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Abstract

A Semi-Analytical method for pricing of Barrier Options (SABO) is presented. The
method is based on the foundations of Boundary Integral Methods which is recast here for
the application to barrier option pricing in the Black-Scholes model with time-dependent
interest rate, volatility and dividend yield. The validity of the numerical method is illus-
trated by several numerical examples and comparisons.
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1. Introduction

The recent financial crisis has highlighted the need for a more scientific ap-
proach to the problem of pricing and risk control, taking advantage of more ad-
vanced statistical and mathematical skills and of the availability of numerical tech-
niques and faster computer systems.
The Black-Scholes model (BS) (see [1]) can be considered the first of the differen-
tial models for option pricing. Options are derivative contracts that give the buyer
the right to buy/sell a particular asset at a predetermined price and at a fixed
maturity (in case of European exercise style).
Over the past three decades, the academic literature has highlighted the strong
limitations of this model due to the fact that it is based on restrictive and unrealis-
tic assumptions: It is widely believed and experimentally verified that stocks do not
have a constant spot volatility, rather this parameter varies with time... ( [2], [3],
etc.). Therefore other models have been later introduced:
- models with time-dependent parameters or models where the volatility of the
asset is a deterministic function of price and time;
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- stochastic volatility models, such as the Heston model [4], in which the value of
the option depends on time, on the price and on the volatility of the underlying
asset;
- jump-diffusion models, such as the Bates model [5], that involves the adoption of
stochastic processes with jumps in the analysis of fluctuations of financial markets;
- models assuming that log returns behave by a Levy process [6].
In the case of “barrier option”, the option right gets into existence or extinguishes
when the underlying asset reaches a certain barrier value. The hit of the barrier
can be either discretely or continuously monitored. In the first case the bench-
mark methods are FFT based methods such as [6–8]. Otherwise, for continuously
monitored“barrier options”, pricing is traditionally based on Monte Carlo meth-
ods or on domain methods (such as Finite Element Methods and Finite Difference
methods) but Monte Carlo methods are affected by high computational costs and
inaccuracy due to their slow convergence and domain methods have some troubles
particularly in unbounded domains.
Recently, for continuously monitored“barrier options”, we have developed a stable,
accurate and efficient numerical method in the context of BS with time-constant
parameters [9] and for Heston and Bates models [10]. The new approach is based
on the Boundary Element Method that was introduced in the Engineering field
in 1970. Especially when the differential problem is defined in an unbounded do-
main and the data are assigned on a limited boundary (which is the case of the
“barrier option”), the method is particularly advantageous for its high accuracy,
for the implicit satisfaction of the far-field behavior of the solution and for the low
discretization costs.
Here the method (SABO: acronym of Semi-Analytical method for the pricing of
Barrier Options) is applied with some adaptations in order to solve the pricing
problem of an up-and-out put option in the BS model with time-dependent pa-
rameters. Note that the explained procedure is absolutely general and it can be
followed also when considering European call options and, in general, options with
different single or double barriers (down/up, in/out) just resulting in different
initial/boundary conditions for the starting differential problem but that can be
treated in the same way. Unfortunately, on the contrary, it cannot be extended to
discretely monitored barrier options.
The essential requisite for the application of the method is the knowledge of the
transition probability density i.e. the fundamental solution of the differential model
problem in the unbounded domain. In the here considered time-dependent BS
framework, this density is known in an explicit form and, unlike the Heston and
Bates contexts [10], it is easy to handle. Hence the resulting method may be easy
to implement and to manage also for non-specialist finance practitioners: the only
parameter that has to be evaluated is the time step of discretization. To encourage
the circulation and the adoption of this method, some basic Matlabr codes de-
scribed in Appendix II are downloadable as Supplemental Material of the present
paper.
Barrier options are largely exchanged as they are good products for hedging and in-
vestment and they are cheaper than vanilla options. Closed formula for the pricing
are available only upon satisfaction of particular hypothesis (see [11]) so, looking
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at the literature, other methods can be found to price barrier options. For exam-
ple: the stripe method is described in [12]; in [13] and [14] the authors provide a
Fourier method but only for computing accurate closed form estimates of option
price; the algorithm suggested in [15] uses a perturbative method and it is based
on a series expansion, so results depends on the number of terms considered in the
truncated series and on the further choice of a perturbation parameter; and so on.
At last, in [16], authors apply Boundary Element Method to the problem of pricing
barrier options with moving barrier and time dependent rebate but time-constant
parameters. In this regard, note that the problem of pricing barrier options with
time-dependent parameters and moving barrier can be brought back to the case
of time-constant parameters and moving barrier but with tricky change of vari-
ables [17] that, from the numerical point of view, may be not always advantageous
(the opportunity of applying change of variables to the BS partial differential prob-
lem with time-constant parameters in the vanilla options case is deeply discussed
in [18]). In this sense, SABO straightforwardly applied to BS problem with time
dependent parameters may be considered an alternative approach.
The outline of the paper is: in Section 2 the model problem is introduced; in
Section 3 SABO is detailed; in Section 4 there are some notes about hedging; in
Section 5 other numerical methods are considered for the comparison with SABO;
the obtained numerical results are collected in Section 6. Some Matlabr “ready
to use” codes are downloadable at ????.

2. The model problem

Consider an up-and-out barriera put option with European exercise style i.e.
an exotic option that is extinguished when the price of the underlying asset grows
up enough to breach an assigned upper barrier before the expiry date.
We denote by V (S, t) the value of the put option dependent on the time t and on
the underlying asset S (up to the upper barrier Su), by σ the volatility of S, by
E the exercise price, by T the expiry time and by r, d the interest rate and the
dividend yield respectively. Differently w.r.t. the model in [9], the volatility, the
interest rate and the dividend yield can be time dependent parameters, therefore
the Black-Scholes problem for an European up-and-out put option reads as follows
(see [19]): for t ∈ [t0, T ), S ∈ (0, Su)

(1)
∂V

∂t
(S, t) +

σ2(t)

2
S2 ∂

2V

∂S2
(S, t) +

(
r − d

)
(t)S

∂V

∂S
(S, t)− r(t)V (S, t) = 0

with payoff, for S ∈ (0, Su)

(2) V (S, T ) = max(E − S, 0)

and boundary conditions, for t ∈ [t0, T ]

(3) V (0, t) = Ee−
∫ T
t
r(t′)dt′ , V (Su, t) = 0.

aIn Appendix I, SABO is set up for the application to the case of an up-and-in put
option.
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In the risk-neutral framework, performing these classical changes of variables,

(4) V (S, t) = u(x, t)e−
∫ T
t
r(t′)dt′ , S = ex, τ = T − t,

and defining
(5)
r(t) = r(T −τ) =: r(τ), σ(t) = σ(T −τ) =: σ(τ), and d(t) = d(T −τ) =: d(τ)

we obtain the following diffusion problem with unknown u(x, τ)
(6)

∂u

∂τ
(x, τ)− σ2(τ)

2

∂2u

∂x2
(x, τ)−

(
r − σ2

2
− d
)
(τ)

∂u

∂x
(x, τ) = 0

x ∈ Ω = (−∞, U), τ ∈ (0, T − t0]

u(x, 0) = max(E − ex, 0) =: u0(x) x ∈ Ω

lim
x→−∞

u(x, τ) = E τ ∈ [0, T − t0]

u(U, τ) = 0 U := log(Su), τ ∈ [0, T − t0] .

However, we remark that we could as well skip these transformations and deal
with (1) directly.
Note that the exact solution of differential problem (6) is known for constant
coefficients r, σ, d [20]:
(7)

V (S, t) = Ee−r(T−t)N [y1 + (1− 2λσ)
√
T − t)]

−Se−d(T−t)N [y1 − 2λσ
√
T − t]

+Se−d(T−t)(Su/S)2λN [−y1]

−Ee−r(T−t)(Su/S)2λ−2N [−y1 + σ
√

(T − t)]

if Su ≤ E ;

V (S, t) = P + Se−d(T−t)(Su/S)2λN [−y]

−Ee−r(T−t)(Su/S)2λ−2N [−y + σ
√

(T − t)] if Su ≥ E ;

λ =
r − d+ σ2/2

σ2
; y1 =

log(Su/S)

σ
√
T − t + λσ

√
T − t ; y =

log
(
S2
u/(SE)

)
σ
√
T − t + λσ

√
T − t ;

where N [·] is the normal cumulative distribution function that can be evaluated
and P (S, t) is the value of the European put without barriers
(8)

P (S, t) = Ee−r(T−t)N [−x1+σ
√
T − t]−Se−d(T−t)N [−x1] ; x1 =

log(S/E)

σ
√
T − t +λσ

√
T − t ;

and in few other particular cases [17]. This is the reason why there is active research
in numerical methods for pricing financial derivatives and in particular barrier
options that are largely traded.
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3. Foundations of SABO

Here the foundations of Boundary Element Method (BEM) are applied to the
barrier option problem just illustrated in Section 2. In fact, the involved steps can
be conceptually extended to the problem of barrier options pricing under general
dynamics, provided that the related transition probability density is known at least
in an approximate form. All these specifications of BEM can be collected in the
more general method SABO.

3.1. The integral representation formula in the domain of definition of the
differential problem

Let us recall some theory from [21] and [22]. Defining the operator

L[u](x, τ) =
σ2(τ)

2

∂2u

∂x2
(x, τ) +

(
r − σ2

2
− d
)
(τ)

∂u

∂x
(x, τ)

it is well known that the solution of

(9)


∂u

∂τ
(x, τ)− L[u](x, τ) = 0 x ∈ R, τ ∈ (0, T − t0]

u(x, 0) = u0(x) x ∈ R

is given, in an integral form, by the fundamental formula for the undiscounted
price

(10) u(x, τ) :=

∫ +∞

−∞
u0(y)G(y, 0;x, τ)dy

where
(11)

G(y, s, x, τ) =
1√

2π
∫ τ
s
σ2(v)dv

exp

{
−
[
y − x−

∫ τ
s

(
r − σ2

2 − d
)
(v)dv

]2
2
∫ τ
s
σ2(v)dv

}
, τ > s

is the transition probability density function (PDF), also known as Green’s function
or fundamental solution of the partial differential problem.
For each (x, τ) ∈ R× [0, T − t0) the PDF G(y, s;x, τ), as a function of (y, s), solves
the backward Kolmogorov equation

(12)

−
∂G

∂s
(y, s;x, τ)− L∗[G](y, s;x, τ) = 0 y ∈ R, s < τ

G(y, τ ;x, τ) = δ(x, y) y ∈ R
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where δ(·, ·) represents the Dirac distributionb and L∗ is the adjoint operator of L
defined asc

L∗[ψ](y, s) =
σ2(s)

2

∂2ψ

∂y2
(y, s)−

(
r − σ2

2
− d
)

(s)
∂ψ

∂y
(y, s).

But, considering the differential problem (6) for an up-and-out barrier put option,
the domain of investigation for u(x, τ) is (−∞, U) × (0, T − t0] and the integral
formulation (10) in the new domain has to be modified inserting one more term
generating the new integral representation formula

(13) u(x, τ) :=

∫ U

−∞
u0(y)G(y, 0;x, τ)dy +

∫ τ

0

σ2(s)

2
G(U, s;x, τ)

∂u

∂y
(U, s)ds .

In [23] a representation formula analogous to (13) is derived with a probabilistic ap-
proach together with the existence (under weak and realistic regularity hypothesis
on the payoff function) of the solution of the successive Volterra integral equation
(17).

Proof of validity of the representation formula (13).
Let us consider the model equation

(14)
∂u

∂s
(y, s)− L[u](y, s) = 0 ∀s ∈ (0, τ ], y ∈ Ω

and multiply it by the fundamental solution G(y, s;x, τ); then subtract the PDE
in (12) multiplied by u(y, s) and integrate in time and space obtaining

(15)

∫ τ

0

∫ U

−∞

{
G(y, s;x, τ)

∂u

∂s
(y, s) + u(y, s)

∂G

∂s
(y, s;x, τ)

}
dy ds+

+

∫ τ

0

∫ U

−∞
{−G(y, s;x, τ)L[u](y, s) + u(y, s)L∗[G](y, s;x, τ)} dy ds =

= 0.

The kernel in the second integral of (15) can be rewritten in a differential form

−G(y, s;x, τ)L[u](y, s) + u(y, s)L∗[G](y, s;x, τ) =
∂p

∂y
(y, s)

bThe Dirac’s delta distribution satisfies the property that
∫+∞
−∞ δ(y, x)f(x)dx =

f(y) , ∀f ∈ C∞0 (R).
cThe adjoint operator is defined by the condition < L(ϕ), ψ >=< ϕ,L∗(ψ) > i.e., for

any smooth functions ψ(y) and ϕ(y), we have∫ +∞

−∞
L[ϕ](y)ψ(y)dy =

∫ +∞

−∞
ϕ(y)L∗[ψ](y)dy.
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with

p(y, s) =
σ2(s)

2

(
u
∂G

∂y
−G∂u

∂y

)
(y, s)−

(
r − σ2

2
− d
)

(s)(Gu)(y, s)

and, integrating, we obtain
(16)∫ τ

0

∫ U

−∞
{−G(y, s;x, τ)L[u](y, s) + u(y, τ)L∗[G](y, s;x, τ)} dy ds =

∫ τ

0

p(y, s)

∣∣∣∣y=U

y→−∞
ds,

Taking into account the natural vanishing boundary conditions for the probability
density function G as y → ±∞ and the barrier condition for u, (16) reduces tod

∫ τ

0

p(y, s)

∣∣∣∣y=U

y→−∞
ds =

∫ τ

0

σ2(s)

2

(
u
∂G

∂y
−G∂u

∂y

)
(U, s)−

(
r − σ2

2
− d
)

(s)
(
Gu
)
(U, s) ds

= −
∫ τ

0

σ2(s)

2
G(U, s;x, τ)

∂u

∂y
(U, s) ds.

The first integral in (15) can be integrated by parts∫ τ

0

∫ U

−∞

{
G(y, s;x, τ)

∂u

∂s
(y, s) + u(y, s)

∂G

∂s
(y, s;x, τ)

}
dy ds

=

∫ U

−∞

{∫ τ

0

G(y, s;x, τ)
∂u

∂s
(y, s)ds+ u(y, s)G(y, s;x, τ)

∣∣∣∣s=τ
s=0

−
∫ τ

0

∂u

∂s
(y, s)G(y, s;x, τ) ds

}
dy

=

∫ U

−∞
u(y, τ)G(y, τ ;x, τ)dy −

∫ U

−∞
u(y, 0)G(y, 0;x, τ)dy =

and taking into account the final condition in (12), it remains

=

∫ U

−∞
u(y, τ)δ(x, y)dy −

∫ U

−∞
u(y, 0)G(y, 0;x, τ)dy = u(x, τ)−

∫ U

−∞
u(y, 0)G(y, 0;x, τ)dy .

The representation formula (13) follows immediately. �

3.2. The boundary integral equation (BIE)

The integral formula (13) is the analytical solution of problem (6) for (x, τ) ∈
Ω× (0, T − t0] but it cannot be evaluated analytically since the function ∂u

∂y (U, s)
is not known explicitly.

dIn the case of a plain vanilla option, taking into account that G vanishes for y → ±∞,
we get the so called Green’s Identity∫ τ

0

∫ +∞

−∞

{
−G(y, s;x, τ)L[u](y, s) + u(y, s)L∗[G](y, s;x, τ)

}
dy ds = 0

and, by substituting this into (15), we obtain the fundamental pricing formula (10).
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However, letting x→ U in (13) and applying the vanishing boundary condition at
the barrier, we obtain the BIE
(17)

0 = u(U, τ) :=

∫ U

−∞
u0(y)G(y, 0;U, τ)dy +

∫ τ

0

σ2(s)

2

∂u

∂y
(U, s)G(U, s;U, τ)ds .

whose sole unknown is the function ∂u
∂y (U, s).

The Boundary Element Method (BEM) is based on the idea to numerically solve
(17) at the boundary getting ∂u

∂y (U, s) and then recover the solution u at the desired

points of the whole domain by inserting it in the representation formula (13).
The final option price V (S, t) is evaluated by transforming back with formulas (4).

3.3. The numerical approximation of the BIE solution

As in [9], we apply the collocation method to (17) in order to find an approx-
imation of ∂u

∂y (U, s):

- we consider a uniform decomposition of the time interval [0, T − t0] with time
step length ∆t = (T − t0)/N∆t, N∆t ∈ N+

tk = k∆t, k = 0, . . . , N∆t

- we choose temporally piecewise constant basis functions

ϕk(s) := H[s− tk−1]−H[s− tk], k = 1, . . . , N∆t ,

where H[·] denotes the Heaviside step function, for the approximation of the un-
known

(18)
∂u

∂y
(U, s) ≈ φ(s) :=

N∆t∑
k=1

αkϕk(s)

- we substitute φ(s) in the boundary integral equation (17) and we evaluate it in
the collocation points

0 = u(U, tj) =

∫ U

−∞
u0(y)G(y, 0;U, tj)dy +

∫ tj

0

N∆t∑
k=1

αkϕk(s)
σ2(s)

2
G(U, s;U, tj)ds

choosing, as collocation points, the barycenters of intervals [tj−1, tj ], as usual when
considering piecewise constant trial functions

tj =
tj + tj−1

2
, j = 1, . . . , N∆t

- we solve the resulting linear system

(19) Aα = F

whose unknowns are the coefficients of (18) collected in the vector α =
(αk
∣∣
k=1,...,N∆t

). Note that, as the fundamental solution (11) is defined only for
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τ > s, A is a lower triangular matrix of dimension N2
∆t

(20) A =


A11 0 0 · · · 0
A21 A22 0 · · · 0
A31 A32 A33 · · · 0

... · · · . . .
. . .

...
AN∆t1 AN∆t2 · · · AN∆tN∆t−1 AN∆tN∆t


with entries, for j, k = 1, . . . , N∆t, j ≥ k,
(21)

Ajk =

∫ tj

0

ϕk(s)
σ2(s)

2
G(U, s;U, tj)ds =

∫ min(tk, t̄j)

tk−1

σ2(s)

2
G(U, s;U, tj)ds =

=

∫ min(tk, t̄j)

tk−1

σ2(s)

2

√
2π
∫ t̄j
s
σ2(v)dv

exp

{
−
[ ∫ t̄j
s

(
r − σ2

2 − d
)
(v)dv

]2
2
∫ t̄j
s
σ2(v)dv

}
ds

and the rhs entries are
(22)

Fj = −
∫ U

−∞
u0(y)G(y, 0;U, tj)dy =

= −
∫ min(U,log(E))

−∞

(E − ey)√
2π
∫ t̄j

0
σ2(v)dv

exp

{
−
[
y − U −

∫ t̄j
0

(
r − σ2

2 − d
)
(v)dv

]2
2
∫ t̄j

0
σ2(v)dv

}
dy.

Note that, if r, σ and d are independent of time, the matrix (20) becomes of
Toeplitz type, i.e. entries are equal along the same diagonal and, consequently, the
computation is faster because only the first column has to be evaluated [9].

3.4. The numerical approximation of option price

Once all the elements of linear system (19) have been evaluated, the approx-
imated solution φ(s) of the BIE (17), expressed by the vector of coefficients α in
(18), can be easily and efficiently obtained by forward substitution.
Then, as told in Section 3.2, we have to insert α in the representation formula (13)
e

(23)

u(x, τ) ≈
∫ U

−∞
u0(y)G(y, 0;x, τ)dy +

ceil[ τ∆t ]∑
k=1

αk

∫ min(tk,τ)

tk−1

σ2(s)

2
G(U, s;x, τ)ds =

=

∫ min(U,log(E))

−∞

(E − ey)√
2π
∫ τ

0
σ2(v)dv

exp

{
−
[
y − x−

∫ τ
0

(
r − σ2

2 − d
)
(v)dv

]2
2
∫ τ

0
σ2(v)dv

}
dy+

+

ceil[ τ∆t ]∑
k=1

αk

∫ min(tk,τ)

tk−1

σ2(s)

2
√

2π
∫ τ
s
σ2(v)dv

exp

{
−
[
U − x−

∫ τ
s

(
r − σ2

2 − d
)
(v)dv

]2
2
∫ τ
s
σ2(v)dv

}
ds .

eceil[·]:=function that rounds its argument to the nearest integers towards plus infinity.
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Finally we can get the option price applying the relation (4): ∀S ∈ (0, Su) , ∀t ∈
[t0, T )

(24) V (S, t) = u(log(S), T − t)e−
∫ T
t
r(t′)dt′ .

The main advantage of this method is that we can avoid to evaluate the solution
over a grid considering only the evaluation at the points of interest.

Remarks about numerical integration
The boundary integral method typically requires the construction of ad hoc
quadrature formulas to handle weak, strong and hyper singularities that appear
in the boundary integral equations (see for example [24]). But, when applied to
this context, only weak singularities arise and no particular quadrature rules have
been implemented for the evaluation of integrals in the system entries and in the
postprocessing. All the codes described in Appendix II simply exploit the adaptive
quadrature functions quad and quadgk of Matlabr.
However, using them, take care that:
- matrix diagonal entries (21) have a weak singularity for s→ t̄j ,
- rhs entries (22) are integrals over a semi-infinite interval,
- in the approximated integral representation formula (23) both the two previous
troubles appear.
In all these cases it is opportune the use of quadgk that supports infinite intervals
and can handle moderate singularities at the endpoints.
Further, take care that the presence of a discontinuity in the parameters functions
(i.e. the case of piecewise constant σ̄ in Section 6.2) needs the application of the op-
tion Waypoints even for the numerical integration of the very simple

∫ τ
s
σ2(v)dv.

But, obviously, this difficulty has to be overcome also in vanilla closed formula
and, in any case, it is not strictly related to barrier options in general and to this
method in particular.
We might also customize strategies in order to optimize quadrature and to improve
efficiency (as in [16] and [9]) but this is beyond the scope of this work that would
suggest a user-friendly method that does not demand experience in determining
several numerical parameters.

4. Hedging

Traders may want to balance their portfolios using options as risk manage-
ment tools, with the help of knowledge of the associated Greeks. An option trader
usually concentrates on enhancing gain or avoiding losses, on assessing risks and
deciding whether they are acceptable. The knowledge of impact of Greeks on differ-
ent hedging strategies will lead to determine how much risk and potential rewards
are associated with the portfolio.
This section highlights how easily and straightforwardly evaluate the Greeks using
SABO, for t ∈ [t0, T ), S ∈ (0, Su)

(25) I ∆(S, t) :=
∂V

∂S
(S, t) =

1

S

∂u

∂x
(log(S), T − t)e−

∫ T
t
r(t′)dt′
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it can be immediately obtained deriving the representation formula (13):
(26)

∂u

∂x
(x, τ) :=

∫ U

−∞
u0(y)

∂G

∂x
(y, 0;x, τ)dy +

∫ τ

0

σ2(s)

2

∂G

∂x
(U, s;x, τ)

∂u

∂y
(U, s)ds

with

(27)
∂G

∂x
(y, s, x, τ) = G(y, s, x, τ)

y − x−
∫ τ
s

(
r − σ2

2 − d
)
(v)dv∫ τ

s
σ2(v)dv

.

(28)

I Γ(S, t) :=
∂2V

∂S2
(S, t) =

e−
∫ T
t
r(t′)dt′

S2

{
∂2u

∂x2
(log(S), T − t)− ∂u

∂x
(log(S), T − t)

}
it can be evaluated analogously to ∆, with (27) and
(29)

∂2u

∂x2
(x, τ) :=

∫ U

−∞
u0(y)

∂2G

∂x2
(y, 0;x, τ)dy +

∫ τ

0

σ2(s)

2

∂2G

∂x2
(U, s;x, τ)

∂u

∂y
(U, s)ds

and
(30)

∂2G

∂x2
(y, s, x, τ) = G(y, s, x, τ)


[
y − x−

∫ τ
s

(
r − σ2

2 − d
)
(v)dv∫ τ

s
σ2(v)dv

]2

− 1∫ τ
s
σ2(v)dv

 .

(31) I Θ(S, t) :=
∂V

∂t
(S, t) = −∂u

∂τ
(log(S), T − t)e−

∫ T
t
r̄(t′)dt′ + V (S, t)r̄(t)

for which, considering Eq. in (14) and its adjoint in (12),
(32)

∂u

∂τ
(x, τ) :=

∫ U

−∞
u0(y)

∂G

∂τ
(y, 0;x, τ)dy +

∫ τ

0

σ2(s)

2

∂G

∂τ
(U, s;x, τ)

∂u

∂y
(U, s)ds

and

∂G

∂τ
(y, s, x, τ) =

G(y, s, x, τ)∫ τ
s
σ2(v)dv

{[
y − x−

∫ τ

s

(
r − σ2

2
− d
)
(v)dv

] (
r − σ2

2
− d
)
(τ)+

+


[
y − x−

∫ τ
s

(
r − σ2

2 − d
)
(v)dv

]2
∫ τ
s
σ2(v)dv

− 1

 σ2(τ)

2

 .(33)

Substituting ∂u
∂y (U, s) by its approximation φ (known once the linear system (19)

is solved) in (26), (29) and (32) we can straightforwardly compute the related
Greeks.
Observe that the “secondary” unknowns ∆ and Γ can be evaluated even without
computing the primary unknown V but, anyway, for all the “secondary” unknowns
we need at most the computation of V only at the point (S, t) where its derivatives
are required.
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5. Comments on other numerical methods

Other numerical methods have been taken into consideration to check the ef-
ficiency of SABO. For a survey of numerical methods usually applied in pricing
financial derivatives, look at [25].
The inferiority of standard Monte Carlo method w.r.t. other methods when com-
paring convergence speed is well known [26]. In general its order of convergence
depends on M−1/2 where M is the number of considered samples; in this kind
of problem the sampling is coupled in time with a finite difference method that
makes convergence even slower and that can even introduce some bias so it is here
skipped as the related results appear to be insignificant.
Therefore, in the following examples, the comparison is made with results available
in literature and with results obtained by an implicit Finite Difference method. In
particular, the forward Euler scheme and centered finite difference schemes have
been directly applied to the backward problem (1)-(3) for the approximation of
derivatives in time and in space respectively. Defining

∆S = Su/NS , Si = i∆S i = 0, . . . , NS
∆t = (T − t0)/Nt, ti = i∆t i = 0, . . . , Nt
V ji := V (Si, tj) i = 1, . . . , NS − 1 j = 0, . . . , Nt − 1

Vj
FD ≈ Vj = {V ji }i=1,...,NS−1

we have to solve the following sequence of tridiagonal linear systems: for j =
Nt − 1, . . . , 0

AVj
FD = B

with

A =


(
1 + ∆t(S1σ

j

∆x )2 + ∆trj
)

−∆t
2

(
(S1σ

j

∆x )2 +
S1(rj−dj)

∆x

)
0

−∆t
2

(
(S2σ

j

∆x )2 − S2(rj−dj)
∆x

)
· · · −∆t

2

(
(
SNS−2σ

j

∆x )2 +
SNS−2(rj−dj)

∆x

)
0 −∆t

2

(
(
SNS−1σ

j

∆x )2 − SNS−1(rj−dj)
∆x

) (
1 + ∆t(

SNS−1σ
j

∆x )2 + ∆trj
)



B =

[
V j+1

1 +
∆t

2

(
(
S1σ

j

∆x
)2 − S1(rj − dj)

∆x

)
E exp

(
−
∫ T

tj

r(τ)dτ

)
, V j+1

2 , . . . , V j+1
NS−1

]′

and the upper index j means that functions are evaluated at tj .
This method (to which we briefly refer as FD) is implicit and it is expected
to be of first order consistency in time and second order in space. So defin-
ing ∆t and ∆S the discretization parameters in time and space respectively,
in the numerical examples, the FD time-space grid has been refined by fol-
lowing the relation ∆t = ∆S2 with the aim to have the same order of error
in both variables.
Other methods, theoretically more accurate than FD (such as Cranck-
Nicolson in time or Rannacher time stepping [27]) are not taken into consid-
eration because they do not significantly improve numerical results in this
context due to the non-smoothness of the underlying data, as described in
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several papers ( [28], [29] [30] and [31]) and personally observed in [9].
Even the sometimes suggested changes of variables are not here employed
as, referring to [18], they may inappropriately stretch the grid of computa-
tion without making actual improvements.
SABO results are compared also with the perturbative method illustrated
in [15] which is based on a series expansion and whose results depend on
the number of terms considered in the truncated series and on a further
choice of the perturbation parameter.

6. Numerical results and comparisons

6.1. Constant parameters

This example is taken from the paper [9] and it serves as a test and to
compare the efficiency of SABO with other numerical methods.
With constant r, d and σ, the problem (1)-(3) leads back to the standard
Black-Scholes case whose solution is known in the closed-form (7).
• An up-and-out put option with the following data is considered:

Table 1. Up-and-out put option
data.

Su t0 T E r d σ

2 0 1 1 0.1 0 0.25

Denoting by VFD the Finite Difference approximation and by V the exact
solution in (7), the absolute errors reported in Table 2 are defined as

Err := max
i
|VFD(S̄i, 0)− V (S̄i, 0)|

over the same set of underlying asset values S̄i = i · E/10 = i · 5 for
i = 1, . . . , 9 although the FD time-space grid is refined by the relation
∆t = ∆S2.
Observe the rapid growth of CPU computation time w.r.t. the decrease of
absolute error.
Choosing ∆t = T/2n for the evaluation of option price by SABO, the first
column in Table 3 represents the evolution of the absolute error computed
over the above set {S̄i}i=1,...,9, the second one reports the CPU time spent
in computing the numerical approximation of BIE solution as described in
Section 3.3, the third one reports the CPU time spent in the post-processing
as detailed in Section 3.4 and the fourth one the CPU time employed for
the whole application of SABO.
Looking at Table 3 one can observe that SABO allows to achieve higher
order of accuracy with lower computational costs w.r.t. FD.
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There is a worsening in CPU time spent in calculation in comparison to
results appearing in [9] that is due to the use of Matlabr adaptive quadra-
ture (with absolute error and relative error tolerances equal to 10−6 that
could be weakened) instead of using ad hoc quadrature developed for the
involved integrals. The reason of this questionable choice is that the idea of
this article is to provide a user-friendly method for option pricing requiring
no deep knowledge of quadrature techniques. However the method is still
advantageous with respect to FD. Moreover, SABO is even more compet-
itive when we have to compute the option value for only one underlying
asset value because the CPU time spent in the post-processing decreases to
about one twentieth of that actually written.

Table 2. Results obtained by FD
with ∆S := 2−n/5.

n Err CPU time FD

1 2.2 · 10−3 3.1 · 10−2

2 5.3 · 10−4 7.8 · 10−2

3 1.3 · 10−4 1.7 · 10−1

4 3.3 · 10−5 1.6 · 10+0

5 8.2 · 10−6 1.3 · 10+2

Table 3. Results obtained by SABO with ∆t = T/2n.

n Err CPU time BIE CPU time post-pro CPU time SABO

2 1.9 · 10−6 7.0 · 10−1 1.6 · 10+0 2.3 · 10+0

3 5.4 · 10−7 1.5 · 10+0 2.1 · 10+0 3.6 · 10+0

4 2.3 · 10−7 3.9 · 10+0 3.1 · 10+0 7.0 · 10+0

5 9.1 · 10−8 1.1 · 10+1 4.6 · 10+0 1.6 · 10+1

6 3.2 · 10−8 3.4 · 10+1 8.4 · 10+0 4.2 · 10+1

In Fig. 1 from left to right, as a function of the underlying asset values
{S̄i}, there are: the up-and-out put option price together with the payoff,
the absolute errors made by FD with ∆S = 0.00625 and by SABO with
∆t = 0.25. As expected, FD has more troubles at the exercise price value
S̄5 = E = 1 where the payoff function has a discontinuity in the first
derivative, instead, SABO struggles with integration near the boundary
point Su.
Taking into account the approximation of ∆-greek, one can observe the
advantage of using SABO instead of a finite difference approximation com-
paring the errors w.r.t. the available closed-formula (see [20]).
The evaluation of ∆-greek is compared among all the methods within the
above set of underlying asset values {S̄i}i=1,...,9. In Table 4 the ∆-greek
is directly computed without the evaluation of option values following the
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Figure 1. From left to right: up-and-out put option price, absolute error made by FD
with ∆S = 0.00625 and by SABO with ∆t = 0.25.

algorithm suggested in Section 4 with computational times similar to those
reported in Table 3.

Table 4. Results, concern-
ing ∆-greek, obtained by SABO with
∆t = T/2n.

n Err CPU time SABO

2 2.8 · 10−5 4.2 · 10+0

3 4.4 · 10−6 5.9 · 10+0

4 8.9 · 10−7 1.0 · 10+1

5 4.9 · 10−7 2.2 · 10+1

6 1.8 · 10−7 5.3 · 10+1

Differently, once option values have been computed by FD over a grid,
∆-greek can be approximated with negligible computational effort by the
second order formula:

(34) ∆FD(S̄i, 0) ≈ V (S̄i + ∆S, 0)− V (S̄i −∆S, 0)

2∆S

but with the absolute errors displayed in Table 5 that are, as expected,
worse than those in Table 4, while being CPU time similar.
The exploitation of a superior order formula such as

∆FD(S̄i, 0) ≈ −V (S̄i + 2∆S, 0) + 8V (S̄i + ∆S, 0)− 8V (S̄i −∆S, 0) + V (S̄i − 2∆S, 0)

12∆S
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Table 5.
Absolute errors
made by a 2nd
order approx-
imation formula
of ∆-greek, with
∆S := 2−n/5.

n Err

2 9.8 · 10−3

3 2.5 · 10−3

4 6.3 · 10−4

5 1.6 · 10−4

6 4.0 · 10−5

Table 6. Absolute errors
made by a 4th order approx-
imation formula of ∆-greek,
with ∆S := 2−n/5: ErrFD
refers to the errors made by
using FD option values and
Err to the ones made by us-
ing closed-form option values.

n ErrFD Err

2 1.2 · 10−2 1.4 · 10−3

3 2.8 · 10−3 1.0 · 10−4

4 7.0 · 10−4 6.6 · 10−6

5 1.7 · 10−4 4.2 · 10−7

6 4.3 · 10−5 2.6 · 10−8

is useless unless we consider values obtained by the closed formula (7) (as
in Table 6) or by another method with greater accuracy than FD (but
probably with more computational effort too) because, otherwise, the values
themselves are affected by errors of the order of the FD method.
Finally in Fig. 2, from left to right, there are: the graph of the closed-
form ∆-greek, the absolute error made by FD second order formula with
∆S = 0.00625 and by SABO with ∆t = 0.25.
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Figure 2. From left to right: up-and-out put option ∆-greek, absolute error made by
FD with ∆S = 0.00625 and by SABO with ∆t = 0.25.

6.2. Time dependent σ

• Piecewise constant σ
This example is taken from the paper [15] and the considered data for the
up-and-out put option are those in Table 7.
The option price approximated by SABO, VSABO(S, t0), is evaluated for
two different values of strike price E = 101, 103.
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Table 7. Up-and-out put option data taken from [15].

Su t0 T S r d σ(t)

101 0 0.5 100 0.03 0.02

{
σ1 = 0.105 t < 0.25
σ2 = 0.1147824 0.25 ≤ t ≤ T

Comparing our results to those in [15], we can immediately observe that the
convergence of SABO strictly depends only on refining the discretization
parameter ∆t = (T − t0)/2

n without the need to check assumptions on
financial parameters or to decide the number of series expansion terms.
The efficiency of SABO method can be checked in Tables 8 and 9, for
E = 101 and E = 103 respectively. The reference solutions suggested in [15]
(Ṽ (100, 0) = 0.8944 and Ṽ (100, 0) = 1.0884, respectively) are obtained by
a not specified finite difference method and truncated to 10−4 order of
accuracy, so we have put on the right the results obtained by FD method.

Table 8. Strike E = 101. Reference Value in [15]: Ṽ (100, 0) = 0.8944. On the left
results obtained by SABO with ∆t = T/2n. On the right results obtained by FD with
∆t = ∆x2 and ∆x = 0.25/2n.

n VSABO(100, 0) CPU time (s)

2 0.89178 1.0 · 10+0

3 0.89373 2.0 · 10+0

4 0.89419 4.5 · 10+0

5 0.89433 1.3 · 10+1

6 0.89436 3.9 · 10+1

7 0.89437 1.2 · 10+2

n VFD(100, 0) CPU time (s)

0 0.89584 1.0 · 10−1

1 0.89474 2.1 · 10+0

2 0.89447 3.4 · 10+1

3 0.89440 3.4 · 10+2

4 0.89438 3.4 · 10+3

Table 9. Strike E = 103. Reference Value in [15]: Ṽ (100, 0) = 1.0884. On the left
results obtained by SABO with ∆t = T/2n. On the right results obtained by FD with
∆t = ∆x2 and ∆x = 0.25/2n.

n VSABO(100, 0) CPU time (s)

2 1.08163 1.0 · 10+0

3 1.08634 1.9 · 10+0

4 1.08787 4.5 · 10+0

5 1.08828 1.2 · 10+1

6 1.08839 3.7 · 10+1

7 1.08842 1.2 · 10+2

n VFD(100, 0) CPU time (s)

0 1.10233 1.6 · 10−1

1 1.09175 2.4 · 10+0

2 1.08926 3.5 · 10+1

3 1.08864 3.7 · 10+2

4 1.08849 3.7 · 10+3

If E = 201 then the solution is forced to noticeably change its slope as ob-
servable in Fig. 3 and this swing is acknowledged by the ∆-greek computed
as in formula (25)
The change in volatility influences the evolution of the solution: the price
of the option from maturity T = 0.5 until time t = 0.25 is that of an Eu-
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Figure 3. Up-and-out put option with parameters in Table 7 and exercise price E = 201.
On the left: approximated value obtained by SABO with ∆t = 0.0625. On the right:
approximated value of ∆-greek obtained by SABO with ∆t = 0.0625.

ropean put up-and-out option V2 with constant volatility equal to σ2 then
it moves towards the price of an European put up-and-out option V1 with
constant volatility equal to σ1. This evolution is highlighted at underly-
ing asset value S = 80. In Fig. 4 on the left, the approximated solution
VSABO(80, t) (obtained with ∆t = 0.0078125) in the time interval [0, 0.25]
has clearly an intermediate value between V1(80, t) and V2(80, t) but, on
display, the three solutions are almost overlapped in the half interval of the
expiry. Looking at Fig. 4 on the right, the difference between V1(80, t) and
VSABO(80, t) respectively and V2(80, t) emphasizes the expected behavior
also in the interval [0.25, 0.5] and in particular the sudden effects due to
the volatility change at t = 0.25.

• Time-continuous σ
The data of this example are taken from the paper [15] and again applied
to the case of an up-and-out put option:

Table 10. Up-and-out put option data taken from [15].

Su E S t0 r d σ(t)

70 50 50 0 0.1 0.05 σ2 = 0.03 + 0.02(T − t)

In Fig. 5, the approximated solution obtained by SABO with ∆t =
(T − t0)/8 is plotted for different values of expiry T = 0.25, 0.5, 0.75, 1.
As foreseeable, the closer the expiry the nearer the option value to the
payoff function.
Looking at Tables 11 and 12, one can appreciate, at a randomly chosen
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Figure 5. SABO approximate solutions for different values of expiry time.

point, that results by SABO (in comparison with those obtained by FD
method) are even more accurate than in the case of the previous example
because of the better regularity of the volatility function σ. Very good
accuracy is achieved spending little CPU time and, also in this case, it
strictly depends only on refining the discretization parameter ∆t = (T −
t0)/2

n and it does not need checking assumptions on data or tuning further
parameters (as, on the contrary, happens in [15]).
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Table 11. Approximate option values obtained by FD method at S = 50 and t = 0 with ∆S = 0.25/2n

and ∆t = ∆x2.

n T = 1 CPU time (s) T = 0.75 CPU time T = 0.5 CPU time T = 0.25 CPU time

0 2.64610 7.8 · 10−2 2.34161 7.8 · 10−2 1.96357 9.4 · 10−2 1.43428 6.3 · 10−2

1 2.64919 2.6 · 10+0 2.34889 1.9 · 10+0 1.97826 1.2 · 10+0 1.46420 6.3 · 10−1

2 2.64991 4.4 · 10+1 2.35066 3.3 · 10+1 1.98191 2.1 · 10+1 1.47175 1.0 · 10+1

3 2.65008 6.0 · 10+2 2.35110 4.2 · 10+2 1.98282 2.8 · 10+2 1.47364 1.4 · 10+2

Table 12. Approximate option values obtained by SABO at
S = 50 and t = 0 with ∆t = (T − t0)/2n.

n T = 1 T = 0.75 T = 0.5 T = 0.25 CPU time (s)

2 2.65021 2.35125 1.98312 1.47427 9.4 · 10−1

3 2.65017 2.35125 1.98312 1.47427 1.9 · 10+0

4 2.65015 2.35125 1.98312 1.47427 4.2 · 10+0

5 2.65015 2.35125 1.98312 1.47427 1.2 · 10+1

6.3. Time dependent interest rate

• At first, the up-and-out put option is evaluated with the following data:

Table 13. Up-and-out put option data.

Su t0 T S E r(t) d σ

101 0 1 50 50

{
r1 = 0.01 t < 0.25
r2 = 0.03 0.25 ≤ t ≤ T 0.05 0.105

In Fig. 6 the time-behavior of the approximated solution V at S = 50 is
depicted together with its Θ-greek. Both are obtained by SABO, inserting
the BIE solution in (23) and (31), respectively. Due to the discontinuity
of the interest rate function at t = 0.25, we expect the solution to be just
continuous in time variable and the time-derivative to have a jump at the
same time instant. As viewable in Fig. 6 in the center, SABO allows to
precisely catch this jump because the expression of the Θ-greek is known
in a piecewise closed-form (except that the BIE solution ∂u

∂y (U, s) has to be
numerically computed): the discontinuity is highlighted in the second term
by the multiplication of V by r̄. On the contrary, the application of a finite
difference approximation of time-derivative, analogous to (34) in time, to
accurate SABO option values, is based on the hypothesis of C1-regularity
of the solution and therefore it softens the discontinuity as focused in Fig.
6 on the right.

• Choosing the barrier smaller than the strike price and the reference asset
value near the barrier, the contribution of the boundary integral term, i.e.
the second term in the r.h.s. of representation formula (13), is stronger
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Figure 6. On the left: at S = 50, evolution in time of approximated option value with
piecewise constant interest rate reported in Table 13 and computed by SABO with ∆t =
0.015625. In the center: its Θ-greek. On the right: zoom nearby the time instant t = 0.25
of the Θ-greek computed by SABO and finite difference method.

so that the barrier option price moves significantly away from the vanilla
option price really near the barrier and the computation of greeks gives
more troubles (look at Fig. 7).

Table 14. Up-and-out put option data.

Su t0 T S E r(t) d σ

40 0 1 35 50

{
r1 = 0.01 t < 0.25
r2 = 0.03 0.25 ≤ t ≤ T 0.05 0.105
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Figure 7. Approximated option value with data of Table 14 (on the left) and Θ-greek
(on the right) equivalently computed by SABO or FD at time instant t = 0.

This situation stresses the computation of both SABO and FD method but,
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as viewable in Table 15 at S = 35 and t = 0, SABO gets a superior order
of accuracy in evaluation of both the option price and the Θ-greek with
remarkable computational saving w.r.t. FD method.

Table 15. Put up-and-out option price at S = 35 and t = 0 obtained by SABO with ∆t = T/2n (on
the left) and by FD with ∆t = ∆x2 and ∆x = 0.25/2n (on the right).

n VSABO(35, 0) ΘSABO(35, 0) CPU time

4 14.13354 -0.06753 1.7 · 10+0

8 14.13236 -0.07581 3.1 · 10+0

16 14.13188 -0.07724 7.1 · 10+0

32 14.13168 -0.07760 1.9 · 10+1

64 14.13160 -0.07771 6.0 · 10+1

n VFD(35, 0) ΘFD(35, 0) CPU time

0 14.24680 -0.03076 3.1 · 10−2

1 14.16124 -0.06392 5.0 · 10−1

2 14.13902 -0.07417 1.3 · 10+1

3 14.13341 -0.07686 2.0 · 10+2

4 14.13201 -0.07754 2.8 · 10+3

7. Conclusions and developments

A new method for pricing barrier option (SABO) is illustrated. The
method was already introduced for the Black-Scholes model with time-
constant parameters and for Heston-Bates model (see [9] and [10] respec-
tively). Its adaptation to the Black-Scholes model with time-dependent pa-
rameters is here proposed with several numerical examples and the com-
putation of the Greeks. Furthermore, some ready to use Matlab codes de-
scribed in Appendix II are downloadable at ????.
The main advantages of SABO in comparison with other numerical meth-
ods are: the high accuracy, the implicit satisfaction of the far-field behavior
of the solution, the low discretization costs that imply high efficiency and
the easy computation of Greeks. We think that the method could have a
considerable range of application that in these last years we started inves-
tigating. In particular we expect to be able to soon apply the method to
Asian Options too.
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Appendix I: Put up-and-in

Consider an up-and-in barrier put option with European exercise style:
it is an exotic option that gets into existence with the value of an Euro-
pean put option without barriers P (as defined in (8)) when the price of
the underlying asset grows up enough to breach an assigned upper barrier
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before the expiry date. The differential problem that models this option is
analogous to (6) and it is
(35)

∂u

∂τ
(x, τ)− σ2(τ)

2

∂2u

∂x2
(x, τ)−

(
r − σ2

2
− d
)
(τ)

∂u

∂x
(x, τ) = 0

x ∈ Ω = (−∞, U), τ ∈ (0, T − t0]
u(x, 0) = 0 =: u0(x) x ∈ Ω

lim
x→−∞

u(x, τ) = 0 τ ∈ [0, T − t0]

u(U, τ) = P (Su, t) U := log(Su), τ ∈ [0, T − t0]

and the domain of the problem is again (−∞, U) × (0, T − t0] because at
S ≥ Su the option takes the value of an European put option without
barriers.
SABO is deduced from steps in Sec. 3 and it evolves as follows.

The integral representation formula in the domain of definition of the dif-
ferential problem

The integral representation formula is still Eq. (13) because the problem
has the same differential operator and it is defined over the same domain:
∀(x, τ) ∈ (−∞, U)× (0, T − t0]
(36)

u(x, τ) :=

∫ U

−∞
u0(y)G(y, 0;x, τ)dy +

∫ τ

0

σ2(s)

2
G(U, s;x, τ)

∂u

∂y
(U, s)ds ,

nevertheless, as the initial condition is null, it reduces to

(37) u(x, τ) :=

∫ τ

0

σ2(s)

2
G(U, s;x, τ)

∂u

∂y
(U, s)ds .

The boundary integral equation (BIE)

The integral formula (37) is the analytical solution of problem (35) for
(x, τ) ∈ Ω × (0, T − t0] but it cannot be evaluated analytically since the
function ∂u

∂y (U, s) is not known explicitly.

However, letting x → U in (13) and applying the boundary condition at
the barrier, we obtain the BIE
(38)

P (Su, t) =

∫ +∞

−∞
max(E − ey, 0)G(y, 0;U, τ)dy =

∫ τ

0

σ2(s)

2

∂u

∂y
(U, s)G(U, s;U, τ)ds .

whose sole unknown is the function ∂u
∂y (U, s).

Again, (38) is numerically solved at the boundary as in Sec.3.3 getting
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∂u
∂y (U, s) and then the solution u is recovered at the desired points of the

whole domain by inserting it in the representation formula (37).

Appendix II: Matlabr Codes

The downloadable Matlabr codes (available as Supplemental Material
of the present paper) allow the user to compute by SABO the value of a
PUT option with UP-and-OUT barrier with the parameters shown in Table
10 related to the case of time-continuous σ described in Section 6.2.
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