ   

P r o o f.  From Taylor’s expansion, we have  
2

2(1)( 1)( ) (1)( 1) ( )( 1) ,
2

f xf x f x K x x
′′ −′= − + + −  

where f (1)= 0 and  0)( →xK  as  1.x→ . 

Hence, 
2 2(1)( ) ( )(1)( ) .

2
i i i i i i

i i i
i i i i

p f p q p p qq f f p q K
q q q q

′′⎛ ⎞ ⎛ ⎞− −′= − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Approximating  i ip q→  and summing over i = 1, 2, 3, …, n we have 
2(1)( , ) ( , ).

2f
fC P Q P Q
′′

≈ χ  

Theorem 8.1.  For Dα(P, Q) as defined in (14) the following result holds: 

(8.2)  2( , ) ( , ).
2sinh( )

D P Q P Q≈α
α χ

α
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P r o o f. We have 
sinh( log )( ) , 0.

sinh( )
x xf x = >

α α
α

 

Clearly, f(x) satisfies the conditions of Lemma 8.1, thus we have 
2(1)( , ) ( , ),

2f
fC P Q P Qχ
′′

≈  and  (1) .
sinh( )

f α
α

′′ =  

From Section 3 we also know that  
( , ) ( , ).fD P Q C P Q=α  

This gives 2( , ) ( , ).
2sinh( )

D P Q P Q≈α
α χ

α
 

Also, when  0,α →  we have 1.
sinh( )

α
α

→  

Consequently,    
21( , ) ( , ).

2
D P Q P Q≈α χ  

Thus the desired result follows. 
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