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Abstract

Kinetic models have so far been used to model wealth distribution in a society. In particular, within the framework of

the kinetic theory for active particles, some important models have been developed and proposed. They involve nonlinear

interactions among individuals that are modeled according to game theoretical tools by introducing parameters governing

the temporal dynamics of the system. In this present paper we propose an approach based on optimal control tools that

aims to optimize this evolving dynamics from a social point of view. Namely, we look for time dependent control variables

concerning the distribution of wealth that can be managed, for instance, by the government, in order to obtain a given social

profile.
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1. Introduction

This paper deals with an optimal control problem applied to a socio–economic kinetic model for
wealth distribution in a society. The objective is to design a suitable strategy that would let an eventual
ruler get a desired wealth profile after a certain period of time. The choice of the mathematical model
for social dynamics is mainly motivated by the fact that all living systems in general, and social systems
in particular, are complex [1], since individuals are able to develop specific heterogeneously distributed
strategies, which depend also on those strategies expressed by the other individuals. Moreover, individuals
in socio–economic systems are able to learn from their experience, implying that the expression of the
strategy evolves in time [2].

The modeling approach is based on the tools of the so called kinetic theory of active particles [3],
briefly KTAP, whose essential features can be summarized as follows: the overall system is subdivided
into functional subsystems constituted by entities, called active particles, whose individual state is called
activity; the state of each functional subsystem is defined by a probability distribution over the activity
variable; interactions are, in general, delocalized and nonlinearly additive, and are modeled by stochastic
games, where the state of the interacting particles and the output of the interactions can only be known
in probability. Finally, the evolution of the probability distribution is obtained by a balance of particles
within elementary volumes of the space of the microscopic states, where the dynamics of inflow and
outflow of particles is related to interactions at the microscopic scale.

In this way, this approach provides a general mathematical framework that can be specialized into the
derivation of a variety of models of complex systems in life sciences. For instance, opinion formation [4,5],
immune competition [6], epidemics [7,8], among others, have been properly modeled and described by
using this theory. In all of these applications, the heterogeneous behavior of individuals is modeled by
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using theoretical tools of game theory, where the interactions usually involve competitive and altruistic
outputs.

More specifically, methods of the kinetic theory have so far been used to model social dynamics. We
refer to the recent review paper [9] and references therein for a deep and clear insight into the application
of this approach to model social systems. One of the first KTAP–based models was proposed by Bertotti
and Delitala [10], and further exploited in [11], where the subpopulations are described by social classes
and individuals interact and undergo conservative transitions among these classes. In [12] this model
was specialized in order to account for migration from one nation to another. In [13] a focus on the so
called black swan [14] in a model linking political and social interactions is introduced. More recently, [2]
proposes a model for the onset and development of criminality based on the wealth distribution of a
population and [15] links economic development and political competition within a society. Different
approaches are compared in [16], while an interesting recent work regarding to the research of a system
theory of behavioral social dynamics is presented in [17], where the interested reader is referred to for
additional useful references. The book by Pareschi and Toscani is always a valuable query reference in
this line of research [18].

In this present paper we consider a spatially homogeneous population divided into functional subsys-
tem characterized by their wealth. Individuals interact with a certain frequency and, as a result of this
interaction, they undergo conservative trades that can let them change their social status. Thus, the total
population as well as the total wealth remain constant over time. As we will see in the next section, the
model can be characterized by a probability of transition from a social class to another and by a threshold
that divides altruistic and competitive behaviors, that basically establish the fairness of the wealth dis-
tribution in the society. Our main objective is thereby to design an optimal control strategy that would
allow an eventual ruler (a controller that can regulate wealth distribution, taxes policies, etc.) to get,
within a given period of time, a desired distribution profile. For instance, the ruler may seek for a fairer
distribution of the population’s resources. With this aim we use some optimal control tools. Namely, we
will define a proper functional depending on the state of the system (instantaneous wealth distribution)
and on the control variables to be chosen, that has to be minimized through the use of optimization
methods in order to obtain a suitable control strategy. Some useful references regarding optimal control
of social and economical systems are [19,20]. Some more specific applications can be found, for instance,
in [21,22] where suitable developments of the theory are performed.

The paper is organized as follows. Section 2 describes the system under consideration and synthesizes
the social model to be used. Section 3 introduces the optimal control problem, by defining an optimization
problem in a suitable space. In Section 4 we propose an algorithm and perform a computational analysis
in order to obtain suitable controls under different scenarios. Finally, Section 5 is devoted to conclusions
and highlights some research perspectives.

2. The mathematical model

Let us consider a large population of individuals homogeneously distributed in a certain territory.
Individuals are regarded as active particles and they are characterized by a discrete scalar variable
u ∈ Iu = {u1 = −1, . . . , un = 1} ⊂ [−1, 1], called the activity, which represents the social state of the
individuals, where u1 = −1 and un = 1 are, respectively, the lowest and the highest values of the social
state. In general, the study of the model seems to be more interesting when the number n of social
classes is odd [10], since in this case a middle class un+1

2
= 0 can be identified. We recall that the use

of a discrete variable is technically convenient since social levels are identified, in practice, only within
intervals corresponding to discrete states.

The overall state of the system is described by the generalized distribution functions

(1) fi : [0, T ]→ R≥0, i = 1, . . . , n,

such that fi (t) denotes the number of active particles that, at time t, have social state ui. The number
T > 0 corresponds to the maximal time of observation and could eventually be ∞. We denote by f (t)
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the vector [f1 (t) , . . . , fn (t)]t ∈ Rn. In this way, the total size N (t) of the whole system is given by the
sum of all its components:

(2) N (t) =

n∑
i=1

fi (t) .

If the total population is conserved, then N (t) = N (0) for all t and f can be normalized with respect to
such a number.

In addition, higher order moments make possible to calculate another macroscopic variables. For
instance, the total wealth W (t) is given by the first order moment

(3) W (t) =
n∑

i=1

uifi (t) .

Moving in this direction, we will use some useful quantities that were introduced in [13]. The number
of poor and wealthy active particles at time t are defined by

(4) N− (t) =

n−1
2∑

i=1

fi (t) , N+ (t) =
n∑

i=n+3
2

fi (t) ,

respectively. In this way, the middle class un+1
2

= 0 is regarded as economically neutral. If N is normalized,

then these quantities satisfy that 0 ≤ N± ≤ 1 and N− +N+ ≤ 1 and authors introduced the social gap
in the population:

(5) S (t) = N− (t)−N+ (t) .

Notice that S (t) ∈ [−1, 1], negative values of S correspond to a wealthy society while positive values of
S correspond to a poorer one.

Finally, the variance of the wealth distribution will be also useful in our discussion. It is defined as
the sencond order moment with respect to u minus the total wealth, namely

(6) σ2 (t) =

n∑
i=1

u2i fi (t)−W (t)2 .

Let us now briefly summarize the kinetic social model, referring to [10,12,13] for more details. Inter-
actions involve three types of particles: the test particle, which is representative of the system and whose
distribution function is fi (t), candidate particles whose distribution function is fh (t), which interact with
field particles whose distribution function is fk (t), which interact with test and candidate particles.

The mathematical structure describes the temporal evolution of the distribution functions fi. It is
obtained by equating the variation rate of particles in a given functional subsystem i, with the difference
between the inlet and outlet fluxes from this state. In this way, the balance equation can be summarized
as:

(7)
d

dt
fi (t) = Ji [f ] (t) = Gi [f ] (t)− Lj

i [f ] (t) , i = 1, . . . , n,

where Ji [f ] (t) is the net flux of particles that fall into the state ui, while Gi [f ] (t) and Li [f ] (t) denote,
respectively, the inflow and outflow, at time t, into (and out) functional subsystem i.

The mathematical framework to describe microscopic interactions between two subsystems can be
described by means of two different functions:

• The encounter rate ηhk, that describes the interaction rate between a candidate (or test) h–particle
and a field k–particle.
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• The transition probability density Bihk, that describes the probability density that a candidate
h–particle falls into the state ui after an interaction with a field k–particle. This function satisfies

(8)
n∑

i=1

Bihk = 1, h, k = 1, . . . , n.

Finally, the equation describing the evolution of the distribution functions can be derived. For i =
1, . . . , n:

(9)
d

dt
fi (t) =

n∑
h=1

n∑
k=1

ηhkBihkfh (t) fk (t)− fi (t)
n∑

k=1

ηikfk (t) .

Different approaches have been proposed to model the interaction functions. For the case of the
interaction rate, we consider the idea from [12], where it was assumed that it depends on the difference
between the particles’ social states, by considering that the closer the states of the two particles are, the
higher is the frequency in which they interact:

(10) ηhk = η0 (1− ε |uh − uk|) ,

where 0 ≤ ε ≤ 1/2.
Regarding to the transition probability densities, we take here the cooperative–competitive paradigm.

It states that there exists a social threshold γ ∈ {1, . . . , n− 1} such that if the distance between the inter-
acting social classes |h− k| is lower or equal that γ then individuals undergo a competitive interaction:
the richer increases his social state while the poorer decreases it. On the other hand, if |h− k| > γ,
then the opposite (altruistic) effect is observed. In all the cases, it is assumed that transitions are wealth
preserving and they occur with probability α ∈ [0, 1]. The modeling of this term can be outlined as:

(11)

h = k

{
Bhhh = 1,
Bihh = 0, ∀i 6= h,

h 6= k



|k − h| ≤ γ



h = 1, n

{
Bhhk = 1,
Bihk = 0, ∀i 6= h,

h 6= 1, n



h < k


k 6= n

B
h−1
hk = α,
Bhhk = 1− α,
Bihk = 0, ∀i 6= h, h− 1,

k = n

{
Bhhn = 1,
Bihn = 0, ∀i 6= h,

h > k


k 6= 1


Bhhk = 1− α,
Bh+1
hk = α,
Bihk = 0, ∀i 6= h, h+ 1,

k = 1

{
Bhh1 = 1,
Bih1 = 0, ∀i 6= h,

|k − h| > γ


h < k


Bhhk = 1− α,
Bh+1
hk = α,
Bihk = 0, ∀i 6= h, h+ 1,

h > k

B
h−1
hk = α,
Bhhk = 1− α,
Bihk = 0, ∀i 6= h, h− 1.

Notice that the model contains two essential parameters that determine the overall dynamics. On
the one hand, 0 ≤ α ≤ 1 is the probability that, after an interaction, an individual can undergo a
transition changing his/her social state. On the other hand, 1 ≤ γ ≤ n − 1 is the critical distance
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that separates competitive from altruistic behaviours. In the first social dynamics models [10,11] γ was
taken as a constant parameter, while [13] introduced a further development in which γ depends on the
instantaneous distribution of active particles over the wealth classes.

In this present paper, however, we are interested in the modeling of a situation in which both are
viewed as functions of time (in an open loop way) α(t) and γ(t) in such a way that they can be controlled
(e.g. by a ruler or the government) in order to obtain certain results regarding to the socio–economic
distribution in the future. This will be described in detail in the following section.

3. Formulation of the optimal control problem

Starting from the previously introduced model, if we emphasize the dependence of J on α and γ, then
eq. (7) can be written as

(12)

df

dt
(t) = J (f (t) , a (t)) , t ∈ [0, T ] ,

f (0) = f0.

It provides the dynamics of the system, f : [0, T ] → R
n is called the state of the system and a :

[0, T ] → A ⊂ Rm is the control function taking values in the admissible region A. In our case m = 2,
a (t) = (α (t) , γ (t)) is assumed to be a measurable function and A = [0, 1]× {1, . . . , n− 1}.

We recall that a pair of functions (f (·) , a (·)) : [0, T ]→ Rn×Rm is an admissible pair of the problem
if it solves the system given by equation (12).

Let us now put ourselves in the place of the decision maker. His/her aim is to choose an admissible
control in an optimal way. In other words, this means that he may select, among all the possible admissible
pairs (f (·) , a (·)) one that minimizes a given cost function, as discussed in the following. The question
that he/she would like to answer is:

“I have just risen to power (t = 0) and I would like to get, at time T , a society with a given social
profile. Which policies concerning the distance between social classes and the permeability of the society
for wealth exchanges shall I implement in order to obtain my desired social profile?”

In particular, for instance, he/she would like to minimize a given quantity over time and to get, at
the end of the process, another quantity as lower as possible. Bearing this in mind, we introduce the
following objective function:

(13) P (a (·)) =

∫ T

0
ϕ (t, f (t) , a (t)) dt+ ψ (f (T )) ,

where ϕ can be interpreted as a running cost and ψ (f (T )) as a terminal payoff. There are now unique
choices for these two functions: for instance, the ruler may pretend to minimize the variance of the wealth
distribution (ϕ = σ2) or to maximize the wealthy class (ϕ = −N+) over time, or to keep the social gap
at final time as lower as possible (ψ (f (T )) = S (T )). These and other different choices will be specified
in the next section for different case studies.

We are now able to pose the optimal control problem:

(14)

minimize
a(·)

P (a (·))

subject to
df

dt
(t) = J (f (t) , a (t)) , t ∈ [0, T ] ,

f (0) = f0,

f ∈ {x ∈ Rn : xi ≥ 0,
∑
xi = 1} ,

a (t) ∈ A, ∀t ∈ [0, T ] .

Notice that (14) is a nonlinear constrained optimization problem. It is an optimal control of ODEs
problem [23,24], since the state of the system f must solve a system of ordinary differential equations
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given by the social dynamics model (12). In addition, what makes the problem even more challenging is
its mixed nature, given that the admissible set A = [0, 1]×{1, . . . , n− 1} lets the first variable (α) to be
continuous, but the second one (γ) is an integer.

Let us remark that problem (14) cannot be tackled with a traditional nonlinear optimization method,
since small changes in the variable γ do not change the solution of the system of ODEs (12), as can be
noted by observing eq. (11). That is why a typical descent or gradient–based method will fail, as it will
move in the direction of α only, fixing γ.

In the next section we propose a numerical method to solve problem (14) and we discuss some selected
case studies.

4. Solving the optimal control problem and numerical results

4.1. On the numerical method and design of the algorithm

In this section we perform some numerical simulations and computational analysis for the opti-
mal control problem presented in Sec. 3. Notice that problem (12) is well–posed and has a unique
large–time solution [10,12]. Moreover, notice that if f0 has unitary mass, then the condition f ∈
{x ∈ Rn : xi ≥ 0,

∑
xi = 1} in (14) is automatically satisfied since the model is conservative. In this

case, however, we do not only have to solve the initial value problem but we also need to couple it with
the minimization problem. Thus, we must develop an efficient iterative method in order to repeatedly
solve (12), evaluate functional (13), adjust the parameter values accordingly, and so on. The method that
we use to solve the optimal control problem is summarized in the following algorithm:

Algorithm 4.1. Solving the optimal control problem.

Step 1: Subdivide the interval [0, T ] into M subintervals of the same length, and give an initial piecewise
constant guess for the control a(0) (t) = a(0) (tk) , with t ∈ [tk, tk+1], k = 0, 1, . . . ,M − 1.

Step 2: In the i-th step (i = 0, 1, . . .), given the initial conditions f(0) = f0 and the control a(i), solve the

initial value problem (12) to get a solution f
(i)
k = f (i) (tk), k = 0, . . . ,M − 1.

Step 3: Evaluate functional (13) to obtain

P
(
a(i) (·)

)
=

∫ T

0
ϕ
(
t, f (i) (t) , a(i) (t)

)
dt+ ψ

(
f (i) (tM )

)
.

Step 4: Use a convenient method to calculate a(i+1) (tk), k = 0, 1, . . . ,M − 1, such that P
(
a(i+1) (·)

)
≤

P
(
a(i) (·)

)
.

Step 5: Return to step 2 and repeat the procedure until the stopping criteria is satisfied.

Some remarks about this algorithm. In step 4 we use a genetic algorithm that takes into account the
mixed nature of the constraints; the stopping criteria considered in step 5 is reached when the distance
between two consecutive functional evaluations are lower or equal than a given tolerance or when the
number of iterations exceed a given allowed maximum.

4.2. Numerical results

This subsection is devoted to some simulations that are selected to put in evidence how can a couple
of socio–economic parameters let a ruler get a desired social profile in a given population. Therefore, we
propose some specific case studies characterized by:

• The initial state of the society: At t = 0, different initial profiles for wealth distribution are
considered, such as poor and rich societies. A random initial distribution is also proposed, since
we will see that it is useful to extract some interesting information. In addition, the society is
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also initially characterized by its values of γ and α, that give an idea of how fair and permeable
interactions are.
• The objective of the controller: The ruler becomes the responsible of the population’s adminis-

tration at t = 0 and must decide what kind of society he/she glimpses at some future time.
Accordingly, he/she will choose the functions ϕ and ψ.

The following case studies show, as stated above, different scenarios. In all the cases, we consider nine
social classes, namely n = 9. In addition, the initial threshold that separates competitive from altruistic
behaviours is taken large γ (0) = 8 and we take an intermediate value for the probability of experimenting
transitions between social classes α (0) = 0.5. We also take η0 = 1 and ε = 0.5. Finally, we perform our
simulations with T = 100 and taking M = 100 time steps.

4.2.1. Case study 1: Minimizing the variance and the social gap in a fair society

This first case is quite trivial, but anyways illustrative. Let us consider a society with an initial
distribution as shown in Fig. 1a, well–centered around the middle class with a social gap equal to zero.
We run our optimization problem taking ϕ (t, f (t) , a (t)) = S (t, f (t) , a (t))+σ2 (t, f (t) , a (t)) and ψ ≡ 0
in the objective function (13). Namely, the ruler rises to power and would like to minimize, even more,
the variance of wealth distribution and the social gap.

First of all, notice that since trades are conservative, the number of wealthy and poor people will
coincide in the whole time interval, and consequently S should be equal to zero for all t, as observed in
Fig. 1f, where oscillations are due to numerical calculations. In addition, the variance effectively decreases
as shown in Fig. 1e, with a final distribution shown in Fig. 1b. To get these results, the controller should
manage α and γ like in Fig. 1c and 1d.

Some words about the results. First of all, they are coherent and expectable, but at the same time
quite trivial since the society was already fair. Second, we can observe that the implemented policies
let the middle class grow. However, the appearance of small clusters in the poorer and wealthier classes
could be arguable.

4.2.2. Case study 2: Minimizing the variance in a poor society

This case is much more interesting, since we consider a poor society with a very unfair wealth dis-
tribution as shown in Fig. 2a. The ruler may take decisions in order to minimize the variance of the
distribution, taking ϕ (t, f (t) , a (t)) = σ2 (t, f (t) , a (t)) and ψ ≡ 0 in the objective function (13). Apply-
ing Algorithm 4.1 to our problem we obtain the final profile shown in Fig. 2b, where we can clearly see
that the society, though it is still poor because of the conservative nature of the problen, became fairer.
This satisfying result –from the society point of view– is obtained thanks to the application of the policies
shown in Fig. 2c for γ (t) with a variance evolving as in Fig. 2d.

Notice that, as expected, a fair society is favoured when cooperation is more frequent than competition.
In other words, when the critical threshold is kept as lower as possible. Indeed, we can see in Fig. 2c
that the ruler may keep γ ≡ 1 for quite a long time interval: this tells us that a kind of socialist policies
should let the government get the desired results.

4.2.3. Case study 3: Maximizing the wealthy class and minimizing the terminal variance in a poor society

This case is proposed as a “counterexample” of what should not be done in order to get a fair
society. The initial wealth distribution is the same as in case 2, but the selected functional is obtained by
choosing ϕ (t, f (t) , a (t)) = −N+ (t, f (t) , a (t)) and ψ (f) = σ2, that is the ruler would like to maximize
the number of rich people over the whole time interval and to minimize the variance of the distribution
only at final time.

Results are shown in Fig. 3 and we can observe that they are not only alarming but also realistic.
Indeed, it is quite normal that a ruler in a poor country tries to favour the few wealthy people (politicians,
capitalists, etc.) implementing policies that lead into the situation of Fig. 3b, where the extreme classes
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Figure 1. Case study 1. (a) Initial wealth distribution centered around the middle class with a social gap equal to zero. (b)
Wealth distribution at t = T . (c) Optimal solution for α(t). (d) Optimal solution for γ(t) (integer values are taken only).
(e) Variance σ2(t) initially increases and then starts to decrease. (f) Social gap S(t) is very close to 0 for all times.

have grown giving as a result an absolutely unfair society. Notice from Fig. 3c that N+ has effectively
increased but at the expense of a huge increase in the variance as seen in Fig. 3d.

4.2.4. Case study 4: Regularizing a disordered society

Let us finally consider a toy example in which the society has an initial random profile generated with
a normalized uniform distribution, as shown in Fig. 4a. Several experiments have been performed, with
different initial random distributions and objective functionals and we found that using ϕ (t, f (t) , a (t)) =
σ2 (t, f (t) , a (t)) −N+ (t, f (t) , a (t)) and ψ ≡ 0 the ruler is able to obtain the profile shown in Fig. 4b,
that represents an almost ideal distribution minimizing the area under the curves in Fig. 4c and Fig 4d.
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Figure 2. Case study 2. (a) Initial distribution of a poor society. (b) Wealth distribution at t = T . (c) Optimal solution for
γ(t) (integer values are taken only). (d) Variance σ2(t) initially increases and then starts to decrease.

5. Conclusions and looking forward

An optimal control problem for a kinetic social dynamics model has been posed in this paper. The
main idea is to provide an eventual ruler with certain tools that could let him make strategic decisions
in terms of wealth distribution policies, given that –when he rises to power– he has a vision about what
kind of society he expects to get in the future. The results obtained in Section 4 show that this method
can effectively provide some guidelines and confers utility to the preexisting social models.

The contents of the present paper let us individuate some perspectives for further research activity
in the field. First of all, those models concerning social dynamics by means of the kinetic theory [10–12]
consider that the total population remains constant over time, by considering a closed conservative
system, i.e. a system that does not interact with the outer environment and in which the time interval
to be studied is short enough to neglect the development of proliferative or destructive events. However,
the assumption of the short–time interval is not such appropriate. In fact, according to the website
Breathingeart.net, for instance in China one baby is born every 1.9 seconds and 1 person dies every 3.4
seconds or in Italy a different behavior is observed, with a born every 1.1 minute a death every 50.1
seconds. This suggests that the dynamics of proliferation and destruction should be taken into account
in the modeling approach.

Another topic to consider is related to the conservation of wealth as the previous cited models assume
that interactions are of such a kind that the total wealth of the system remains constant over time.
Nonetheless, the United Nations define the total wealth (of a nation) as a monetary measure which
includes the sum of natural (land, forests, fossil fuels, minerals), human (population’s education and
skills) and physical (machinery, buildings, infrastructure) assets [25]. From this definition it becomes
apparent that wealth can be created or destroyed in a society. Indeed, measuring changes in wealth
permits to measure the sustainability of development: for instance, the useful report [26] by the World
Bank states that, between 1995 and 2005, global wealth increased in per capita terms by 17 percent
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Figure 3. Case study 3. (a) Initial distribution of a poor society. (b) Wealth distribution at t = T . (c) Increasing values
of the wealthy class N+(t) (d) Variance σ2(t) is increasing, with the society evolving to an even more unequal wealth
distribution.

in constant 2005 U.S. dollars. It is also documented that the fastest grow was observed in the lower–
middle–income countries while the majority of the world’s wealth (about 82%) is hold by the high–income
countries in the Organisation for Economic Cooperation and Development (OECD).

In the sake of completeness, the above mentioned aspects shall be combined in order to define wealth
per capita. Indeed, if for instance the total wealth of a society increases, but not enough to compensate
population growth, then average social welfare will decline. This matter has been slightly taken into
account, for instance, in [12] for the modeling of migration phenomena, but it should be further deepen to
obtain, not only more interesting models from the mathematical point of view, but also to provide better
perspectives to societies that need, as soon as possible, a solution to the problem of wealth distribution.
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