
 5

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 12, No 4

Sofia • 2012 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2012-0027

SINUS – A Semantic Technology Enhanced Environment
for Learning in Humanities

Gennady Agre
Institute of Information and Communication Technologies, 1113 Sofia
Email: agre@iinf.bas.bg

Abstract: The paper describes a semantic technology based environment intended
for developing technology enhanced learning applications in humanitarian problem
domains. The environment consists of three layers: the storage layer contains
heterogeneous repositories storing domain and pedagogical knowledge; the tool
level contains a set of tools for processing different types of knowledge and the
middleware layer is implemented as an extended search engine carrying out all
necessary communications between the tools and the repositories. Some
implementation issues are discussed and a preliminary evaluation of the
environment based on an exploitation is presented.

Keywords: Technology enhanced learning, semantic technologies, service-oriented
architectures.

1. SINUS project – objectives and goals

The main objective of the ongoing national funded research project SINUS:
Semantic Technologies for Web Services and Technology Enhanced Learning
(sinus.iinf.bas.bg) is to provide a semantic technology based environment allowing
developing Technology Enhanced Learning (TEL) applications that use the existing
heterogeneous software systems. The basic approach for realizing such applications
is to exploit Service Oriented Architecture (SOA) able in a uniform way to use
heterogeneous systems implemented as Web services. More precisely, the project is
focused on:

 6

• Developing an environment allowing in a uniform way querying, retrieving
and using information objects stored in heterogeneous digital libraries. The
environment should provide means for ontology-based upgrades of existing digital
libraries without any changes in library structure, content and annotations.

• Extending the developed environment by specialized TEL-oriented tools
implementing a active learning approach in problem domains characterized by
intensive use of multimedia digital libraries. The tools should support the analytical
skills of the learners in a given humanitarian discipline by authoring of analytical
materials in some well defined learning situations.

The target groups of the SINUS environment cover academic users (students
following different courses from the subject under study and their teachers), as well
as non-academic users. The students from formal education forms are expected to
have a middle or higher level of knowledge about the domain and to use the
environment for improving their domain knowledge. They will actively search for
digital learning resources and use them to achieve their learning goals by
development of analytical scholarly essays, thematic projects, course or diploma
theses, etc. The teachers should receive information support in preparing concrete
learning tasks for their students (development of analytical materials for different
purposes based on an appropriate selection of available digital resources), as well as
in preparing exemplary learning resources and recommendations for students work
on different levels [1].

The potential of such a specialized TEL environment should be illustrated by
developing a prototype learning system assisting students in preparation of projects
in the area of East Christian iconography.

The present article discusses some aspects related to the implementation and
evaluation of SINUS environment. The next section briefly presents the
environment conceptual architecture. Section 3 is devoted to implementation of the
architecture − some main characteristics of its components are described. The
fourth section is an evaluation of SINUS environment made on the project
evaluation scenario – the developed approach for integrating heterogeneous
repositories and the correspondence between project goals and achievements are
discussed. The last section is a conclusion.

2. SINUS conceptual architecture

The SINUS environment consists of three layers – a storage layer containing
heterogeneous repositories used for storing data and knowledge; a tool layer
containing tools used for data and knowledge processing and a middleware layer
used as a mediator between tools and repositories (Fig. 1).

2.1. The storage layer content

• Basic digital library represented as Web service. It is assumed to store (in a
non-semantic manner) some “original” (i.e., created outside SINUS environment)
annotations of multimedia objects (that can be stored inside or outside the library).

 7

Fig. 1. SINUS conceptual architecture

• Repository of ontologies containing OWL ontologies describing basic and
specialized domain knowledge. It is assumed that the basic ontology is an
ontological extension of data scheme describing the basic digital library. The
specialized ontologies describe some additional, more specialized concepts and
relations of the domain. Such ontologies can be used for creating new specialized
descriptions (semantic annotations) of objects from the domain including those
already described in the basic library. The specialized ontologies contain also
relations with some concepts from basic ontology and in such a way can be
considered as some specialized extensions of the basic ontology.

• Repository for new semantic annotations of domain objects. Such
specialized annotations represent the features of objects from the basic digital
library that cannot be described in terms of basic ontology. They allow such objects
to be queried and retrieved in terms of the specialized ontologies.

• Repository for pedagogical knowledge. The repository is intended for
storing some formalized knowledge of teachers about learning tasks to be solved by
students. In general such knowledge comprises descriptions of the learning task and
some pedagogical recommendations (advices, strategies, etc.) how the task could be
solved. In the case of SINUS besides textual descriptions of the tasks the
knowledge includes also exemplary plans for finding task solutions, as well as one
of the possible correct solutions found by the teacher him/herself. This knowledge
is used for creating task models that can be applied for checking students’ solutions
for correctness.

 8

2.2. The tool layer content

• Ontology Editor intended for creating and editing OWL ontologies. For
these purposes each existing editor of OWL ontologies can be used. In SINUS
project all ontologies have been created and edited by means of Protege – OWL [2].

• Semantic Annotation Editor − a tool for creating and editing semantic
(RDF-based) annotations based on the specialized ontologies stored in the Ontology
Repository.

• Learning Task Editor – a tool for creating and editing internal (SINUS)
representations of learning tasks (task models). Such a representation includes
textual description of the task, a possible plan for finding the proper solution, an
example of such a solution found by the teacher, etc.

2.3. The middleware layer

• This layer is implemented as an Extended Search Engine – a complex Web
service providing an effective way for accessing and retrieval of information stored
in the heterogeneous repositories of SINUS environment. The engine receives
queries (internally represented as SPARQL queries) sent by some of SINUS users
(a human or a program) and processes them: after analyzing a query the engine
converts it into a sequence of sub-queries corresponding to the type of SINUS
repositories, in which the answer will be searched, sends the converted sub-queries
to the corresponding repositories, processes and integrates the results and then
returns the answer to the user. The extended functionality of the engine allows not
only searching for objects satisfying the query, but creating new objects specifying
in the query as well.

In the described-above SINUS environment a TEL application is built
hierarchically starting with transforming an autonomous system for storing,
accessing and retrieving multimedia data (digital library) into a Web service (basic
library), then − into an extended digital library, which is based on Web services and
ontologies, and finally – into a TEL system based on Web services

3. Realization of SINUS environment

3.1. SINUS heterogeneous repositories

SINUS environment has been constructed to work with repositories of different
types but implemented as Web services. At the moment the environment uses three
repositories – repository of basic objects and annotations (basic digital library),
repository of new semantic annotations and repository of learning tasks.

According to SINUS exploitation scenario the “Virtual Library of East
Christian Art” has been selected as a primary digital library [3]. This library is a
fully autonomous and closed Web application implemented by means of relational
database technology with built-in and hard-coded domain knowledge that, in
practice, is a characteristic feature of most digital libraries with multimedia content.
The library contains descriptions of different iconographical objects (icons, altars,

 9

etc.) represented according to a fixed hierarchical schema as most of the object
features (e.g., description of iconographical scenes, restoration notes, etc.) are
represented as unstructured texts. It also provides the user with a set of functions for
searching the library and visualizing the search results. In order to be used in
SINUS environment the library has been converted to a WSDL Web service
preserving the whole functionality of the original library (except the function for
updating the library content). Such a Web service is used in SINUS environment as
the repository of basic annotations.

The second repository (RDF-based) is used for storing new semantic
annotations. The term “new” means that such annotations are made in terms of new
(i.e., specialized) ontologies, which have not been used for creating basic
annotations stored in the basic library. The specialized annotations allowing
searching for multimedia objects via querying their features that are neither
presented in the annotation schema of the basic library nor can be inferred by a rule
combining some of the basic object features. The Repository for new semantic
annotations is implemented by means of a highly effective semantic repository
OWLIM [4]. OWLIM uses Sesame1 which is a de-facto standard framework for
processing RDF data, as a library, taking advantage of its APIs for storage and
querying, as well as the support of a wide variety of query languages (e.g.,
SPARQL and SeRQL) and RDF syntaxes (e.g., RDF/XML, N3, N-Triples, Turtle,
etc.). OWLIM provides a possibility for effective reasoning based on such semantic
languages as RDFS, OWL DLP and OWL Horst.

Since in SINUS environment the annotations of information objects are stored
in different repositories, an effective mechanism for combined use of both types of
annotations has been implemented. It allows searching and retrieving objects
satisfying complex queries described in terms of both basic and specialized
ontologies. The implementation of the mechanism is based on the following ideas:

• Use of a specially designed mapping procedure for lifting basic annotations
to the semantic (OWL) level that guarantees uniqueness of the created identifiers for
ontological class individuals [5]. As a result, the lifted basic annotations and the
corresponding specialized annotations form a common virtual RDF graph
describing an object both in terms of basic and specialized ontologies.

• Use of an effective procedure for processing complex SPARQL queries
containing terms of both basic and specialized ontologies. If it is necessary the
procedure dynamically lifts from the basic digital library some non-semantically
represented annotations of objects that partially satisfy the query, writes the resulted
temporary semantic annotations into the semantic repository, makes an inference
for finding objects that fully satisfy the query and, finally, deletes all temporary
semantic annotations from the repository. The procedure is described in more
details in Section 3.3.

Since the procedure above described for searching answers on SPARQL
queries requires a dynamic way for writing and deleting information to the semantic
repository, we have used Version 1.1 of SPARQL query language [6] and

1 http://www.openrdf.org/index.jsp

 10

Version 4.2 of OWLIM that includes SPARQL 1.1 Update functionality, as well as
SPARQL 1.1 query support.

Ontology repository is a conceptual component of SINUS environment aiming
at storing domain knowledge represented as OWL ontologies. Although the
ontology repository contains another type of data different from semantic
annotations stored in the Repository for new semantic annotations, functionally
both repositories are implemented as a single semantic repository OWLIM in order
to exploit an effective search and inference engine built in the OWLIM.

A specific feature of SINUS environment is the use of ontologies for
integrating data from different heterogeneous sources. All domain ontologies in
SINUS are divided on basic and specialized ones according to their relations with
external for the environment digital libraries. A basic ontology can be seen as a
semantic explanation of information object descriptions stored in an external digital
library relying on a relational database. Such a basic ontology converts and
generalizes the database schema into an ontology model representing in an explicit
way all domain knowledge built in the basic digital library. Basic ontologies allow
querying information in a uniform semantic way (e.g., by means of SPARQL
queries), no matter whether the requested information is stored in a semantic or
non-semantic repository2.

Specialized ontologies represent new domain knowledge that has not been
used explicitly during construction of basic digital libraries. In SINUS we assume
that a specialized domain ontology describes the domain from a particular point of
view and can be seen as a specialized extension or development of some concepts
from the basic ontologies where they are presented in a too general way. Thus some
concepts (classes) from basic ontologies can be described in a more detailed way as
their new additional properties or sub-classes could be presented in a corresponding
specialized ontology. What is important is that all these extensions of domain
knowledge allowing more rich and flexible access to objects from the basic libraries
do not change the original structure and content of such libraries.

It should be mentioned that as basic as specialized ontologies can be used
independently ones from others. That is why in order to provide a combined use of
them it is necessary to define the correspondent links between the ontologies. In the
general case this task for merging and alignment of ontologies is rather complicated
[7]. In SINUS we have applied a pragmatic approach – some of the “root” concepts
(classes) of a specialized ontology are declared as equivalent or sub-classes of the
correspondent classes from the basic ontology. In such a way when these ontologies
are used together, such basic concepts become extended by new sub-classes and/or
new properties defined in the specialized ontologies.

SINUS environment is able to operate with numerous basic ontologies (each of
which is corresponding to a separate basic digital library implemented as a Web
service) and with several specialized ontologies. In the experimental application of
the environment one basic and two specialized ontologies have been used. The

2 Of course, a special procedure – mediator lowering a semantic query to the corresponding
“language” understandable by a specific non-semantic digital library should be constructed.
See for details Section 3.4.

 11

basic ontology3 represents an ontological extension of the metadata schema of the
basic digital library “Virtual Library of East Christian Art”[3]. The ontology
comprises 55 classes, 38 object properties and 28 data-type properties, where main
classes are Iconographical Object with its sub-classes Icon, Wall-Painting,
Miniature, Mosaic, Vitrage; Author, Iconographical Scene, Character,
Iconographical Technique, Base Material and so on [8]. The first specialized
ontology4 describes some elements of technology used for creating iconography
objects such as Gilding, Primer, Lacquering and so on [9]. It contains 16 classes, 14
object properties and 43 ontological individuals. The second specialized ontology5
describes composition scenes of iconographic objects and comprises 7 classes, 5
object properties and 21 ontological individuals.

The third repository in SINUS environment is intended for storing knowledge
related to educational aspects of the environment. At the moment it contains a
formal model of a learning task “Creation of a dedicated multimedia collection”. In
order to solve this task a student should intensively use the extended digital library
of SINUS in order to find a set of iconographical objects satisfying some criteria
(qualitative and quantitative) specifying by the teacher. Beside textual descriptions
of the task to be solved, such a model contains teacher’s recommendations and
exemplary plans for finding task solution. The plan represents a hierarchical
decomposition of the task to sub-tasks and possible solutions for each sub-task
found the teacher herself. Each solution is represented by a sequence of SPARQL
queries sent by the teacher to the library and some restrictions on the number of
objects that should be selected as proper answers on the query (see [13] in the
current issue for more details). The learning task model is created by the teacher by
means of Learning Task Editor (a component of the SINUS tool layer) and used by
the SINUS TEL application for monitoring and assisting the student in the process
of solving the corresponding task. The repository is implemented as a MySQL
relational database.

3.2. Semantic Annotation Editor

The Semantic Annotation Editor (SAE) is the SINUS tool intended for creating and
editing semantic annotations of multimedia objects based on the specialized
ontologies stored in the SINUS ontology repository. It can be used by the user for
creating his/her own semantic annotations of objects stored in a digital library with
a fixed system for accessing its content (that is fully determined by the library
annotation schema). The SAE has been developed as a tool for operating with the
SINUS extended SOA-based digital library. From this point of view its main user is
a “librarian” who is responsible for updating and maintaining the library resources,
as well as for providing access for end-users – “readers” to objects stored in the
library.

3 http://sinus.iinf.bas.bg/files/SINUSBasicOntology.owl
4 http://195.96.244.8:8080/sinus-demo/ontology.jsp?ont=SIO
5 http://sinus.iinf.bas.bg/files/SINUS_ImageSpecOntology.owl

 12

In some non-educational applications of SAE, the librarian and the reader
could be the same person. For example, according to the SINUS scenario for
exploitation of the basic library [10], the possible users of SAE are specialists on
different aspects of the East Christian iconography, who use the Editor (and the
extended digital library as a whole) for creating and maintaining their own
specialized collections of multimedia documents (“libraries”) assisting their
research.

Considering the SAE as a part of the Learning System (the developed TEL
Demonstrator for collection development), in which two traditional user roles (the
teacher and the student) exist, the Editor is a tool of the teacher, who uses it for
preparing some learning resources to be used then by students.

The SAE is implemented as a complex RESTful Web service consisting of
two main modules (also implemented as RESTful services) – Graphical SPARQL
Designer and Semantic Annotator.

3.2.1. Graphical SPARQL Designer

The Graphical SPARQL Designer (GSD) is a Web service providing a graphical
interface for communication between the heterogeneous repositories of SINUS and
their users. The Designer, along with SINUS repositories and the Extended Search
Engine (ESE), form the extended SOA-based digital library of SINUS . The users
of the GSD can be not only humans, but programs as well – for example, it is
invoked by the Learning Task Editor during creation of task models and also used
by the Learning System as the main instrument of a student for solving the learning
task formulated by the teacher.

The GSD is implemented as a set of modules realizing such functions as user
identification and authorization, configuration of ontologies, creating search
queries, creating visualization queries, forming object collections, and
communications with external services.

As it has been already mentioned, in SINUS environment searching for
multimedia objects is based on their annotations made by means of ontologies.
However, in order an OWL ontology to become accessible for all SINUS users it
should be configured. The configuring is organized as a process consisting of
several steps, including:

• Determining possible concepts to be searched. This step allows the user to
specify what ontology concepts (classes), which in the general case constitute a part
of some hierarchical descriptions of other more complex concepts, can be directly
accessible for creating search queries.

• Determining such properties of the possible ontological concepts to be
searched that will be served as default ones for visualization purposes when a
concrete instance of such concepts will be retrieved from the SINUS repositories. In
SINUS environment when the user formulates a query he/she is able to specify not
only properties that queried objects should have but also what properties of such
objects she wants to see in visualization of query results. The default properties
used for visualization significantly facilitate the end-user in their work with the
SINUS extended library since they allow automatically displaying the important

 13

(from the librarian point of view) properties of objects formulated by the user in the
search query.

• Determining connections between the basic and the specialized ontologies.
As it has been mentioned in the previous section, the user can search the SINUS
repositories by means of queries formulating in terms belonging to several
ontologies describing such objects from different points of view. Since the
specialized ontologies are extensions of some concepts (partially) described in basic
ontologies such correspondence between specialized and basic concepts should be
preliminary specified. The connections are set by the librarian during the process of
ontology configuration.

There is another aspect of possible relations between specialized and basic
ontologies in SINUS environment. We assume that some values of specialized
semantic annotations of concrete multimedia objects (so called “preliminary
semantic annotations”) could be automatically extracted from certain basic
annotations of such objects represented as unstructured texts (see next section for
details). That is why the ontology configuration process includes the step, in which
the librarian could specify which properties of basic concepts used for creating
basic annotations of multimedia objects could be explored for creating preliminary
specialized annotations.

Although the process for searching objects with desired properties is
implemented internally in SINUS environment via sending SPARQL queries, the
construction of such queries remains hidden for the end-user. The user creates
his/her query in a graphical way by following the structure of the selected
ontologies and by choosing possible values for some terminal ontology elements
(such as data-type properties or class individuals) provided by the Designer in a
lexical natural-language form. As an addition the Designer also generates a natural-
language like representation for each query constructed by the user that facilitates
understanding and checking the meaning of the query.

Since we assume that the user of the Designer is a humanitarian that could
have problems with formulating a complex query that includes too many
restrictions on the desired properties of objects to be searched, it is possible to send
a query to the results on another previously constructed query. The Designer
provides the user with the history of his/her search represented as a list of natural-
language represented queries the user sent along with sets of objects selected by the
user as results for such queries. That is why the process of constructing a complex
query is realized as a two-steps process: at the first step the user selects a set of
objects from the search history that satisfies the restrictions described in the
corresponding query and then constructs a simple query to that set specifying what
additional properties a desired subset of this set of objects should have.

Another interesting and innovative feature of the Designer is an ability of the
user to specify preliminary what properties of the objects satisfying the current
query should be displayed in the result when such objects will be found. The aim is
to facilitate the user in her choice of the desired objects from the list with query
results. Before sending the query for searching objects with the desired properties
the user creates a query for visualization selecting from the graphically visualized

 14

ontology structure the properties she wants to be displayed when the object will be
found. The selected properties are added to the default properties for visualization
preliminary chosen for such an object by the librarian during the process of
configuring ontologies6.

3.2.2. Semantic Annotator

The semantic annotation process in SINUS environment can be understood as a
process for creating RDF-based annotations of concrete information objects
belonging to some OWL classes described in the ontologies stored in the SINUS
ontology repository. The main characteristic of this process is that although an
ontology provides the user with a “pattern” describing all properties an object could
have along with (in some cases) the range of all possible values for each property,
the filling of such “patterns” should be carried out “manually” by the annotator-
human. When the number of objects to be annotated is big, this procedure becomes
very time-consuming. That is why we have tried to reduce the amount of such
“manual” work by dividing the annotation process on two phases – the creation of
the preliminary annotations executed automatically by means of SINUS
environment, and the creation of the final annotations carried out by the annotator-
human.

The preliminary annotation process is a process for automatically creating
some semantic annotations for objects specified by the user that is based on
available information about these objects represented as unstructured texts. The
main part of this process is the analysis of the texts by means of some Natural
Language Processing (NLP) techniques (see [11] in the current issue). It is
important to note that although preliminary annotations look like semantic
annotations “manually” created by the annotator-human, they have the following
underlying characteristics:

• Potential incompleteness − the quality of the preliminary annotations to a
great extent depends on the quality of texts used for their creation. Such texts could
contain information only on some subset of ontological properties of objects to be
annotated. Moreover, in some cases the texts themselves that are considered as a
potential source of terms used for creating preliminary semantic annotations could
be missing. Thus the preliminary created semantic annotations are incomplete in
principle.

• Potential incorrectness – the preliminary annotations are created by
application of some NLP techniques that, due to the high complexity of natural
languages, are neither universal nor absolutely correct. That is why the preliminary
annotations could contain imprecise or even erroneous information.

The described-above reasoning explains why the process for creating
preliminary annotations should be followed by the next step – creating the final
semantic annotations carried out by the human – expert in the concrete problem
domain who is able to fill or correct incompleteness or incorrectness made in the
preliminary annotations. The preliminary semantic annotation process is executed

6 The user can also delete some (or all) of these default properties.

 15

only once for each configured specialized ontology and applied to all multimedia
objects described in SINUS basic libraries. The automatically created preliminary
semantic annotations are temporary stored in SINUS repository for new semantic
annotations [12].

The final semantic annotations are created by the user of the Semantic
Annotator module (the “librarian”) via a graphical interface that is very similar to
that used for constructing SPARQL queries. The librarian constructs a query
describing objects she wants to annotate using terms from a selected specialized
ontology, and the module retrieves such objects from SINUS repositories. The
preliminary annotations are shown to the librarian as default values for object
properties described in the specialized ontology and she can confirm or change
these values. If such default values are missing for some object properties (i.e., no
preliminary semantic annotations covering these properties have been created), the
librarian can specify a desired value via selecting it from the list with possible
property values presented in the corresponding ontology.

Finally the selected property values along with the corresponding properties
are formed as INSERT/UPDATE SPARQL queries that are sent to Extended Search
Engine component of SINUS environment for execution. The created final
annotations are stored or replace the corresponding preliminary annotations in the
Repository for new semantic annotations.

3.3. Learning Task Editor

The Learning Task Editor (LTE) is a component of SINUS environment intended
for creating and editing learning tasks in some humanitarian problem domains and
is implemented as a RESTful Web service. According to the SINUS exploitation
scenario one of such tasks is the development of an analytical project analyzing
some pre-assigned by the teacher aspects of the problem domain [10]. The general
plan recommended by the teacher for solving this complex task proposes to
decompose the task onto three simpler sub-tasks: 1) constructing a limited-sized
dedicated collection from multimedia objects stored in the SINUS repositories with
semantically annotated resources; 2) analyzing the prepared collection by
comparison and debate of certain objects characteristics, and 3) combining the
analysis and the collection into a multimedia document. At the moment the LTE
allows the teacher to prepare all information needed for defining the first learning
sub-task for selecting a multimedia object collection.

The task is described by its model containing both textual description of the
task and a plan proposed by the teacher for solving it. In its turn the plan is
represented as a sequence of steps, where each step contains textual description of
actions to be done, qualitative constraints on the step results represented via
SPARQL queries formulated by the teacher in his/her attempt to solve the step and
some quantitative constraints on the required size of the step results. The detailed
explanation of the model used for describing the collection development task, as
well as the description of the Learning Task Editor structure and functions can be
found in article [13] of the current issue.

 16

3.4. Extended search engine

The Extended Search Engine (ESE) is a complex WSDL Web service used as
middleware between the tool layer and the storage layer of SINUS environment.
The main function of the ESE is to find answers on SPARQL queries sent by the
Graphical SPARQL Designer. Since in SINUS environment the description of an
object is represented in a distributed way (i.e., as semantic and non-semantic
annotations stored in different heterogeneous repositories) finding objects satisfying
a complex query is not a trivial task. In the general case such a process consists of
the following phases:

• Analyzing the SPARQL query and converting it into a sequence of
SPARQL sub-queries that will be sent to the corresponding SINUS repositories.
Each sub-query asks only for such properties of objects mentioned in the initial
query that are presented in the corresponding repository. Thus a set of objects
satisfying the sub-query is a superset of objects satisfying the whole query.

• Executing the sub-query sequence − the answer of each sub-query is used
as a filter for the next sub-query in the sequence. In other words, each next sub-
query in the sequence is sent to a set of objects found by the previous sub-query.

In order a SPARQL query sent to a SINUS repository to be executed it should
be translated into the “language” understandable by the corresponding repository.
For example, since according to the SINUS exploitation scenario the basic SINUS
repository is represented as a WSDL service, such query should be translated into a
set of corresponding service functions which arguments are described according to
the service metadata schema. This task of “lowering” semantic representation of a
query to a non-semantic level understandable by the corresponding non-semantic
repository is carried out by a dedicated service, which is a part of the ESE.

In some cases in order to find an answer on a SPARQL query sent to the
SINUS semantic repository certain information available only in a non-semantic
form is needed. In such cases a specially designed “lifting” procedure (service)
which is another part of the ESE is used. Using the metadata schema and the basic
ontology of the corresponding non-semantic repository as parameters, the procedure
constructs RDF-based semantic representation of requested objects [12]. Such a
representation then can be temporary inserted into the semantic repository to infer
the answer to a SPARQL query sent to it or used for other purposes (e.g., for
visualization of object properties).

The ESE is able not only to find an answer on SPARQL queries but also to
create new objects described as SPARQL queries. Such functionality is used by the
Semantic Annotation Editor for creating new semantic annotations.

A special module of the ESE is intended for extracting preliminary semantic
annotations from texts written in a natural language (in our case – in Bulgarian).
The module interface is implemented as a RESTful service allowing other services
of SINUS environment to use the third-party CLaRK system [14]. CLaRK contains
a set of instruments for structuring, processing and monitoring data represented as
XML documents. In the SINUS context CLaRK is invoked by the Semantic
Annotation Editor, which sends as parameters an OWL ontology, containing
ontology terms with natural language labels, and a list of unstructured texts to be

 17

analyzed. The system returns the same set of texts extended by partially created
semantic annotations represented in XML format, which then transformed to
preliminary RDF-based annotations stored in the Repository for new semantic
annotations (see article [11] in the current issue for details).

4. Evaluation of SINUS environment

This section evaluates the realization of SINUS environment and makes a
comparison of the achieved results against the project goals.

4.1. Integration of heterogeneous data

The use of a relational database system for implementation of the “primer” library
chosen to play a role of basic source for domain knowledge in SINUS environment
as well as representation of other domain knowledge as OWL ontologies and RDF-
based semantic annotations have posed to the developers a requirement for selecting
an appropriate strategy for integration of all domain knowledge in an effective and
consistent manner. Such integration should allow finding the desired objects and
making logical inference needed for acquiring new knowledge in real time. In
attempt to solve this problem the following possible approaches have been
considered:

• RDF transformation – in this approach a relational database is transformed
to RDF representation and then stored in the semantic repository along with other
semantically represented sources [15]. Such transformation is done only once and
can be implemented as a Web service. The main problem with such an approach is
the replication of data and the synchronization of original database with its semantic
copy. It is necessary either to implement a special procedure for actualizing RDF
data on a certain interval of time or to develop a special notification mechanism that
is activated when some changes in the original database have occurred. Such
changes have been expected to occur comparatively frequent in the case of SINUS
since the primary digital library would exist and still being extended outside the
SINUS environment.

• Virtual RDF views – in this approach a relational database is not changed
while its RDF-based view is published [16] An example of such approach is D2R
Server7: the database content is mapped to RDF by a customizable mapping which
specifies how resources are identified and which properties are used to describe
resources. Based on this mapping, D2R Server allows a RDF representation of the
database to be browsed and searched. The SPARQL interface enables applications
to query the database using the SPARQL query language over the SPARQL
protocol. The server takes requests from the Web and rewrites them via a D2RQ
mapping into SQL queries against a relational database. This on-the-fly translation
allows clients to access the content of large databases without having to replicate

7 http://d2rq.org/d2r-server

 18

them into RDF. However, such created virtual RDF views should be then integrated
with other semantically presented data.

• RDF federation – this is an approach allowing a collection of heterogeneous
distributed RDF repositories to be accessed as if they are a unique local semantic
repository [17]. The conception of federating for executing distributed queries is not
new [18] and based on an idea for the presence of an additional service – mediator
that is responsible for distribution of sub-queries to the corresponding repositories
and then for integrating the sub-queries results. It is assumed that such a mediator
has required additional knowledge about all repositories.

The SINUS approach may be considered as a combination of the virtual RDF
views and the RDF federation methods. The SINUS Extended Search Engine plays
the role of a mediation service as it does in the RDF federation method. It
decomposes an initial SPARQL query to a sequence of SPARQL sub-queries to be
sent to the corresponding repositories. Each sub-query is constructed from the terms
described in ontologies (basic or specialized) associated with the corresponding
SINUS repositories. The special mapping procedures “lower” such semantic sub-
queries to the Web service functions querying the corresponding basic digital
libraries and then “lift” query answers back to a semantic level (RDF views). As in
the RDF federation approach such a constructed semantic view is used either as a
filter for the next query in the sequence or temporary inserted into the semantic
repository to be used along with its content as an integrated source of semantic data
to infer an answer to the query.

4.2. Correspondence to the project research goals

One of the project goals is to develop an environment allowing “upgrading”,
integrating and using existing heterogeneous digital multimedia libraries
implemented as Web services. The developed SINUS environment completely
satisfies this goal allowing the “upgrade” to be made into three directions.

• Extending domain knowledge – in SINUS environment new knowledge can
be added by:

1. Constructing extended basic ontologies describing in an ontological manner
all objects presented in the corresponding basic libraries. In such a way it is possible
to add new knowledge that can be inferred from the basic domain knowledge (e.g.,
it allows to introduce a new concept “hard material”, which is a generalization of
such basic concepts as “stone”, “wood”, “glass”, etc., mentioned in the basic
library).

2. Adding new ontologies describing concepts and properties that have not
been used explicitly in the object descriptions stored in basic libraries. In SINUS
environment such new aspects of domain knowledge are represented as specialized
ontologies.

3. Adding new knowledge about concrete multimedia objects stored in the
basic libraries. In SINUS environments new knowledge of that type are represented
as new semantic annotations describing the objects by specialized ontology terms.

It is important to note that in all three cases the extension of basic domain
knowledge does not change any information stored in the basic digital libraries.

 19

• Extending the way of searching for objects stored in the existing basic
libraries by using new knowledge or their combination with basic domain
knowledge. In SINUS environment the object search process is organized via
intensive use of ontologies. A search query is constructed through tracing
ontologies describing the properties of an object that has been selected to be
searched while the SINUS approach for binding specialized and basic ontologies
allows their using in combination. In such a way one and the same object can be
presented to the user as having different properties depending on ontologies
selected for formulating the search query. It allows the same query construction
interface to be used by different groups of specialized users, for example, students
specialised in theology or those interested in iconographic techniques or icon
restoration, etc. The SINUS approach for splitting all knowledge to basic and
specialized allows the users to build their own systems for indexing and searching
for objects stored in external libraries without any changes in their content.

• Enhancing the way for displaying the search results by an ability to
explicitly specify what additional information the user wants to be shown. The main
advantage of using ontologies for searching information is that in contrast to other
“traditional” approaches the SINUS user knows in advance the complete structure
(i.e., all possible properties) of objects he/she wants to find. As a result the user can
explicitly specify not only properties that the searched objects should obligatory
have, but also such additional properties that would influence the user in her final
decision what objects to select from the list of results returned by the search engine.
This feature of SINUS environment aims at shortening the boring process of
inspecting long lists with results that are usually returned by traditional search
engines. The user can easily select potential candidates for the final solution just
taking a look on such important from her point of view properties of each object
from the list.

The second goal of SINUS project is to extend the developed environment by
some tools facilitating the implementation of active learning approach in such
humanitarian domains where the multimedia digital libraries are intensively used.
In order to achieve the goal we have developed a set of tools devoted to two main
user groups participating in the learning process – teachers and students.

The Semantic Annotation Editor (SAE) and the Learning Task Editor are the
tools intended for using by the teachers. The SAE allows creating and editing
semantic annotations of objects stored in a digital multimedia library. Such
annotations are then used for searching objects described by a combination of their
properties and represented as a search query. Although SAE can be used outside the
learning context (as a tool of an annotator-“librarian” responsible for maintenance
of a digital library) when SINUS environment is used for development of TEL
applications this tool is used by the teacher. Our experience in developing such
applications8 has shown that in order to be usable by the end-users, who are not
computer scientists, the tool should satisfy the following main requirements:

8 See, for example FP6 Logos project – www.logosproject.com.

 20

• Easy-to-use interface employing just problem domain terms. In the case of
SINUS this requirement has been fully satisfied since the SAE is provided with an
intuitive graphical interface, which is based on domain ontologies. The annotation
process is implemented as a natural extension of the “traditional” for SINUS
environment process for querying libraries that is realized via very similar interface.

• Flexible way for organizing the work allowing the user to determine by
herself the order and the amount of work to be done. The SAE user can easy specify
what objects he/she wants to annotate at the moment by sending a search query
describing the necessary properties the objects should have. Moreover, in order to
avoid the boring process for filling complete object annotation patterns the user can
select what part of the corresponding pattern (defined by its ontological description)
she is willing to fill and what part – to leave unfilled (or to fill later). In all cases the
created (partial) semantic object descriptions remain syntactically correct and can
be immediately used for searching the objects.

• Facilitating the user in carrying out his/her work by providing with all
useful information available in the system. The annotation process (especially when
many objects should be annotated) is associated with entering a big amount of
information. This makes the process very boring and time-consuming for the user.
In order to facilitate and speed-up this process the SAE exploits the approach for
automatic creation of preliminary semantic annotations, which is based on
extracting information from unstructured texts by means of some NLP methods [9].
Since these methods do not guarantee the absolute correctness of the results such
created annotations are considered in the SAE as preliminary ones, i.e., they have to
be confirmed by the user – human. Nevertheless, the ability to propose some
preliminary semantic annotations has been evaluated by some teachers from the
National Art Academy, who tested SINUS environment, as of great help to the SAE
users.

Another SINUS tool – the Learning Task Editor (LTE) has been specially
designed for learning tasks related to work with digital libraries. One of the
important tasks for developing analytical skills of students-humanitarians is the task
for selecting illustrative material (multimedia objects) from SINUS repositories
with semantically annotated resources that serves as a basis for writing a course
project analyzing different aspects of the selected multimedia objects. The LTE
allows the teacher to formulate such learning tasks as the tool automatically extracts
from the created task description all criteria needed in the future for checking the
correctness of solutions of the same task proposed by students. Since the task for
creating a collection of objects satisfying a set of requirement could have multiple
correct solutions, in the LTE the teacher specifies only one of them. For that
purpose he/she uses the dedicated means provided by SINUS environment (the
Graphical SPARQL Designer) playing, in such a way, the role of a student
attempting to solve the task. The tool analyzes the proposed solution and uses it for
constructing the model for all possible corrects solutions of the task. Then this
model is used for monitoring and assisting students when they are trying to solve
the same task.

 21

The application of the active learning principle not only to the process for
solving a learning task by the students but to the process for creating the learning
task description by the teacher as well, has been highly appreciated by the teachers
participating in the LTE testing. The described-above approach has allowed
replacing a rather difficult for formalization process of specifying all criteria that
should be satisfied by a correct task solution, by a simple illustration of a possible
correct solution. A side effect of this approach is a possibility of the tool to check
the correctness of the solution proposed by the teacher herself making the
comparisons between teacher’s recommendations intended to the students and
concrete steps the teacher has done in attempting to solve the task. Although the
Learning Task Editor is just an experimental prototype system, which interface
could be significantly improved, from the functional point of view the tool
completely satisfies the research goals of the projects related to technology enhance
learning.

A TEL Demonstrator for the learning task of collection development has been
implemented as an illustration of learning abilities of SINUS environment. It is a
learning system assisting the students to create multimedia collections satisfying a
set of criteria formulated by the teacher. The system allows the student to solve
learning tasks specified by the teacher in three different modes of operation:

• Fully unaided without any use of the exemplary plan for solving the task
proposed by the teacher. In this mode the system checks for correctness and
evaluates only the final solution of the task found by the student.

• Independently but having in mind the teacher’s plan for decomposition of
the initial task to sub-tasks. In this mode the system checks for correctness and
evaluates only partial task solutions, i.e., the solutions of the sub-task found by the
student. The way for solving a sub-task is not fixed and depends only on the
creativity of the student and her abilities to work with the system.

• By following the detailed plan for solving the task proposed by the teacher.
This is the case when the student has found it difficult to find the proper solution of
the task and needs maximum assistance from the system. The assistance is the
detailed plan describing not only how to decompose the task to sub-tasks, but how
each sub-task could be solved. However, even in this case the student has the
freedom to execute each proposed step of the plan in her own manner while the
system checks for correctness and evaluates only the final results of each step.

In all three modes of operation the check for correctness is based on the task
model constructed in the Learning Task Editor by analyzing the task solution
proposed by the teacher. The student’s solution is checked against the following
criteria:

• Correctness – whether the set of objects proposed by the student as a
solution of a concrete step (sub-task or task) contains some objects that do not
satisfy (a part of) conditions (restrictions) formulated in a query (or queries)
suggested by the teacher for solving the corresponding step.

• Completeness – whether a set of objects proposed by the student as a
solution of a concrete step (sub-task or task) contains all possible in the moment
objects satisfying conditions (restrictions) formulated in a task model constructed

 22

from a query (or queries) suggested by the teacher for solving the corresponding
step.

In such a way the types of student errors detected by the systems correspond to
such classical in the Information Retrieval characteristics as precision and recall
[19].

At the moment the check for possible causes of the detected incorrectness or
incompleteness of a student solution is reduced to finding an erroneous elementary
step in the plan applied by the student for solving the corresponding part of the task
(see [13] for details). This restriction is due to the fact that the evaluation is based
only on the mapping of the task model built from the plan for finding the solution
proposed by the teacher against the set of objects proposed by the student as a
solution. In the future in order to detect what part of the erroneous elementary step
is incorrect we are going to analyze also the corresponding SPARQL query used by
the student to carry out this step.

The developed TEL Demonstrator for collection development has proved the
correctness of the developed approach for constructing TEL applications in SINUS
environment and it has shown that the environment completely satisfies the project
goals.

5. Conclusion

The developed SINUS environment contains three types of components –
repositories used for storing different types of information; tools used this
information for developing TEL applications, and a middleware carrying out the
communications between the tools and the repositories. The environment has a high
degree of heterogeneousness: at the moment it comprises three types of repositories
– a relation database used for storing learning task models, a WSDL Web service
implementing all functions of an SQL-based basic digital library storing multimedia
objects and their annotations, and a semantic RDF-based repository storing OWL
ontologies and semantic annotations of objects described in the basic digital library.
The environment components are written in different programming languages such
as C# (Extended Search Engine) and Java (Semantic Annotation Editor, Learning
Task Editor) that are implemented as WSDL or RESTful Web services. The
successful use of such heterogeneous tools for creating the exemplary TEL
applications (the extended digital library with the service oriented architecture and
the learning system in the domain of the East Christian iconography) has proved the
correctness of the chosen approach for developing the SINUS environment.

It is necessary to remind that the SINUS project goals were neither to develop
a concrete extended digital library for Christian iconography nor to build a concrete
system for technology enhanced learning in this problem domain. That is why the
graphical interfaces of the developed experimental prototypes are quite far from the
“industrial” standards for communicating with real users of similar commercial
systems. The same note may be addressed to the completeness of the developed
ontologies describing the illustrative problem domain. However, those prototypes
have proved the correctness of the chosen approaches for realizing the project goals

 23

and can serve as a basis for developing future really industrial systems for operating
with heterogeneous digital libraries and for developing TEL-based applications.

All research software, as well as OWL ontologies developed within the frame
of SINUS project are freely available for research purposes and can be found at the
project site sinus.iinf.bas.bg.

Acknowledgments: The work on this article was partially funded by the Bulgarian National Science
Fund project D-002-189 SINUS “Semantic Technologies for Web Services and Technology Enhanced
Learning”.

R e f e r e n c e s

1. D o c h e v, D., G. A g r e. Supporting Learning-by-Doing Situations by Semantic Technologies. –
In: D. Stefanoui, J Culita, Eds. Proc. of 17th Annual Conf. on Media and Web Technology
EUROMEDIA’2012, Bucharest, April 2012, ISBN 978-90-77381-69-4, 49-53.

2. Protege 4 User Documentation (accessed 2010).
http://protegewiki.stanford.edu/wiki/Protege4UserDocs

3. P a n e v a-M a r i n n o v a, D., R. P a v l o v, M. G o y n o v, L. P a v l o v a-D r a g a n o v a, L.
D r a g a n o v. Search and Administrative Services in Iconographical Digital Library. – In:
Proc. of the International Conference “Information Research and Applications” (i.Tech
2010), July 2010, Varna, Bulgaria, 177-187.

4. OWLIM Version 5.3 Documentation. (accessed 2012).
http://owlim.ontotext.com/display/OWLIMv53/Home

5. M a r i n c h e v, I. Lifting and Lowering the Data from Digital Library “Virtual Encyclopaedia of
Bulgarian Iconography”. – In: Proc. of 12th International Conference on Computer Systems
and Technologies (CompSysTech’2011), Vienna, Austria, 16-17 June 2011, ACM,
ISBN: 978-1-4503-0917-2, 179-184.

6. SPARQL 1.1 Query Language. W3C Proposed Recommendation 8 November 2012.
http://www.w3.org/TR/sparql11-query/

7. E u z e n a t, J., P. S h v a i k o. Ontology Matching. Springer, 2007.
8. S t a y k o v a, K., I. H r i s t o v. Metadata Models for Technology Enhanced Learning in SINUS

Project. – In: Proc. of the International Scientific Conference on Information Communication
and Energy Systems and Technologies (ICEST’2010), Vol. 1, 23-26 June 2010, Ohrid,
Macedonia, ISBN 978-9989-786-57-0, 337-340.

9. S t a y k o v a, K., G. A g r e. Use of Ontology-to-Text Relation for Creating Semantic Annotation.
– In: Proc. of 13th International Conference on Computer Systems and Technologies
(CompSysTech’2012), ACM, New York, 2012, 64-71.

10. P a v l o v a-D r a g a n o v a, L., D. P a n e v a-M a r i n o v a. A Use Case Scenario for Technology-
Enhanced Learning through Semantic Web Services. – International Journal “Information
Technologies & Knowledge”, Vol. 3, 2009, No 3, 257-268.

11. S t a y k o v a, K., P. O s e n o v a, K. S i m o v. New Applications of “Ontology-to-Text Relation”
Strategy for Bulgarian. – Cybernetics and Information Technologies, Vol. 12, 2012, No 4,
43-51.

12. M a r i n c h e v, I. Semantic Lifting of Unstructured Data Based on NLP Inference of Annotations.
– In: Proc. of 13th International Conference on Computer Systems and Technologies
(CompSysTech’2012), ACM, New York, 2012, 58-63.

13. A g r e, G., D. D o c h e v, L. S l a v k o v a. A SINUS Approach to Technology Enhanced Learning
for Humanities by Active Learning. – Cybernetics and Information Technologies, Vol. 12,
2012, No 4, 25-42.

14. S i m o v, K., Z. P e e v, M. K o u y l e k o v, A. S i m o v, M. D i m i t r o v, A. K i r y a k o v.
CLaRK – An XML Based System for Corpora Development. – In: Proc. of the Corpus
Linguistics 2001 Conference, 2001, 558-560.

 24

15. Use Cases and Requirements for Mapping Relational Databases to RDF. W3C Working Draft 8,
June 2010.
http://www.w3.org/TR/rdb2rdf-ucr/#directPlusOnt

16. B i z e r, C., R. C y g a n i a k. D2RQ Lessons Learned. Position Paper for the W3C Workshop on
RDF Access to Relational Databases. Cambridge, USA, 25-26 October 2007.

17. J a é n, J., A. B o r o n a t, J. H. C a n ó s. Federated TDF Repositories for Integrated Hybrid
Museums. – In: Proc. of International Conference on Digital Culture and Heritage
(ICHIM’2005), Paris, 21-23 September, 2005.
http://www.archimuse.com/publishing/ichim05/Jaen.pdf.

18. S h e t h, A., L. L a r s o n. Federated Database Systems for Managing Distributed, Heterogeneous
and Autonomous Databases. – ACM Computing Surveys, Vol. 22, 1990, No 3, 183-236.

19. B a e z o-Y a t e s, R., R.-N. B e r t h i e r. Modern Information Retrieval. Pearson Education
Limited, 1999, ISBN 0-201-39829-X.

