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Abstract

We present a continuum hyperelastic model which describes the mechanical response

of a skeletal muscle tissue when its strength and mass are reduced by aging. Such a re-

duction is typical of a geriatric syndrome called sarcopenia. The passive behavior of the

material is described by a hyperelastic, polyconvex, transversely isotropic strain energy

function, and the activation of the muscle is modeled by the so called active strain ap-

proach. The loss of ability of activating of an elder muscle is then obtained by lowering of

some percentage the active part of the stress, while the loss of mass is modeled through

a multiplicative decomposition of the deformation gradient. The obtained stress-strain

relations are graphically represented and discussed in order to study some of the effects

of sarcopenia.
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AMS subject classification: 74B20, 74L15

1. Introduction

Skeletal muscle tissue, whose principal role is the production of force
and hence movement, is a highly-ordered hierarchical structure. Muscular
fibers, the cells of the tissue, are organized in fascicles, where every fiber is
multiply connected to nerve axons. They contain a concatenation of mil-
lions of sarcomeres, which are the fundamental unit of the muscle and the
actuators of activation, the mechanism by which a muscle produces force.

The aim of this paper is to propose a mathematical model of skeletal
muscle tissue which can exhibit a reduced performance and mass, typical
of a geriatric syndrome named sarcopenia [1], defined as the loss of skeletal
muscle mass and strength that occurs with advancing age. Although nowa-
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days the syndrome affects more than 50 millions people, so far there are no
compelling tests for its diagnosis and many efforts are made by the medi-
cal community to better understand it. Therefore it is desirable to build a
mathematical model of muscle tissue affected by sarcopenia. As far as we
know, the first elastic model of sarcopenic skeletal muscle has been pro-
posed in [2]; however, that paper focuses only on the loss of performance.
Here we generalize that model, including also the loss of mass.

In view of the highly organized structure of the fibers in skeletal mus-
cles, from a macroscopic viewpoint it is reasonable to model the tissue as a
continuum material which is transversely isotropic. Moreover, since the tis-
sue is composed mainly of water, we will assume incompressibility. Finally,
focusing our attention only on steady properties, we neglect the viscous
effects and set in the framework of hyperelasticity. In the model that we
propose, there are two main constitutive prescriptions: one for the hyper-
elastic energy when the tissue is not activated (passive energy) and one
for the activation. Moreover, in order to describe sarcopenia, the loss of
performance and the loss of mass are obtained by two different methods.

As far as the passive part is concerned, we assume an exponential stress
response of the material, which is customary in biological tissues. The hy-
perelastic strain energy density takes into account also the isotropic and
anisotropic components of the tissue.

Coming to activation, a recent and very promising way to describe it is
the so called active strain approach [3], where the extra energy produced
by the activation mechanism is encoded in a multiplicative decomposition
of the deformation gradient in an elastic and an active part. Unlike the
classical active stress approach, in which the active part of the stress is
modeled in a pure phenomenological way and a new term has to be added
to the passive energy, the active strain method does not change the form
of the elastic energy, keeping in particular all its mathematical properties.
Furthermore, in the case of muscles the active strain approach is more ad-
herent to the physiology of the tissue, being a mathematical representation
of the contraction of the sarcomeres at the molecular level. The active strain
approach has firstly been applied to the skeletal muscle tissue in [2], where
the active strain is described by a parameter which depends on the defor-
mation. One of the novelties of the present paper is to give an active model
which is completely hyperelastic, in the sense that the active stress can be
computed as the derivative with respect to the deformation gradient of a
suitable strain energy function. See also [4] for a detailed discussion on this
issue.

Another feature of our model is the description of the two main effects
of sarcopenia: the loss of activation and the loss of muscle mass. The former
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is represented by a damage parameter d which reduces the active part of
the stress by a given percentage. The latter is encoded in the model by
a further multiplicative decomposition of the deformation gradient, where
a parameter g measures the fraction of muscle fibers which are not active
anymore.

We present some numerical results, showing that the experimental data
of [5] on the passive and active stress-strain curves, obtained in vivo from
a tetanized tibialis anterior of a rat, can be well reproduced by our model
in the healthy case. The lack of any experiment on the elastic properties
of a sarcopenic muscle tissue does not allow any fitting of the two damage
parameters d and g; however, different scenarios are studied when d and g
increase.

The model here proposed can be numerically implemented using finite
element methods. In the future, it will be very interesting to perform nu-
merical simulations on a realistic mesh and to find some connections be-
tween the damage percentages (parameters d and g) and other physiological
quantities.

2. Constitutive model

Skeletal muscle tissue gives our body its shape and its ability to pro-
duce movement and force. Even if the tissue is composed mainly by water
(72 − 75% amount), its structure is very complex and the tension devel-
oped during elongation is the combination of the presence of connective
tissue and fibers. Connective tissue, which is essentially isotropic, fills the
spaces among the fibers and it is responsible of the elastic recoil of the
muscle to elongation, while the fibers, having a preferred alignment, break
the isotropy of the tissue and drive the activation.

Let us analyze a typical stress-strain relation such as the one given
in Fig. 1, which shows the data obtained by Hawkins and Bey [5] on the
relation between the stretch along the fibers and the developed stress of
a tetanized rat tibialis anterior. Due to the elastic behavior of the tissue,
as a muscle is stretched in absence of activation, it starts to resist, very
weakly for small elongations and much more strongly for large deformations
(passive curve). When the tissue is stimulated, the presence of actin and
myosin in the fibers allows the muscle to activate, changing considerably the
shape of the stress-strain relation (total curve). This behavior depends on
the number of the cross-bridges formed by the sliding movement of actin on
myosin. By subtracting the passive force from the results of the stimulated
test, we can isolate the contribution due to the contractile elements (active
curve).
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Figure 1. Stress-stretch relationship reported in [5].

We recall that the experiment of Hawkins and Bey is performed on
disarticulated muscles, so that the range of the stretch is not physiological.
An intact human muscle usually functions in the central portion of the
stress-strain curve, although the precise shape of the curve varies across
muscles [6].

Having the previous considerations in mind, it is important to include
in our mathematical model the combination of the effects due to both the
connective tissue and the presence of the fibers.

2.1. Passive model

In Continuum Mechanics the motion of a body is described by an in-
vertible smooth map from a bounded subset Ω ⊂ R3 into R3: the function
x = χ(X, t) associates every point X in the reference configuration Ω with
its current placement x. The deformation gradient

F = Gradχ, Fij =
∂xi
∂Xj

, i, j = 1, 2, 3

belongs to the space of linear operators with strictly positive determinant.
In the following, we set in the frame of hyperelasticity. For a hyperelastic

material, the first Piola-Kirchhoff (or nominal) stress tensor P, which de-
scribes the tensional state in a continuum medium, is derived from a strain
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energy density function W . By frame-indifference, W is a function of the
right Cauchy-Green tensor C = FTF, so that

(2) P
(
X,F(X)

)
= 2F(X)

∂W

∂C

(
X,C(X)

)
.

Hence the behavior of the elastic body is described by the hyperelastic
strain energy function ∫

Ω
W
(
X,C(X)

)
dX.

From now on we assume that the material is homogeneous, so that W does
not depend explicitly on X.

As is customary for skeletal muscle tissue, we assume that the mate-
rial is incompressible, due to the total amount of water in the tissue, and
transversely isotropic, thanks to the alignment of the fibers. Following [2],
we model the passive behavior of the material by the strain energy density
function

(4) W (C) =
µ

4

{
1

α

[
eα(Ip−1) − 1

]
+Kp − 1

}
,

where

Ip =
w0

3
tr(C) + (1− w0) tr(CM), Kp =

w0

3
tr(C−1) + (1− w0) tr(C−1M),

together with the incompressibility constraint

detC = 1.

The tensor M = m ⊗ m is called structural tensor, m being the local
orientation of the fibers, µ is an elastic coefficient, α and w0 are positive
dimensionless material constants. The generalized invariants Ip and Kp are
a weighted combination of the isotropic and anisotropic components; in
particular, w0 measures the ratio of isotropic tissue constituents and 1−w0

that of muscle fibers. Moreover, the term tr(CM) represents the squared
stretch in the direction of m and is thus associated with the elongation
of the fibers, while the term tr(C−1M) describes the change of the cross-
sectional area of a surface element which is normal to the direction m in
the reference configuration and thus relates to the transverse behavior of
the material [7,8].

The Piola-Kirchhoff stress tensor is then given by

(6) P = 2F
∂W

∂C
− pF−T =

µ

2
F
{
eα(Ip−1)

[w0

3
I + (1− w0)M

]
−C−1

[w0

3
I + (1− w0)M

]
C−1

}
− pF−T ,
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where p is a Lagrange multiplier associated with the hydrostatic pressure
due to incompressibility.

The strain energy density function (4) is a slight simplification of the
one proposed in [9]. One of the mathematical features of (4) is that it is
polyconvex and coercive [7,10], hence the equilibrium problem with mixed
boundary conditions is well posed. We remark that C is the identity tensor I
in the reference configuration, so that Ip = Kp = 1, i.e. we have the energy-
and stress-free state of the passive muscle tissue.

The material parameters of the model can be obtained from real
data. More precisely, concerning the elastic coefficient, we use the value
µ = 0.1599 kPa given in [9], while the other two material constants have
been obtained by least squares optimization using the experimental data
by Hawkins and Bey [5] about the stretch response of a tetanized tibialis
anterior of a rat, see Fig. 2.
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Figure 2. Passive stress along the fibers (µ = 0.1599 kPa, α = 19.35, w0 = 0.7335).

2.2. Active model

One of the main features of the muscle tissue is its ability of activating
through a chemical reaction between the actin and myosin filaments, which
induces a contraction of the muscle fibers. In this section we introduce a
parameter which describes the active state of the tissue in the hyperelastic
energy.
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a
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Figure 3. Kröner-Lee decomposition for the active strain approach.

Following the active strain approach [2], we rewrite the deformation
gradient with the Kröner-Lee decomposition

F = FeFa,

where Fe is the elastic part and Fa describes the active contribution (see
Fig. 3). The active strain Fa represents a change of the reference volume
elements due to the contraction of the sarcomeres, so that it does not store
any elastic energy. A reference volume element, distorted by Fa, needs a
further deformation Fe to match the actual volume element, which accom-
modates both the external forces and the active contraction. Notice that
neither Fa nor Fe need to be the gradients of some displacement, that is, it
is not necessary that they fulfill the compatibility condition curlFa = 0 or
curlFe = 0.

The volume elements are modified by the internal active forces without
changing the elastic energy, hence the strain energy function of the activated
material has to be computed using Ce = FTe Fe and taking into account
Fe = FF−1a . We then obtain the total hyperelastic energy density

(7) Ŵ (C) = (detFa)W (Ce) = (detFa)W (F−Ta CF−1a ).

We remark that the active strain approach was first proposed by Taber
and Perucchio [3] for cardiac tissue and it has been developed by several
authors (see for example [2,11–14]). Differently from the more popular ac-
tive stress approach, this method does not change the form of the strain
energy function and it seems to be more related to the biological meaning
of activation [12].

Now we have to constitutively provide the form of the active part Fa.
Since the muscle contracts along the fibers, it is reasonable to describe the
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activation as

(8) Fa = (1− a)m⊗m +
1√

1− a(I−m⊗m),

where 0 ≤ a < 1 is a dimensionless parameter representing the relative
contraction of activated fibers (a = 0 meaning no activation). Notice that
we assumed that detFa = 1, so that also detFe = 1 and the material is
elastically incompressible. Moreover, in order to accommodate the exper-
imental data (see Fig. 1), the activation parameter a cannot be constant.
Indeed, it is a key feature of the skeletal muscle tissue that the active part
of the stress grows with the stretch until a maximum and then decreases;
this behavior is probably due to the molecular structure of the sarcomere,
in which the overlap between actin and myosin depends also on the stretch.
Moreover, also from the mathematical point of view it can be proved that
a constant activation in the strain energy function (7) cannot reproduce
such a behavior. Hence we assume that the activation parameter a depends
on the deformation. A reasonable choice is to take a as a function of the
squared stretch along the fibers, which is measured by

I4 = tr (CM),

so that Fa = Fa(I4). In that case, taking into account that detFa = 1, the
corresponding first Piola-Kirchhoff stress tensor is given by

(9) P̂ = 2F
∂Ŵ

∂C
− p̂F−T = 2F

∂

∂C

[
W
(
F−Ta (I4)CF

−1
a (I4)

) ]
− p̂F−T ,

where p̂ accounts for the incompressibility constraint detC = 1.
The experimental data of [5] are collected during a uniaxial deformation

along the fibers. Hence we consider the uniform incompressible transversely
isotropic deformation

F = λm⊗m +
1√
λ

(I−m⊗m),

so that λ =
√
I4. Taking into account the form of the activation (8) and

the expression of the energy (7), one gets

(10) Ŵ (λ, a(λ)) =
µ

4

[
1

α
(eα(Ie−1) − 1) +Ke − 1

]
,
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where

Ie =
w0

3
tr(Ce) + (1− w0) tr(CeM) =

(
1− 2

3
w0

)
λ2

(1− a)2
+

2w0

3λ
(1− a),

Ke =
w0

3
tr(C−1e ) + (1− w0) tr(C−1e M) =

(
1− 2

3
w0

)
(1− a)2

λ2
+

2w0λ

3(1− a)
,

Ce =
λ2

(1− a)2
m⊗m +

1− a
λ

(I−m⊗m).

In order to accommodate the experimental data, a(λ) should fulfill the
equation

Ptot = Ppas + Pact ,

where Ptot = tr(P̂M) and Ppas = tr(PM) represent the component along
M of the first Piola-Kirchhoff stress tensor in the total (9) and passive (6)
case, respectively, while Pact describes the data of the active curve. In our
case, we can compute Ptot and Ppas directly from the corresponding strain
energy densities (10) and (4):

Ptot(λ, a(λ)) =
∂Ŵ

∂λ
(λ, a(λ)) +

∂Ŵ

∂a
(λ, a(λ)) a′(λ),

Ppas(λ) =
∂W

∂λ
(λ) =

∂Ŵ

∂λ
(λ, 0).

As far as Pact is concerned, it is a function of λ which has to be deduced
from the experiments. Once Pact is described, the activation function a(λ)
must solve the ODE

(11)
∂Ŵ (λ, a(λ))

∂λ
+
∂Ŵ (λ, a(λ))

∂a
a′(λ)− ∂Ŵ

∂λ
(λ, 0) = Pact,

with the initial condition a(λmin) = 0, where λmin is the value of the
stretch at which the activation begins. We set λmin = 0.6 because a fiber
can shorten at about 60% of its length [15].

The previous problem is equivalent to

(12) Ŵ (λ, a(λ))− Ŵ (λ, 0) = Sact,

where Sact is the primitive function of Pact such that Sact(λmin) = 0.
In the literature, Pact has often been modeled by a (piecewise) smooth

function of λ, see [2,9,16–18]. This means that one has to choose constitu-
tively a form of the function Pact(λ) and to fit the constitutive parameters
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on the experimental data. However, since a(λ) enters into Ŵ in a compli-
cated manner, it is difficult to solve equation (12) in closed form, whatever is
the choice of Pact, so that a numerical solution is provided. Moreover, since
we need a function of λ in order to write the hyperelastic energy density
Ŵ , a suitable expression of a(λ) can be fitted on the numerical solution.

We decide to avoid the constitutive assumption on Pact and to provide
a model for a(λ), so that the term Ŵ (λ, a(λ)) − Ŵ (λ, 0) is fitted directly
on Sact, which now is a numerical integration of the data Pact. Then we
choose a(λ) of the form

(13) a(λ) = e−p6λ(p5λ
5 + p4λ

4 + p3λ
3 + p2λ

2 + p1λ+ p0)(λ− λmin),

where pj , j = 0, . . . , 6 are the fitting parameters and p6 ≥ 0. The presence
of the exponential part ensures that the activation becomes negligible for
λ sufficiently large, as it is suggested by biological reasons. Moreover, it is
clear that a(λmin) = 0.

Fig. 4 shows the profile of a(λ) obtained by least squares optimization
of equation (12), where Sact is computed by Pact using the trapezoidal rule.
The corresponding total and active stress curves are showed in Fig. 5.

With the values of the parameters given in Fig. 4, it happens that, for
some values of the stretch λ, which are in any case outside the experimental
range, the total stress becomes less than the passive one. Since for such
values it is reasonable to assume that the passive part prevails, we truncate
the function a(λ).

3. Modeling sarcopenia

We now want to describe from a mathematical point of view a skeletal
muscle tissue damaged for the presence of sarcopenia. This syndrome is
defined as the age-related decrease of muscle mass and force [19]. We recall
that muscle strength does not depend only on muscle mass and the rela-
tionship between strength and mass is not linear. Hence, our model should
include two different types of damage: one for the loss of activation and one
for the loss of mass.

3.1. Loss of activation

In [20,21] it is remarked that aging is associated with changes in muscle
mass, composition, activation and material properties. In sarcopenic mus-
cle, there is a loss of motor units via denervation and a net conversion from
fast to slow fibers, with a resulting loss in muscle power. Hence, the loss
of performance of a sarcopenic muscle can be described as a weakening of
the activation of the fibers. However, one of the main problem in detecting
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Figure 4. The activation function (13) with p6 = 5.408, p5 = −4766, p4 = 23592,
p3 = −47518, p2 = 48938, p1 = −25658, p0 = 5590. The truncation prevents the total
stress to become less than the passive one.
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Figure 5. Total and active stress-strain relations.
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and diagnosing sarcopenia is the lack of experimental data, so that only
some simple strategies can be reasonably adopted to describe the loss of
performance of a sarcopenic muscle.

Following [2], we include in the model a parameter d which weakens the
active part of the stress along the fibers, so that the active stress of the
damaged muscle becomes

(1− d)Pact.

The dimensionless parameter d ∈ [0, 1] describes the percentage of dis-
ease or damage in the activation ability of the muscle: if d = 0, then the
muscle is healthy and can be fully activated.

We now would like to see what is the effect of a constant damage d on
the response of the whole muscle. In our case, lowering the active stress
data Pact means that we have to lower its integral Sact by the factor 1− d.
Hence, instead of solving (12), at a certain d we have to solve

(14) Ŵ (λ, a(λ))− Ŵ (λ, 0) = (1− d)Sact.

The numerical solution a(λ) is again assumed of the form (13) and it de-
pends on the value of the parameter d. When d increases, Fig. 6 shows
the behavior of a(λ) obtained by the least squares optimization and the
corresponding stress-stretch relations are plotted in Fig. 7.
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Figure 6. Effects of the loss of activation on a(λ).
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Figure 7. Effects of the loss of activation on the total stress. Fitting parameters are not
reported.

As one would expect, when d increases the activation a(λ) decreases. It
means that lowering the curve of Pact results in a decrease of a(λ), which
leads to a lowered total stress response (Fig. 7).

The damage parameter mainly affects the value of the active stress in
the region near its maximum and the qualitative behavior of the total stress
curve does not change, at least for d ≤ 0.5. Beyond the region where the
active part prevails, the stress follows the exponential growth of the passive
curve.

3.2. Loss of mass

Let us consider the other main feature of sarcopenia, namely the loss of
mass. This issue can be addressed by following growth theory and plasticity
[22].

Similar to the active strain approach explained in Section 2.2, we rewrite
the deformation gradient as

F = FeFaFg,

where Fe is the elastic part, Fa(I4) describes the active contribution as
before, while Fg represents the loss of mass (Fig. 8).

The volume elements are modified by the internal active forces and
by the loss of mass without changing the elastic energy, so that the strain
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Figure 8. A pictorial description of the loss of mass.

energy function of the material has to be computed using Ce = FTe Fe , where
Fe = FF−1g F−1a . We then obtain the modified hyperelastic energy density

(15) W̃ (C) = (detFg)Ŵ (F−Tg CF−1g ) = (detFaFg)W (F−Ta F−Tg CF−1g F−1a ).

Moreover, we underline that now F is compressible due to the loss of mass
described by Fg; in this case, the map FeFa has to be incompressible, which,
thanks to the diagram in Fig. 8, provides the incompressibility of the map
FF−1g , that is detF = detFg. In terms of C the constraint becomes

(16) detF−2g detC = 1.

Taking into account all the previous arguments, the corresponding first
Piola-Kirchhoff stress tensor is given by

P̃ = 2F
∂W̃

∂C
− p̃ ∂

∂C
(detF−2g detC− 1)

= 2(detFg)F
∂

∂C

[
detFa(I4)W

(
F−Ta (I4)F

−T
g CF−1g F−1a (I4)

) ]
− p̃(detF−2g )F−T ,

where p̃ accounts for the incompressibility constraint (16).
The active contribution Fa(I4) is modeled in Section 2.2, while we have

to specify the form of Fg. Since by aging the number of fibers decreases, we
describe a loss of mass in the direction orthogonal to the fibers by choosing

(17) Fg = m⊗m +
√

1− g(I−m⊗m),

where 0 ≤ g < 1 is a dimensionless parameter representing the percentage
of loss (g = 0 meaning no loss of mass).
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It is interesting to look at the stress-strain curve for a uniaxial de-
formation along the fibers when the parameter g varies. As in the pre-
vious sections, let us consider a transversely isotropic deformation along
the fibers; since the global deformation now is no more incompressible and
detF = detFg, then the deformation gradient writes

F = λm⊗m +

√
1− g
λ

(I−m⊗m),

so that

Ce =
λ2

(1− a)2
m⊗m +

1− a
λ

(I−m⊗m),

as in Section 2.2. Hence, from (10) and (15), the corresponding strain energy
function is

(18) W̃ (λ, a(λ), g) = (1− g)Ŵ (λ, a(λ)).

From the previous identity it is clear that, whenever g > 0, we are
lowering the behavior of the total stress by a factor 1 − g, as it is showed
in Fig. 9.
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Figure 9. Effects of the loss of mass on the total stress.
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3.3. A comparison: g = d

Figures 7 and 9 reveal that both the parameters d and g decrease the
behavior of the total stress, as one would expect in sarcopenia. Actually,
the lowering effects in the two cases are very similar and it is interesting to
compare them.

In Section 3.1, the damage of the activation state of the fibers is included
in the model by weakening the active curve with the term 1−d. On the other
hand, the loss of mass appears in the energy (18) only by the multiplicative
factor 1 − g. Fig. 10 shows the behavior of the stress-strain curve when
the parameters d and g decrease. The plots of the two kinds of damage
overlap almost perfectly when Pact is large, while the two curves branch
out in the region where Ppas prevails over Pact. The reason of this behavior
relies on the way the two damages are included in the model: g affects all
the hyperelastic energy in (18), while d lowers only the active part of the
stress (14).
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Figure 10. A comparison between loss of activation and loss of mass when g = d.

4. Conclusions

We introduced a hyperelastic model for skeletal muscle tissue which can
keep into account the loss of mass and the loss of activation, two typical
symptoms of the syndrome named sarcopenia.

The passive strain energy density of the material is of exponential type

16



and keeps into account the preferred direction of the muscle fibers, model-
ing the material as transversely isotropic, while the incompressibility, which
is due to the high water content, has been introduced as an external con-
straint. The activation of the material has been modeled by the active strain
approach, and an activation function of the stretch along the muscle fibers
has been deduced. Such an activation, being the solution of a transcenden-
tal equation, is not written in closed form, but a suitable function is fitted
on the numerical data. The model has a very good agreement with the ex-
periments on a rat tibialis anterior. The dependence of the activation on
the stretch along the fibers is one of the novelties of our approach; it allows
to describe the active muscle tissue as a true hyperelastic material.

The other main feature of our model is to consider the presence of the
sarcopenia by means of two parameters: a percentage of damage d which
lowers the active part of the stress and a percentage of loss of mass g
which is included by a multiplicative decomposition of the deformation
gradient. Moreover, the effects of the two parameters have been discussed
and compared. Namely, both the parameters induce a reduction of the
stress response of the tissue, see Figs. 7 and 9, as it happens in a sarcopenic
muscle, although the effect of the loss of mass is much more evident at large
values of the stretch.

The model is developed fully 3D and the proposed hyperelastic energy is
appropriate for a finite element implementation, hence it is easy to produce
numerical simulations which go beyond the uniaxial case, such as simple
shear or biaxial loading. However, the lack of experimental data for such
deformations does not allow to compare the results with any real case.

An ongoing work is the application of the model to a realistic three-
dimensional muscle geometry. Another goal is to relate the parameters d, g
with some chemical or physiological factors, and to give a quantitative de-
scription of their evolution during aging; this is a major issue, since the
molecular aspects of sarcopenia are still not fully understood. Moreover, in
view of a dynamical description of muscles, a further improvement will be
to take into account also the viscoelastic properties of the tissue.
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E. Topinková, M. Vandewoude, and M. Zamboni, Sarcopenia: European
consensus on definition and diagnosis, Age and Ageing, vol. 39, pp. 412–
423, 2010.

20. T. Lang, T. Streeper, P. Cawthon, K. Baldwin, D. R. Taaffe, and T. B.
Harris, Sarcopenia: etiology, clinical consequences, intervention, and as-
sessment, Osteoporosis International, vol. 21, pp. 543–559, 2010.

21. S. von Haehling, J. E. Morley, and S. D. Anker, An overview of sar-
copenia: facts and numbers on prevalence and clinical impact, Journal
of Cachexia, Sarcopenia and Muscle, vol. 1, pp. 129–133, 2010.

22. A. DiCarlo and S. Quiligotti, Growth and balance, Mechanics Research
Communications, vol. 29, no. 6, pp. 449–456, 2002.

19


	Abstract
	Introduction
	Constitutive model
	Passive model
	Active model

	Modeling sarcopenia
	Loss of activation
	Loss of mass
	A comparison: g=d

	Conclusions
	REFERENCES

