
Communications in Applied
and Industrial Mathematics

ISSN 2038-0909

Research article
Commun. Appl. Ind. Math. 9 (1), 2018, 68–86 DOI: 10.1515/caim-2018-0005

Comparison of minimization methods for
nonsmooth image segmentation

L. Antonelli1*, V. De Simone2

1Institute for High-Performance Computing and Networking (ICAR), CNR, via
P. Castellino 111, 80131 Naples, Italy

2Department of Mathematics and Physics, Università della Campania “Luigi
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Abstract

Segmentation is a typical task in image processing having as main goal the parti-
tioning of the image into multiple segments in order to simplify its interpretation and
analysis. One of the more popular segmentation model, formulated by Chan-Vese, is the
piecewise constant Mumford-Shah model restricted to the case of two-phase segmenta-
tion. We consider a convex relaxation formulation of the segmentation model, that can be
regarded as a nonsmooth optimization problem, because the presence of the l1-term. Two
basic approaches in optimization can be distinguished to deal with its non differentia-
bility: the smoothing methods and the nonsmoothing methods. In this work, a numerical
comparison of some first order methods belongs of both approaches are presented. The
relationships among the different methods are shown, and accuracy and efficiency tests
are also performed on several images.

Keywords: nonsmooth optimization, first order methods, image

segmentation

AMS subject classification: 65K10 - 68U10 - 90C30

1. Introduction

Many problems in image processing can be formulated as a nonsmooth
optimization problem, where the properties of the objective function and/or
the constraints reflects some specific requests on the solution. The cause
of nonsmoothness can be of various nature: intrinsic to the phenomenon,
methodological, i.e. the nonsmoothness is introduced by methodologies
for solving the problems (decomposition, dual formulation, exact penalty
functions, ...), or numerical, i.e. the so called stiff problems are analyti-
cally smooth but numerically nonsmooth. Since classical techniques, usually
gradient-based methods, require certain differentiability and strong regu-
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larity assumptions upon the functions to be optimized, they can not be
directly applied. Therefore a main challenge today is to develop “ad hoc”
techniques taking into account the specific problem in order to compensate
for the absence of differentiability. It is possible to identify two basic ap-
proaches to solution: smoothing methods, which formulate the problem as
a suitable smooth one and solve the problem with smooth convex solvers
(splitting, Huber or pseudo-Huber regularization, ...), and nonsmoothing
methods, which usually do not know the whole subdifferential of the func-
tion but only one arbitrary subgradient at each point (subgradient, proximal
gradient, bundle, ...).
In this work, we compare different first order methods in both approaches
for solving a nonsmooth convex problem describing the process of image
segmentation. In this problem, as in many other imaging tasks, the non-
differentiability of the objective function is related to the presence of l1-
penalty term. The paper is organized as follows. The Section 2 gives an
introduction to segmentation problem and its description by means of a
popular convex nonsmooth model. The Section 3 presents some popular
first order methods for solving the selected segmentation problem. Section
4 is devoted to numerical tests and comparisons.

2. A nonsmooth model for image segmentation

Segmentation is a typical task in image processing having as main goal
the partitioning of the image into multiple segments (sets or groups of pix-
els) in order to simplify its interpretation. Since the partitioning is realized
according to some features, such as intensity, texture or colour, the out-
put of the process represents the image like a map: each segment represent
an object of the image, with different intensity, texture or colour. In this
context the two-phase segmentation is considered, were the image is parti-
tioned only in two regions: background and object regions. One of the more
popular segmentation model is the non-convex Chan-Vese (CV) one [1],
that can be view as the Mumford-Shah model [2] restricted to the case of
piecewise constant two-phase segmentation; its level-set formulation reads
as follows:

(1) min
c1,c2,φ

ECV (c1, c2, φ) ,

where

(2)

ECV (c1, c2, φ) =
∫

Ω |∇H(φ(x))| dx
+λ

(∫
ΩH(φ(x)) (c1 − ū(x))2 dx

+
∫

Ω(1−H(φ(x))) (c2 − ū(x))2 dx
)
.
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Here Ω ⊂ R2 is an open bounded set with Lipschitz boundary (generally a
rectangle), ū(x) : Ω → R represents the image to be segmented, H is the
Heaviside function, φ : Ω→ R is a Lipschitz-continuous function whose zero
level set represents the boundary ∂Σ of a set Σ ⊂ Ω, c1, c2 ∈ R, and λ > 0
is a suitable regularization parameter. Solving (1) means finding the best
approximation to ū(x) among all the functions that take only two values;
c1 and c2 represent these values, while Σ and Ω\Σ are the sets where they
are taken, which provide a two-phase partition of Ω. The first term in the
right-hand side of (2) is a regularization term, which penalizes the size of
∂Σ. For any fixed φ, the values of c1 and c2 that minimize ECV are given
by

(3) c1 =

∫
Ω ū(x)H(φ(x))dx∫

ΩH(φ(x))dx
, c2 =

∫
Ω ū(x)(1−H(φ(x)))dx∫

Ω(1−H(φ(x)))dx
,

i.e., by the mean values of ū(x) in the regions Σ and Ω\Σ. Therefore, a
natural approach to solve problem (1) is to alternate between the compu-
tation of c1 and c2 through (3) and the minimization of ECV (c1, c2, φ) with
respect to φ.
The solution of problem (1) involves several difficulties than drastically
restrict the methods that can be used. Indeed, the classical techniques are
inappropriate because these may get stuck into local minima, thus providing
poor segmentations.
In this work we consider a convex relaxation approach based on the idea
of removing the constraint that u(x) is approximated by functions taking
only two values. Specifically, Chan-Esedoglu-Nikolova proved in [3] that for
any given (c1, c2), a global minimizer for the model (1) can be obtained by
solving the following convex problem, that we named CEN model:

(4)
minu ECEN (c1, c2, u) ,

s.t. 0 ≤ u ≤ 1 ,

where

(5)

ECEN (c1, c2, u) =
∫

Ω |∇u|dx
+λ
(∫

Ω u(x) (c1 − ū(x))2 dx

+
∫

Ω(1− u(x)) (c2 − ū(x))2 dx
)
,

and by taking

(6) Σ = {x ∈ Ω : u(x) ≥ µ} ,

for almost any µ ∈ (0, 1).
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3. Numerical methods for CEN model

We focus on a discretize-than-optimize approach, i.e. we first introduce
a dicrete formulation of the CEN model, then we solve the resulting opti-
mization problem. To this aim, let Γ be a discretization of the image domain
Ω into m× n pixels

Γ = {(i, j) : 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1} ,

we denote by ui,j the value of intensity function in the centre of pixel (i, j).
We shall use the following norm and inner product notations:

|u|1 =
∑
i,j

|u|i,j , ‖u‖ =

∑
i,j

u2
i,j

 1
2

, < u, v >=
∑
i,j

ui,j · vi,j .

To discretize the total variation term in (5) we set

|∇u|i,j =

√(
δx+ui,j

)2
+
(
δy+ui,j

)2
,

where δ+ is the forward finite-difference operator with the values of u re-
lated to the indexes outside Γ defined by replication. Then, the discrete
formulation of problem of (5) has the following form:

(7)
minu E(c1, c2, u) = |∇u|1 + λ < u, r > ,

s.t. 0 ≤ u ≤ 1 , umin ≤ c1, c2 ≤ umax ,

with

(8) ri,j = (c1 − ūi,j)2 − (c2 − ūi,j)2 .

The discrete version of (3) is:

(9) c1 =

∑
i,j ūi,jui,j∑
i,j ui,j

, c2 =

∑
i,j ūi,j(1− ui,j)∑
i,j(1− ui,j)

.

Different methods have been proposed to solve the problem (7) [3–9], among
which we compare, in this work, some first order optimization methods. The
first one is included in the class of smoothing methods, where ε-regularized
version of |∇u| is used to deal with its non-differentiability; the other meth-
ods, that we considered, rely on the use of proximal operatorsa [10], and

aThe proximal operator associated with a function h is defined by:

proxt(h)(z) := argmin
u

{
h(u) +

1

2t
||u− z||2

}
, t > 0.
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can also be directly applied to non-differentiable functionals

(10) F (x) := f(Kx) + g(x) ,

where f : Y → R and g : X → R are closed proper convex functions and
K : X → Y is a linear operator.

3.1. Smoothing approach

SPG-based Alternating Segmentation (SPGASeg) algorithm [9] is based
on the application of nonmonotone spectral projected gradient (SPG)
method [11], within an alternating minimization procedure, to (7). The
interest for SPG methods is due to their faster convergence with respect to
classical gradient projection methods, which results from the combination of
the spectral properties of the Barzilai and Borwein (BB) steplength [12,13]
with the nonmonotone line-search technique by Grippo, Lampariello and
Lucidi (GLL) [14]. Since |∇u|i,j is nondifferentiable in zero, we used a clas-
sical regularization as follows:

|∇u|i,j =
√

(δx+ui,j)
2 + (δy+ui,j)

2 + ε ,

where ε is a small positive parameter. We denote with G the vector ∇E,
with Gc the vector with components ∂E/∂c1 and ∂E/∂c2, Gu the vector
with components ∂E/∂ui,j . The k-th iteration of the minimization proce-
dure apply an SPG step to E(ck1, c

k
2, u) according to

(11) uk+1 = uk + θkdku ,

where the search direction dku is defined as

(12) dku = PU

(
uk − αkGku

)
− uk .

In (12) PU denotes the orthogonal projection on U = [0, 1]mn and αk is the
BB step length, more precisely given a “small” parameter αmin > 0 and a
“large” one αmax > 0, αk is defined as:

(13) αk =

{
min

{
αmax,max

{
αmin, α

k
BB

}}
, if αkBB > 0

αmax , otherwise

where αkBB = 〈sk−1,sk−1〉
〈sk−1,yk−1〉 , s

k = uk+1 − uk and yk = Gk+1
u −Gku.

The steplength θk in (11) is such that GLL condition holds, i.e.:
(14)

E
(
ck1, c

k
2, u

k + θkdk
)
≤ max

0≤j≤min{k,ν−1}
E
(
ck−j1 , ck−j2 , uk−j

)
+γ θk

〈
Gku, d

k
u

〉
,
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with ν ∈ N and γ ∈ (0, 1). A steplength θk satisfying (11) is computed by
a line search procedure, starting from θk0 = 1 as described in [9].
In the second step ck+1

1 and ck+1
2 are computed by exact minimization of

E using uk+1 in (9). SPGASeg algorithm is summarized in Algorithm 3.1.

Algorithm 3.1 SPGASeg

given tol, αmax > αmin > 0, α0 ∈ [αmin, αmax], ν ∈ N, γ ∈ (0, 1)
choose u0 and compute c01 and c02 as in (9), using u0

set k = 0
while stopping criteria does not satisfy tol do

compute dku = PU
(
uk − αkGku

)
− uk

compute θk that satisfies (14) by a line search along uk + θdku
set uk+1 = uk + θkdku
compute ck+1

1 and ck+1
2 as in (9), using uk+1

compute αk+1 as in (13)
set k = k + 1

end while

3.2. Nonsmoothing approach

Split Bregman (SB) [15] is one of the nonsmoothing method for solving
problem (7) without any regularization technique. Introducing the auxiliary
variable, d = ∇u, the segmentation problem (7) can be formulated as

(15)
min0≤u≤1,d E(u, d) ,

s.t. d = ∇u ,

where E(u, d) = |d|1 + λ < u, r >.
One way to solve (15) is to convert it into an unconstrained problem, for
example by using a penalty function/continuation method, which approxi-
mates (15) by a sequence

(16) min0≤u≤1,dE(u, d) + ηk
2 ‖d−∇u‖

2, ηk ∈ R+,

where large values of ηk make (16) extremely difficult to solve numerically.
Alternatively, SB reduces (15) in a short sequence of unconstrained prob-
lems by using the Bregman distance [16] associated with (15) [15], where
conversely the value of ηk remains constant. The application of SB method
to problem (7) produces the framework described in Algorithm 3.2, that
we named SBSeg.
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Algorithm 3.2 SBSeg

given tol, λ > 0, η > 0,
choose u0 and compute c01 and c02 as in (9), using u0

set k = 0
while stopping criteria does not satisfy tol do

compute (uk+1, dk+1) = argmin0≤u≤1,dE(u, d) + η
2‖d−∇u− b

k‖2

set bk+1 = bk +∇uk+1 − dk+1

compute ck+1
1 and ck+1

2 as in (9), using uk+1

set k = k + 1
end while

At k-th iteration of the Algorithm 3.2, the minimization of the sub-problem
is not trivial, because of the presence of a nonsmooth term. Anyway, there
is an extensive literature in optimization about methods for solving convex
programming problems with an objective function of the form (10), among
which the splitting and proximal gradient methods.
The algorithm presented by Goldstein, Bresson and Osher in [15], that we
named SBSeg-GBO, proposes a split of the l1 and l2 terms in (15) and then
an alternating minimization scheme is applied, with respect to u and d,
performing

(17)

{
Step 1 : uk+1 = min0≤u≤1 λ < u, rk > +η

2‖d
k −∇u− bk‖2

Step 2 : dk+1 = mind |d|1 + η
2‖d−∇u

k+1 − bk‖2 .

About the minimization with respect to u, the authors observe that the
objective function is quadratic in ui,j , then the minimum is found by solving:

(18) (∆u)i,j =
λ

η
ri,j + (div(d− b))i,j i = 1, ...,m, j = 1, ..., n

where the discrete Laplace and divergence operators are setting as

(∆u)i,j =
1

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1),

and

(div(u))i,j = δx−pi,j + δy−pi,j

with δ− is the backward finite-difference operator. The system of equa-
tions (18) can be solved by either Gauss Seidel (GS) method or Fourier
transform based methods. The minimization with respect to d is carried

74



Comparison of minimization methods for nonsmooth image segmentation

out by using the proximal operator of l1-norm, that is the shrink operator
defined as:

(19) shrink(x, γ) =
x

|x|
·max(|x| − γ, 0) .

In [17] is showed the connection between the SBSeg-GBO algorithm and
the Douglas-Rachford splitting (DRS) one solving the dual formulation of
problem (16). DRS algorithm is equivalent to Primal-Dual (PD) algorithms
[6], that usually minimize functionals (10), when K = I.
Using duality, PD rewrites the minimization of problem (10) when K = I,
as the saddle point one and than applies the alternating proximal mini-
mization algorithm for dual and primal steps generating this scheme:

(20)

{
xk+1 = proxτ (g)(xk − τyk)
yk+1 = proxσ(f∗)(yk + σ(2xk+1 − xk)) ,

with σ , τ ≤ 1. Choosing σ = 1/τ and x̃k = xk−τyk, and using the Moreau’s
identity the iteration in (20) can be equivalently written as the following
DRS iterations:

(21)

{
xk+1 = proxτ (g)(x̃k)
x̃k+1 = x̃k − xk+1 + proxτ (f)(2xk+1 − x̃k) ,

Setting

(22) f(u, d) = λ < u, r > +|d|1 + χU (u) , g(u, d) = χC ,

where χ is the indicator function and C = {(u, d) : d = ∇u}, the applica-
tion of DRS method to segmentation problem (7) can be summarized in
Algorithm 3.3.
Note that, the proximal operator of g is the orthogonal projection on the
convex set C; it can be computed by solving a linear system of equations:

(23) ỹ = ∇x̃ = ∇
(
(I −∆)−1(x̃− div(ỹ))

)
.

Furthermore, f in (22) is a separable sum of two functions, one depends
only on u and the other only on d; thus the proximal operator can be
decomposed as two simpler operators which can be applied to u and d
respectively, giving a projection in the set U for u and a shrink operator
for d, respectively.
Finally, we consider a further algorithm based on SB, that we named SBSeg-
FPG, where the Fast Proximal Gradient method (FPG) [18,19] is applied
to solve the minimization of the sub-problem at each outer iteration of the
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Algorithm 3.3 DRSSeg

λ > 0, tol τ > 0,
choose u0 and compute c01 and c02 as in (9), using u0

set d0 = ∇u0
set k = 0
while stopping criteria does not satisfy tol do

set i = 0, x0 = uk, y0 = dk

while inner stopping criteria does not satisfy do
compute (xi+1, yi+1) = proxτ (g)(x̃i, ỹi)
compute (x̃i+1, ỹi+1) = (x̃i, ỹi)− (xi+1, yi+1) + proxτ (f)(2(xi+1, yi+1)− (x̃i, ỹi))
set i = i+ 1

end while
set (uk+1, dk+1) = (xi−1, yi−1)
compute ck+1

1 and ck+1
2 as in (9), using uk+1

set k = k + 1
end while

Algorithm 3.2, without use of any alternating scheme as made in SBSeg-
GBO and DRSSeg algorithms.
FPG method with backtracking stepsize rule is an accelerated variant of
Proximal Gradient (PG) algorithm, for solving a minimization of (10),
where K is the identity operator and f is continuously differentiable.
Setting:

(24) f(u, d) = λ < u, r > +
η

2
‖d−∇u− bk‖2 and g(u, d) = |d|1+χU (u) ,

the PG method produces a new approximation according to:

(25) (uk+1, dk+1) = proxβkg((uk, dk)− βk∇(f(uk, dk))) .

where βk satisfies:

(26) f(uk+1, dk+1) + g(uk+1, dk+1) ≤ Q(uk, dk, uk+1, dk+1) .

and Q is the approximation model of F (u, d) defined as:

Q(u, d, u′, d′) := f(u, d)+ < (u′, d′)− (u, d),∇f(u, d) > +

+ 1
2βk
||(u′, d′)− (u, d)||2 + g(u′, d′) .

We can note that g is a separable sum of two functions that depends only on
u and the other only on d; thus the proximal operator can be decomposed
as two simpler operators, giving a projection in the set U for u and a shrink
operator for d respectively.
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4. Numerical results and comparisons

In this section we analyzed the behaviour of the Algorithms 3.1–3.3
described in the previous section. To this aim, we briefly describe imple-
mentation details and the description of the setting parameters used in the
tests.

• The Algorithm 3.1, SPGASeg, is written in C with a MEX inter-
face to MATLAB (for further details, see [9]), its native stopping
criterion requires:∥∥∥PU (uk −Gu (ck1, ck2, uk))− uk∥∥∥ ≤ tol and k < maxit .

• An implementation of SBSeg-GBO algorithm is available from
http://www.xavier-bresson.tk. It is written in C with a MEX
interface to MATLAB, and it implements a stopping crite-
rion based on the Sum of Differences Squared defined as
sde(zk) =

∑N
i=1(zki − z

k−1
i )2, that requires:

(27) |diff(k+1) − diff(k)| < tol and k < maxit ,

where

diff(k) = sde(uk)/
(
sde(uk) · sde(uk−1)

)
.

GS method is used for solving the system (18).
• The implementation of SBSeg-FPG algorithm, was realized modi-

fying the previous SBSeg-GBO code, according to (25) and (26).
• The implementation of Algorithm 3.3, DRSSeg, is written in MAT-

LAB and the DRS solver is based on the MATLAB code avail-
able from http://www.numerical-tours.com/matlab/ [20] (see sec-
tion: Convex Region-Based Image Segmentation) where the na-
tive stopping criterion based only on the maximum number of it-
eration, was modified introducing the tolerance, tolDRS. In this im-
plementation, the system (23) is solved by means of the IFFT/FFT
algorithms, using periodic boundary conditions for the gradient op-
erator.

In order to make a fair comparison, we used for all the algorithms the
stopping criterion (27).
For all the tests, the common parameters of the Algorithms 3.1–3.3 was
chosen as follows:

- µ, the parameter in (6) was set to 0.5;
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- tol and maxit, the tolerance and the maximum number of iterations
in (27), were set in [10−12, 10−6] and to 1000 respectively;

- λ, the parameter in (7) was changed according to test image in order
to control the level of segmentation details;

- u0, the initial function was set to the image to be segmented with
the intensity values scaled between 0 and 1.

After, the specific parameters for each algorithm were set as described be-
low:

SPGASeg ε = 10−6, αmin = 10−30, αmax = 1030

γ = 10−4, ν = 10
SBSeg-GBO η = 1, tolGS = 10−2, maxitGS = 30
SBSeg-FPG η = 1, tolFPG = 10−2, maxitFPG = 30
DRSSeg τ = 1, tolDRS = 10−2, maxitDRS = 30

The four algorithms were run using MATLAB (R2013a, v. 8.1) with Image
Processing Toolbox for read and display images, on Intel Core i5 processor
with clock frequency of 2.7 GHz, 8 GB of RAM, and a 64 Bit Linux sys-
tem. We analyzed the behaviour of the four algorithms on two sets of images
with intensity values in [0, 255]: the first set includes three black and white
(black-white) images, named on-off, hoffman and geo respectively, (see Fig-
ure 1), for which the ground truthb is available; moreover a gaussian noise
with mean 0 and standard deviation 0.01 is added to the image geo; the
second one includes three grey scale images, named cameraman, squirrel
and ninetyeight respectively (see Figure 2).
Since the implementations of the four algorithms have different design, their
efficiency is compared evaluating the computational cost (by means of the
number of floating point operations (flops)) and not measuring the execu-
tion time. Let m× n the size of the image, we give an estimate of the cost
of one outer iteration (the iteration on k) of each algorithm counting the
operations that require O(mn) flops, and in particular for DRSSeg we take
in account the FFT and IFFT algorithms that perform O(mn · log(mn))
flops. Note that the update of ck1 and ck2 is performed in each one of the
four algorithms, so we do not take in account its computational cost.

bGenerally, for one image there are several “true” segmentations that are typically
made by one or more human experts. The ground truth of a black and white image is
the image itself.
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on-off – 626× 626 hoffman – 200× 200 geo – 286× 286

λ = 0.1 λ = 0.001 λ = 0.0001

tol = 1.e−6 tol = 1.e−6 tol = 1.e−6

original image

SPGASeg

SBSeg-GBO

SBSeg-FPG

DRSeg

Figure 1. Synthetic pictures and corresponding segmentations by SPGASeg, SBSeg-
GBO, SBSeg-FPG and DRSSeg. The number of pixels of each image is specified after the
name. The images have been resized using different scalings to fit the figure layout.
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• In SPGASeg, at k-th iteration, is performed one gradient evaluation,
the computation of αBB in (13), the computation of

〈
Gku, d

k
u

〉
in (14),

and a number, nf(k), of objective function evaluations.
• In SBSeg-GBO, at k-th iteration, is carried out the computation of
r in (8), the updating of both dk+1 and bk+1 and a number, nGS(k)

of GS iterations.
• In SBSeg-FPG, at k-th iteration, is also performed the computation

of r in (8) and the updating of bk+1, but conversely from SBSeg-
GBO, are performed a number, nFPG(k), of gradient evaluation of
the function f defined in (24) and a number, nfq(k), of function
evaluations of the f and Q in (26).
• In DRSSeg the cost of k-th iteration is mainly associated with the

computation of uk and dk which requires nDRS(k) iterations, each iter-
ation spend 2·O(mn) flops for the update of u and 2·O(mn(log(mn))
flops for the update of d.

In Table 1, we summarize the cost of the k-th iteration of the Algo-
rithms 3.1–3.3.

Table 1. Computational cost of Algorithms 3.1–3.3 of the
k − th iteration.

Algorithm Computational cost for iteration

SPGASeg (nf(k) + 3) ·O (mn)

SBSeg-GBO (nGS(k) + 3) ·O (mn)

SBSeg-FPG (nFPG(k) + nfq(k) + 2) ·O (mn)

DRSSeg 2nDRS(k) · [O ((mn · log(mn)) + O (mn)]

In order to complete the comparison on efficiency, in Table 2, we show the
number, nit, of the outer iterations on k, performed by the four algorithms
to satisfy the stopping criterion (27) for the selected images. According
with Table 1, we also show the total number, nf, of the objective function
evaluations in SPGASeg, and the total number, nfq, of the evaluations of f
and Q, in SBSeg-FPG. Furthermore, we listed the total numbers, nGS, nFPG
and nDRS, of the inner solver iterations for SBSeg-GBO, SBSeg-FPG and
DRSSeg algorithms respectively.
We can observe that on black-white images, the four algorithms performed
the same number nit of outer iterations. In details, SPGASeg and SBSeg-
GBO shown a comparable efficiency, because performed about the same
value of nf and nGS respectively, which have the same computational cost
as shown in Table 1. Differently, although SBSeg-FPG performed values
of nFPG equal to nf and nGS, the efficiency is lower than the previous algo-
rithms, because of the charge of nfq evaluations. Similar result was achieved
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Table 2. Details about the execution of SPGASeg, SBSeg-GBO, SBSeg-FPG and
DRSSeg on test images shown in Fig. 1 and Fig. 2.

Image
SPGASeg SBSeg-GBO SBSeg-FPG DRSSeg
nit nf nit nGS nit nFPG nfq nit nDRS

on-off 2 5 2 4 2 4 8 2 4
hoffman 2 5 2 4 2 4 8 2 26
geo 2 5 2 5 2 6 13 2 12

cameraman 5 11 4 13 4 15 30 4 31
squirrel 147 248 41 206 535 2297 4112 17 438
ninetyeight 8 17 8 63 5 21 40 5 94

executing DRSSeg on image on-off, indeed the value of nDRS is about the
same of nf and nGS but as shown in Table 1 the computational cost of inner
solver is greater than the other two algorithms. For more reason, since on
the other two black-white images DRSSeg performed the greatest number
of inner iterations, it is not competitive with SPGASeg and SBSeg-GBO.
Similar results of the behaviour of the four algorithms, can be deduced on
grey scale image, cameraman. Conversely, on squirrel and ninetyeight that
have a non uniform background, the more efficient algorithm was SB-GBO
and SPGASeg respectively.
Regarding the accuracy of Algorithms 3.1–3.3, we listed in Table 3 the
values of the objective function E in (7), evaluated both at u0, and at the
approximation, unit, carried out at nit iteration of Table 2. For the sake
of simplicity, we will indicate in this section, with E(0) := E(c0

1, c
0
2, u

0) and
with E(nit) := E(cnit1 , cnit2 , unit).
We can note that on two black-white images, on-off and hoffman, SPGASeg,
SBSeg-GBO and SBSeg-FPG reached the same value of E(nit), instead of
the value of E(nit) carried out by DRSSeg algorithm is higher than the
other ones. Moreover, on noised image, geo, SPGASeg shown the lowest
value of E(nit). Conversely, on grey scale images the lowest value of E(nit)

was reached by DRSSeg.

Table 3. Evaluations of the objective function (7) at u0, E(0), and at computed solution, E(nit),
respectively.

Image E(0) SPGASeg SBSeg-GBO SBSeg-FPG DRSSeg

E(nit) E(nit) E(nit) E(nit)

on-off 4.47707e+06 1.45885e+06 1.45885e+06 1.45885e+06 4.10918e+06
hoffman 1.42093e+04 2.35818e+03 2.35818e+03 2.35818e+03 2.44027e+03
geo 2.70916e+04 3.86373e+03 4.04925e+03 4.05665e+03 3.98271e+03

cameraman 6.33818e+04 1.53337e+04 1.51511e+04 1.61450e+04 1.50890e+04
squirrel 1.57972e+04 5.52358e+03 5.06419e+03 5.64449e+03 5.06408e+03
ninetyeight 1.47830e+05 2.71111e+04 2.62707e+04 2.88795e+04 2.62372e+04
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cameraman – 204× 204 squirrel – 167× 167 ninetyeight – 562× 562

λ = 0.0005 λ = 0.00025 λ = 0.00012

tol = 1.e−6 tol = 1.e−12 tol = 1.e−9

original image

SPGASeg

SBSeg-GBO

SBSeg-FPG

DRSeg

Figure 2. Real images and corresponding segmentations by SPGASeg, SBSeg-GBO,
SBSeg-FPG and DRSSeg. The number of pixels of each image is specified after the name.
The images have been resized using different scalings to fit the figure layout.
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In order to evaluate the accuracy of the produced segmentations by the
four algorithms, on black-white images we applied two standard metrics
of the segmentation error measures, namely: the Global Consistency Error
(GCE) [21] and the Rand Index (RI) [22]c. These metrics provides a mea-
sure of similarity between the produced segmentation and the ground truth,
assigning a real valued output in the range [0, 1]. When the segmentation
is consistent with respect to the ground truth, the values of RI should be
higher and on the other hand the value of GCE should be low. The results
of GCE and RI applied to black-white images are shown in 4. According
with the results of Table 3, we can see that on the image hoffman, GCE
and RI assigned the same value to produced segmentations, instead of on
image on-off, the value assigned to segmentation produced by DRSSeg, was
slight highest. Moreover, confirming the results of Table 3, the segmentation
of geo produced by SPGASeg seem more consistent with the correspond-
ing ground-truth. Anyway, the two metrics proved that the quality of the
segmentations produced by the four algorithms on the synthetic images is
comparable as we can see in Figure 1.

Table 4. Segmentation error measures produced by GCE and RI for SPGASeg, SB-
Seg-GBO, SBSeg-FPG and DRSSeg on the black-white images of Figure 1.

algorithm
on-off hoffman geo

GCE RI GCE RI GCE RI

SPGASeg 0.111164 0.914595 0.2058 0.889554 0.084106 0.474784
SBSeg-GBO 0.111164 0.914595 0.2058 0.889554 0.092775 0.475307
SBSeg-FPG 0.111164 0.914595 0.2058 0.889554 0.092770 0.475812
DRSSeg 0.111231 0.914868 0.2058 0.889554 0.086130 0.474411

Finally, in Figure 2 we show the segmentations produced by the four algo-
rithms on the grey scale images. We can see that except for SBSeg FPG,
the quality of the segmentations produced by the other three algorithms is
comparable and a good two-phase partition of each image is realized sep-
arating object regions from the background. On the other hand, we note
that SBSeg-FPG produces generally an under segmentation of the test im-
ages especially for cameraman and squirrel. This result confirms that the
behaviour of the Bregman method is largely depending on how the sub-
problem in Algorithm 3.2 is solved. Indeed, different from the two variants
SBSeg GBO and DRSSeeg, SBSeg FPG provides an inexact solution not
only for u but also for d. Therefore, the tests on this set of images indi-
cate that the use of an exact minimization (oppure a closed form solution
for the minimization problem) is most appropriate for producing accurate

cA software implementing GCE and RI is available to follow link: https://people.eecs.
berkeley.edu/∼yang/software/lossy segmentation/.
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segmentations of the grey scale images.

Conclusion

In this work, a comparison of some first order optimization methods
for solving the nonsmooth convex relaxation of Chan-Vese model was pre-
sented. Two typical approaches to deal with non differentiability of the
model under investigation were considered: the smoothing methods and
the nonsmoothing methods. In particular, a smoothing method, SPGASeg,
based on nonmonotone projected gradient method was compared with non-
smoothing ones based on proximal operators and splitting schemes. The re-
sults shown that the accuracy of the two approaches is comparable, so the
smoothness introduced by SPGASeg has no effect on the produced segmen-
tations. Also, the efficiency of SPGASeg was comparable with SBSeg-GBO,
despite that SB methods usually show the best performances. Regarding the
nonsmoothing approach, numerical tests evidenced that generally SBSeg-
GBO was more efficient and accurate than the version SBSeg-FPG, instead
of DRSeg sometimes was more accurate than SBSeg-GBO because the use
of a different inner solver. Anyway, confirming results of the literature, in
general SBSeg-GBO yields very accurate solutions even if subproblems are
not solved accurately.
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