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Abstract

In this paper we present, in a framework of 1D-membrane Micro-Electro-Mechanical-

Systems (MEMS) theory, a formalization of the problem of existence and uniqueness of a

solution related to the membrane deformation u for electrostatic actuation in the steady-

state case. In particular, we propose a new model in which the electric field magnitude

E is proportional to the curvature of the membrane and, for it, we obtain results of

existence by Schauder-Tychonoff’s fixed point application and subsequently we establish

conditions of uniqueness. Finally, some numerical tests have been carried out to further

support the analytical results.
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1. Introduction to the Problem

In this last decade, the evolution of engineering application has been
shifting more and more towards the embedded nature, to low-cost solu-
tions, micro/nano dimensional, battery powered with multi-functional sen-
sors and actuators playing a role of great importance because exploited as
fundamental components to connect the physical nature of information with
the abstract one represented in logic form in the machine. In such a context,
it has gained the interest of the Scientific Community towards the model-
ing of Micro-Electro-Mechanical-Systems (MEMS). This interest is so felt in
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Science that in a recent survey, the MEMS technologies have been included
among the twelve most promising technologies of the twenty-first century,
destined to revolutionize the world of industry and consumer products and
indicate as those technologies that will support more easily a new model of
interface between man and electronic device. Born in 1964 with the produc-
tion of the first batch device [1], the MEMS technology, starting as a purely
engineering science, has increasingly turned into a physical-mathematical
multi-discipline, thanks to advanced theoretical modeling request both in
static and dynamic conditions, requiring soft skills highly specialized. How-
ever, the formulation of many theoretical models does not allow either to
obtain explicit solutions, or the opportunity to prove their existence and
uniqueness, nor any of their regularity property; for this reasons, under
certain conditions, we derive implicit solutions to be studied only numeri-
cally. Scientific Community, in the MEMS domain, is busily working on two
main fronts. The first one, purely theoretical, is heavily involved in model-
ing of coupled problems including the coupled thermal-elastic systems [2,3],
the modeling of magnetically actuated systems [4,5], the microfluidics de-
vices [6–8] and the modeling of electric-elastic systems [9–11]. The second
one, in practice, mainly deals with the MEMS technology transfer opera-
tional techniques in different areas pushing up to the modern Bio-MEMS
for biomedical engineering, such as miniaturized bio-sensors and their ap-
plication to diagnostics and tissue engineering [12,13]. In highly specialized
fields such as modeling of static-magneto-thermo-elastic problems, for ex-
ample, excellent results have been produced about the wave propagation
in micro-domains with fixed boundary [14] and for the solution of inverse
problems with moving boundary obtaining, in classical Hölder spaces, con-
ditions that guarantee existence and uniqueness of the solution [15]. And
yet, in transversely isotropic magneto-electro-elastic solid immersed in fluid
it has introduced a particular decoupling technique exploiting particular po-
tential functions [16]. Another line of research deals with the application of
optinization theory in the automated design of MEMS: the design problem
is formulated in terms of an inverse problem, like e.g. optimal shape syn-
thesis, and then its solution is approximated by means of an algorithm of
numerical minimization [17,18]. Some authors, in recent years, have gained
expertise in the field of modeling of electrostatic actuators in MEMS in both
steady cases and in the dynamical ones carrying out existence, uniqueness
and regularity results by means of near operator theory even in presence
of nonlinear singularities [19–22]. In these works, generalizing and deepen-
ing the research done in previous publications [23–27], it was considered
a MEMS composed of two plates one of which is fixed and the other de-
formable, but clamped at boundary of a region Ω ∈ RN ; once a voltage
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drop is suitably applied, the ground plate deflects from the steady state
u = 0 towards a fixed plate (ground plate) positioned at height u = 1. The
deformation profile u of the above mentioned MEMS, in the stationary
case, was studied using the following model:

(1)


α∆2u =

(
β
∫

Ω |∇u|
2dx+ γ

)
∆u+ λ1f1(x)

(1−u)σ
(

1+χ
∫
Ω

dx
(1−u)σ−1

)
u = ∆u− duν = 0, x ∈ ∂Ω, d ≥ 0

0 < u < 1, x ∈ Ω

where f1 is a bounded function which carries dielectric properties of the
material; λ1 is the applied voltage between the ground plate and the de-
flecting plate; the positive parameters α, β, γ, χ are related to the electric
and mechanic properties of the material and with σ ≥ 2 which takes into
account more general potential than Coulomb’s. This model is a general-
ization of the model studied in [23] in the limit case of zero ground plate
thickness, hence for a thin plate with neglecting inertial effects as well as
non-local effects, that is, with σ = 2, as well as α = 1, β = 0, γ = 0, and
χ = 0 (in dimensionless constants):

(2)


∆2u(x) = λ1f1(x)

[1−u(x)]2

0 < u(x) < 1 in Ω,

u = ∆u− duν , on ∂Ω, d ≥ 0

In this paper, starting from the above-mentioned works, and referring to the
case where in place of the bottom plate we have a thin membrane attached
to the edge and taking care, for an initial approach, of a 1D model, we
examine the following elliptical semi-linear model:

(3)

{
u′′ = −f2(x) λ1

(1−u(x))2 in Ω = [−L,L]

u = 0 on ∂Ω.

For the study of this model we propose a variant inspired by the consid-
eration that the term λ1, related to the voltage is, in fact, also related to
the magnitude of the electric field E. Furthermore, since the electric field
vector on the membrane is locally orthogonal to the tangent of the mem-
brane, we have used in our model the fact that the magnitude of the electric
field E is proportional to the curvature K of the membrane, finding a for-
mulation of the problem in which the singularity due to 1 − u(x) is not
directly involved. The paper is organized as follows. Starting from a brief
overview of the basic theoretical concepts for dimensionless electrostatic-
elastic systems (Section 2), and then presented the model related to the
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membrane systems, the authors propose the new approach based on the
modeling problem (Section 3) in the Dirichlet’s form also taking into ac-
count the safety distance d∗ of the membrane profile form the upper plate,
then obtaining conditions ensuring existence and uniqueness (Section 4). To
do this, the problem has been written in its integral formulation, through
the use of a Green’s function (Sections 5 and 6). Furthermore, some nu-
merical verifications have been made in support of the proposed approach
(Section 7).

2. Theoretical Backgrounds

We start from the general formulation of electrostatic-elastic MEMS
systems with two parallel plates. Let us consider the ordinary space R3

and we fix a system of Cartesian axes O′x′y′z′ in it. In it, we consider an
electrostatic-elastic system whose length is 2L formed by a pair of parallel
plates, of which one fixed and the other one elastic (but fixed at the edges),
placed at a mutual distance h with lying orthogonal to the axis z’. The
system is subjected to an electric voltage V : in particular, the elastic plate
is subjected to the potential V while the fixed one is subjected to the
reference potential V = 0 (see Fig. 1).

Figure 1. The electrostatic-elastic
system: the elastic plate is at poten-
tial V , the fixed ground plate is at
potential zero.

In such a context, the electrostatic po-
tential φ satisfies the Lapalce’s equa-
tion ∆φ = 0 throughout the region
bounded by the plates with boundary
conditions φ = V on elastic plate and
φ = 0 on fixed plate. With these as-
sumptions, if we denote by ∆⊥ the
Laplacian operator only with respect to
x′ and y′, the deflection w′ of the elastic
plate satisfies the well-known following
Equation [28]:

(4) −σ∆⊥w
′ +D∆2

⊥w
′ = −ε0

2
|∇φ|2

where σ is the tension in the plate, D
is the flexural rigidity and εo is the per-
mittivity of free space. We observe that
in (4) there is a source term, proportional to the squared norm of the gra-
dient of the potential, capturing the force on the plate due to the electric
field coupling so the solution of the elastic problem to the solution of the
electrostatic problem [29]. In order to re-frame the problem in dimension-
less form, it is necessary to rescale the system. In particular, defining the
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following scaling factors:

(5) w =
w′

h
, Φ =

φ

V
, x =

x′

2L
, y =

y′

2L
, z =

z′

h
,

and taking into account the Laplace’s equation, (4) becomes a system of
nonlinear coupled partial differential equations:

(6)


ε2∆⊥Φ + ∂2Φ

∂z2 = 0

−∆⊥w + δ∆2
⊥w = −λ2

[
ε2|∇⊥Φ|2 +

(
∂Φ
∂z

)2]
Φ = 1 on elastic plate

Φ = 0 on fixed plate

in which δ, relative importance of tension and rigidity, is D/((2L)2σ), ε,
the aspect ration of the system, is h/(2L) and, finally, λ1 = λ2, the ratio of
a reference electrostatic force to a reference elastic force, is:

(7) λ1 = λ2 =
ε0V

2(2L)2

2h3σ
= βV 2

where, for each material the usual order of amplitude for each factor, we
can write:

(8) β =
ε0(2L)2

2h3σ

represents the parameter which takes into account the electro-mechanical
properties of the membrane material. It is worth observing that, in dimen-
sionless conditions, β, taking into account (5), assumes the following new
formulation:

(9) β1 =
ε0
2σ

> 1012

However, if we assume, as it is in the MEMS technology, that both thickness
and width of the device are negligible with respect to the length 2L, (6)
assumes, as we see below, a greatly simplified form that, for many MEMS
applications, is considered an excellent simplification. In particular, for ε→
0, the first equation of (6) assumes the form ∂2Φ

∂z2 = 0; if we solve the last one,
taking into account the boundary conditions, we obtain the approximation
of the potential Φ = z

w , from which, the second equation of (6) assumes the
non-linear form decoupled from the equation of the potential [28]:

(10) −∆⊥w + δ∆2
⊥w = − λ

2

w2
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hardly solvable except for sporadic cases characterized by simple geome-
tries. The MEMS model we propose to study is one in which the deformable
plate shown in Figure 1 is replaced by a deformable membrane anchored
along the edge of the lower face of a fixed plate. First, we note that the
fixed plate has the exclusive task of supporting the deformable membrane
for which, studying the deflection of the membrane due to the application
of the potential difference to the plates, it is not considered and, in addi-
tion (10) is still valid even in the case of the replacement of the elastic plate
by the membrane (obviously with different values of the parameters which
take into account the electro-mechanical properties of the membrane). How-
ever, the new techniques of production of membranes in industrial domain
allow for the exploitation of materials with flexural rigidity D negligible for
which (10) can be simplified by imposing δ = 0; therefore, in steady-state
deflection conditions, the problem associated to (10) assumes the following
semi-linear elliptic form:

(11)

{
d2w
dx2 = λ2

w2 in Ω

w(−1/2) = w(1/2) = 1.

From (11), by placing w = 1 + u, we obtain the following homogeneous
problem:

(12)

{
d2u
dx2 = λ2

(1+u)2 in Ω

u(−1/2) = u(1/2) = 0

that, reversing the orientation of z so that the membrane in the rest position
lies on z = 0, can be written as:

(13) P̃ :

{
d2u
dx2 = − λ2

(1−u)2 in Ω

u(−1/2) = u(1/2) = 0

that is the problem we are going to study. In addition, for simplicity, we
indicate by L1 = 1/2 the rescaled semi-length of the device (13) L1 = 1/2
[28].

3. The Proposed Approach

Starting from the equation associated with the problem P̃ , now we
present an innovative approach considering the magnitude of the electric
field E proportional to the curvature of the membrane, taking into account
that the electric field vector on the membrane is locally orthogonal to the
tangent to the membrane. Therefore, we consider the problem P̃ : in it λ2,
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taking into account thT (7) is proportional to the square of the electric

voltage, for which the term λ2

(1−u)2 is proportional to the square of the

magnitude of the electric field E. Therefore, P̃ is rewritable in the following
form:

(14)
˜̃
P :

{
−u′′ = β1E

2 in Ω = [−L1, L1]

u(−L1) = u(L1) = 0

where β1 is the coefficient of proportionality defined in (9) taking into ac-
count the electro-mechanical properties of the material constituting the
membrane. Since E2 in (14) represents the square of the electric field mag-
nitude and keeping in mind that, from the electrostatic point of view, the
lines of force of the electric field vector are orthogonal, point by point, to the
tangent of the membrane surface, we can express E as the product between
a coefficient of proportionality µ and the curvature K of the membrane de-
flection. This approach has also been tested on a well-known hemispherical
benchmark in literature [30] from which it was highlighted the dependence
of µ on both x and u(x); therefore:

(15) E(x) = µ(x, u(x), λ)K(x, u(x)).

In addition, since from the electrostatic point of view it is unacceptable the
condition for which the deflection of the membrane touches the upper plate
of the device (situation mathematically representable by a singularity), with
good reason, we can also think with reference to the previously studied
models, that:

(16) µ(x, u(x), λ) =
λ

1− u(x)

with µ(x, u(x)) ∈ C0(A), A = [−L,L] × [0, 1). To prevent the condition
of electric discharge in the dielectric material filling the region between the
two plates, it is necessary that the membrane is sufficiently distant from
the upper plate; we will put:

(17) µ(x, u(x), λ) =
λ

1− u(x)− d∗

with d∗critical distance equal to λ
εt

, with εt dielectric strength of the ma-
terial constituting the membrane, even when the deflection u assumes its
maximum deformation. Obviously, in the case of materials with ideal be-

haviour, εt tends to infinity so that you restore the model (13). Finally,
˜̃
P
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assumes the following form:
(18)

˜̃
P :


−u′′ = β1µ

2(x, u(x), λ)K2(x, u(x)) = β1λ
2 K2(x,u(x))

(1−u(x)−d∗)2 in Ω = (−L1, L1)

u(−L1) = u(L1) = 0

0 < u(x) < 1− d∗.

Since, in 1D regimes, the curvature K is expressed by

(19) K(x, u(x)) =
|u′′(x)|√

(1 + |u′(x)|2)3
,

from the new version of
˜̃
P we can write the associated equation:

(20) u′′(x) + β
µ2(x, u(x), λ)|u′′(x)|2

(1 + (u′(x))2)3
= 0.

From which, taking into account that u(x) > 0, we can have the two fol-
lowing cases:
- u′′(x) = 0 that is u′(x) = k with k arbitrary constant; in this case the
deflection of the membrane is linear, that is u(x) = kx+b. This condition is
unwrapped because from u′′(x) = 0 would follow E = 0, producing a linear
deflection of the membrane (physically impossible occurrence);
or:

(21)
(

1 + β1
µ2(x, u(x), λ)(u′′(x))

(1 + (u′(x))2)3

)
= 0

from which
˜̃
P , taking into account (17), becomes:

(22)
˜̃
P :


u′′(x) = − (1+(u′(x))2)3

β1µ2(x,u(x),λ)
in Ω = [−L1, L1]

u(−L1) = u(L1) = 0

0 < u(x) < 1− d∗.

4. General Formulation of the Problem

We can study
˜̃
P as a special case of the following general problem. Let

us consider Ω = (−L1, L1), u : Ω → R. We suppose, as it is well-known,
that u ∈ C2(Ω) is the solution of the following general Dirichlet’s problem:

(23) Problem I :


u′′(x) + f(x, u(x), u′(x)) = 0 in Ω

u(−L1) = u(L1) = 0

0 < u < α
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with f ∈ C0(Ω× R× R) and α = 1− d∗; assuming

(24) f(x, u(x), u′(x)) =
1

β1

(1 + (u′(x))2)3

µ2(x, u(x), λ)
,

P roblem I can be written as follows:
(25)

Problem I :


u′′ = − (1+(u′(x))2)3

β1µ2(x,u(x),λ)
= − 1

β1λ2 (1 + (u′(x))2)3(α− u(x))2 in Ω

u(−L1) = u(L1) = 0

0 < u < α

with u ∈ C2([−L1, L1]) (a), µ = µ(x, u(x), λ) ∈ C0([−L1, L1] × R) where
µ = λ

α−u(x) . Apparently Problem I, as formulated in (25), does not present

the singularity characterizing (13), or in our case when u = 1− d∗ in (18).
In this eventuality, from the equation associated to (25), we would get
u′′(x) = 0 that, as pointed out previously, would provide E = 0 producing
a linear deflection of the membrane (physically unacceptable condition).

5. A Result of Existence for Problem I

We start premising two definitions.

Definition 5.1. Let P be the functional space so defined:

(26) P = {C2
0 [−L1, L1] : 0 < u(x) < α, |u′(x)| < H}

Definition 5.2. Let P1 be the functional space defined as follows:

(27) P1 = {C1
0 [−L1, L1] : 0 < u(x) < α, |u′(x)| < H} b

It is well-know [31] that (23), by differentiation, can be transformed in the
following integral equation:

(28) u(x) =

∫ L1

−L1

G(x, s)f(s, u(s), u′(s))ds

with 0 < u < α and G(x, s) a suitable Green’s function.
It is also known that:

(29) u′(x) =

∫ L1

−L1

Gx(x, s)f(s, u(s), u′(s))ds

aas well-known, this assumption is physically plausible because membrane tears are
not allowed and slopes vary continuously.
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in particular, in our case, (25) is transformed in the following integral equa-
tion:

(30) u(x) =

∫ L1

−L1

G(x, s)
(1 + (u′(s))2)3

β1µ2(s, u(s), λ)
ds.

We can then prove the existence of the solution of the equation T (u) = w,
with u ∈ P1, exploiting the Schauder-Tychonoff fixed point theorem applied
to the operator w = T (u) from P to P . In fact, from (30), it is possible to
define the positive operator T as follows:

(31) T (u(x)) =

∫ L1

−L1

G(x, s)
(1 + (u′(s))2)3

β1µ2(s, u(s), λ)
ds

and from which:

(32) T ′(u(x)) =

∫ L1

−L1

Gx(x, s)
(1 + (u′(s))2)3

β1µ2(s, u(s), λ)
ds.

The Green’s function here exploited for our purposes is [31]:

(33) G(x, s) =

{
(s+L1)(L1−x)

2L1
−L1 ≤ s ≤ x

(L1−s)·(x+L1)
2L1

x ≤ s ≤ L1

from which we obtain:

(34) Gx(x, s) =

{
−(s+L1)

2L1
−L1 ≤ s ≤ x

(L1−s)
2L1

x ≤ s ≤ L1.

The following properties for G are particularly useful.

1. G(x, s) is a continuous and non-negative function;
2. G(x, s) has its maximum equal to L1/2 on the straight line x = s at
s = 0. So, we can write:

(35) 0 ≤ G(x, s) ≤ L1/2 ∀x, s ∈ [−L1, L1];

3. we can easily calculate its integral over [−L,L] as follows:

∫ L1

−L1

G(x, s)ds =
L1 − x

2L1

∫ x

−L1

(s+ L1)ds+
x+ L1

2L1

∫ L1

x
(L1 − s)ds =

(36)

=
(L1 − x)(x+ L1)

2
≤ L2

1

2
;
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4. we can calculate the integral of |Gx(x, s)| over [−L1, L1]:

(37)
∣∣∣ ∫ L1

−L1

Gx(x, s)ds
∣∣∣ ≤ ∫ L1

−L1

|Gx(x, s)|ds ≤ 2L1

2
= L1;

5. finally, ∀x, s ∈ ([−L1, L1]× [−L1, L1]):

(38) Gx(x, s) ≤ 1

2
.

In order to apply the Schauder-Tychonoff fixed-point theorem, we prove
the following result.

Theorem 5.1. Consider the operator T (u) defined by (31). It is an oper-
ator from P to P .

Proof. Taking into account the definition of the C2-norm, to prove that
T (u) ∈ C2

0 ([−L1, L1]), we must prove that:

||T (u(x))||C2[−L1,L1] =supx∈[−L1,L1]|T (u(x))|+ supx∈[−L1,L1]|T ′(u(x))|
+ supx∈[−L1,L1]|T ′′(u(x))| < +∞.(39)

Preliminarily, we observe that T (u(−L1)) = T (u(L1)) = 0 for construc-
tion of G(x, s) and one can easily verify that T (u) ≥ 0. We observe that,
from the formulation of Problem I, and particularly from (17), we can infer
that µ(x, u(x)) > 1 in [−L1, L1]. Such condition is physically confirmed by
the fact that E, to deform the membrane, must locally win the inertia of
deformation for which µ(x, u(x)), which represent the coefficient of propor-
tionality between E and curvature K, necessarily assumes values greater
than the unity. Then, depending on the material, to overcome the inter-
tia of the membrane, a minimum voltage λ > 0 must be applied so that
λ < λ < sup{λ} c ensuring that 1/λ2 < +∞. Then, taking into account

cObviously, sup{λ} is a bounded quantity depending on the kind of the device.
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also the (35), we can write:

0 ≤ |T (u(x))| ≤ supx∈[−L1,L1]|T (u(x))| =(40)

= supx∈[−L1,L1]

∣∣∣ ∫ L1

−L1

G(x, s)
(1 + (u′(s))2)3

β1µ2
ds
∣∣∣ =

≤ 1

β1λ2
supx∈[−L1,L1]

∣∣∣ ∫ x

−L1

(s+ L1)(L1 − x)

2L1
(1 + (u′(s))2)3(α− u(s))2ds

∣∣∣+
+

1

β1λ2
supx∈[−L1,L1]

∣∣∣ ∫ L

x

(L1 − s)(x+ L1)

2L1
(1 + (u′(s))2)3(α− u(s))2ds

∣∣∣ =

= α
1

β1λ2

{
supx∈[−L1,L1]

∣∣∣ ∫ x

−L1

(s+ L1)(L1 − x)

2L1
(1 + (u′(s))2)3ds+

+

∫ L1

x

(L1 − s)(x+ L1)

2L1
(1 + (u′(s))2)3ds

∣∣∣} ≤
≤ 4α

1

β1λ2
(1 +H6)supx∈[−L1,L1]

{∫ x

−L1

(s+ L1)(L1 − x)

2L1
ds+∫ L1

x

(L1 − s)(x+ L1)

2L1
ds
}
≤ 4α

1

β1λ2
(1 +H6)L2

1 < +∞.

In addition:

supx∈[−L1,L1]|T ′(u(x))| = supx∈[−L1,L1]

∣∣∣ ∫ L1

−L1

Gx(x, s)
(1 + (u′(s))2)3

β1µ2
ds
∣∣∣ =

(41)

=
1

β1λ2
supx∈[−L1,L1]

∣∣∣ ∫ x

−L1

−s+ L1

2L1
(1 + (u′(s))2)3(α− u(s))2ds+

+

∫ L1

x
−L1 − s

2L1
(1 + (u′(s))2)3(α− u(s))2ds

∣∣∣ <
≤ 4α

1

β1λ2
(1 +H6)supx∈[−L1,L1]

∣∣∣ ∫ x

−L1

−s+ L1

2L1
ds+

∫ L1

x

L1 − s
2L1

ds
∣∣∣ ≤

≤ 4α
1

β1λ2
(1 +H6)L1 < +∞.

Therefore, taking into account the (32), the (34), the (38), that |u′| ≤ H
and |1/µ2| < 1, we easily obtain:
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supx∈([−L1,L1])|T ′′(u(x))| =(42)

= supx∈([−L1,L1])

∣∣∣∣∣ ddx
∫ L1

−L1

Gx(x, s)
((1 + (u′(s))2)3

β1µ2

)
ds

∣∣∣∣∣ =

≤ 1

2β1λ2
supx∈([−L1,L1])

∣∣∣∣∣((1 + (u′(s))2)3

β1µ2

)∣∣∣∣∣+
+

1

2β1λ2
supx∈([−L1,L1])

∣∣∣∣∣((1 + (u′(s))2)3

β1µ2

)∣∣∣∣∣ ≤
≤
( 1

2β1
+

1

2β1

)(1 +H2)3

λ2
=

1

β1

(1 +H2)3

λ2
< +∞.

Substituting (40), (41) and (42) into (39), we can infer that:

||T (u(x))||C2([−L1,L1]) ≤ 4α
1

β1λ2
(1 +H6)L2

1+(43)

+4α
1

β1λ2
(1 +H6)L1 +

1

β1λ2
(1 +H2)3 < +∞.

Now we show that T (u) ∈ P . From (42), to obtain that T (u) ∈ P , we must
have 4α 1

β1λ2 (1 +H6)L2
1 < α, from which:

(44) 1 +H6 <
β1λ2

4L2
1

⇒ H <
6

√
β1λ2

4L2
1

− 1.

Therefore, having being true both (41) and (44), should be verified the
following system:

(45)

1 +H6 < Hβ1λ2

4αL1

1 +H6 < β1λ2

4L2
1
.

To compare the second members of (45) d, we suppose, by contradiction,

that β1λ2

4L2
1
< Hβ1λ2

4αL1
and from this we would get H > α

L1
= 2α. But, taking

into account the scaling factors (5) and the fact that H = z
x and H ′ = z′

x′ ,
we can write:

(46) H =
z

x
=
z′

h

2L

x′
= H ′

2L

h
> 2α.

d taking into account that the sixth degree inequalities do not allow resolution by
radicals
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But α = 1− d∗ that, in no-scaling conditions, becomes α = α′

h and taking

into account (46) we obtain H ′ > α′

L . Because L is the semi-length of the

wafer without scaling so, therefore, if L→ 0, α
′

L → +∞ and being α′ a pos-
itive limited coefficient, then H ′ = sup|u′| would be greater than a quantity
tending to +∞ inconsistently with the membership of u to C2([−L1, L1]).

So β1λ2

4L2
1
> Hβ1λ2

4αL1
holds from which (45) is equivalent to the only inequality:

(47) 1 +H6 <
Hβ1λ2

4αL1

which represents the condition guaranteeing that T (u) : P → P .

Theorem 5.2. Problem I admits at least one solution in P .

Proof. Considering the result obtained by the Theorem 5.1 and since the
compact immersion C2

0 [−L1, L1] ↪→ C1
0 [−L1, L1] holds and, again, the com-

pact immersion P1 ↪→ P holds, then, applying the Schauder-Tychonoff
fixed-point theorem, the problem u = T (w) admits at least a fixed point
u = T (u) in P1 that is there exists at least a solution for Problem I.

Observing (47) we can say that not only we have shown a condition of exis-
tence but we have highlighted that this condition depends on the properties
of the material constituting the membrane (presence of β).

6. On the uniqueness of the Solution for Problem I

Let us consider Problem I.

Theorem 6.1. ∀H > 0 the solution of the Problem I is unique. In addi-
tion, the following properties hold:

1) ∀x ∈ [−L, L], |u′(x)| ≤ |u′(L)| = |u′(−L)|;
2) u is symmetric with respect to the origin;
3) u ∈ C∞([−L,L]);
4) u is analytical.

We begin the proof showing 1). From the equation of Problem I, we infer
that, being u”(x) ≤ 0 in [−L,L] the solution u is concave over the same in-
terval and its first derivative is decreasing. In addition, the above mentioned
equation can be written as follows:

(48)
u”(x)

[1 + (u′(x))2]3
= − 1

β1λ2
[1− d∗ − u(x)]2.
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Multiplying by u′ both member of (48), we obtain:

u”(x)u′(x)

[1 + (u′(x))2]3
= − 1

β1λ2
[1− d∗ − u(x)]2 u′(x) =(49)

= − 1

β1λ2
(1− d∗)2u′(x) +

1

β1λ2
(1− d∗) d

dx
[u(x)]2 − 1

3β1λ2

d

dx
[u(x)]3.

Because

(50)
u”(x)u′(x)

[1 + (u′(x))2]2
= − 1

4

d

dx

1

(1 + [u′(x)]2)2

by integration from −L to L, (49), we obtain

(51) − 1

4

1

(1 + [u′(L)]2)2
+

1

4

1

(1 + [u′(−L)]2)2
= 0,

from which |u′(−L)| = |u′(L)|. Moreover, by integration of (49) from −L to
t, taking into account that u(−L) = 0 and that ∀t ∈ [−L,L] we can write:

− 1

4

1

(1 + [u′(t)]2)2
+

1

4

1

(1 + [u′(−L)]2)2
=(52)

= − 1

β1λ2
(1− d∗)2u(t) +

1

β1λ2
(1− d∗)[u(t)]2 − 1

3β1λ2
[u(t)]3,

and then ∀t ∈ [−L,L]

− 1

β1λ2
(1− d∗)2u(t) +

1

β1λ2
(1− d∗)[u(t)]2 − 1

3β1λ2
[u(t)]3 =

=
1

β1λ2
u(t)

{
(1− d∗)[u(t)− (1− d∗)]− 1

3
[u(t)]2

}
< 0;

we deduce that:

(53) − 1

4

1

(1 + [u′(t)]2)3
+

1

4

1

(1 + [u′(−L)]2)3
< 0,

therefore, ∀t ∈ [−L,L], |u′(t)| < |u′(−L)|. Now we prove that Problem
I has got only one solution (e). Let us suppose, by contradiction, that
Problem I admits two different solutions u1, u2 ∈ P1. From the equation

efor each H (that is for each material constituting the membrane) for which the
existence of the solution is verified.
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associated to the Problem I, by integration from −L to t, we obtain, ∀t ∈
[−L,L]

u′1(t) ≤ H − 1

β1λ2

∫ t

−L
[1 + (u′1(x))2]3[1− d∗ − u1(x)]2, dx,(54)

u′2(t) ≤ H − 1

β1λ2

∫ t

−L
[1 + (u′2(x))2]3[1− d∗ − u2(x)]2dx,

and, subtracting on both members, ∀t ∈ [−L,L]

u′1(t)− u′2(t) =
1

β1λ2

∫ t

−L
{[1 + (u′2(x))2]3[1− d∗ − u2(x)]2−(55)

[1 + (u′1(x))2]3[1− d∗ − u1(x)]2}dx.

In order to evaluate the term inside the integral, let us consider the following
functions:

F (w, v) = [1 + w2]3(1− d∗ − v)2,(56)

g(t) = F (tw1 + (1− t)w2, tv1 + (1− t)v2) = F (wt, vt);

we observe that

g′(t) =
∂F (wt, vt)

∂w
(w1 − w2) +

∂F (wt, vt)

∂v
(v1 − v2);(57)

g(1) = F (w1, v1), g(0) = F (w2, v2), g(1)− g(0) = g′(ξ), ξ ∈ (0, 1),

but

∂F (wξ, vξ)

∂w
= 6[1 + w2

ξ ]
2wξ(1− d∗ − vξ)2 =(58)

= 6{1 + [ξw1 + (1− ξ)w2]2}2[ξw1 + (1− ξ)w2](1− d∗ − vξ)2 ≤
≤ 6{ξ[1 + w2

1]2 + (1− ξ)[1 + w2
2]2}[ξw1 + (1− ξ)w2](1− d∗ − vξ)2.

Because w1 ≤ H, w2 ≤ H, vξ ≤ 1, it results that:

(59)

∣∣∣∣∂F (wξ, vξ)

∂w

∣∣∣∣ ≤ 24(1 +H2)2H

and ∣∣∣∣∂F (wξ, vξ)

∂v

∣∣∣∣ = | − 2[1 + (wξ)
2]3(1− d∗ − vξ)| ≤

≤ 2|ξ(1 + w2
1)3 + (1− ξ)(1 + w2

2)3| ≤ 4(1 +H2)3.
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Taking into account the last inequality, by (55) and exploiting the
Poincaré’s inequality, ∀t ∈ [−L,L]

|u′1(t)− u′2(t)| ≤ 24

β1λ2
(1 +H2)2H

∫ t

−L
|u′1(x)− u′2(x)|dx+(60)

+
4

β1λ2
(1 +H2)3

∫ t

−L
|u1(x)− u2(x)|dx ≤

≤ 24

β1λ2
(1 +H2)2H

∫ t

−L
|u′1(x)− u′2(x)|dx+

+
8L

β1λ2
(1 +H2)3

∫ t

−L
|u′1(x)− u′2(x)| dx ≤

≤ c(H,L, λ, β1)

∫ t

−L
|u′1(x)− u′2(x)| dx.

Then |u′1(t) − u′2(t)| ≤ c(H,L, λ, β1)
∫ t
−L |u

′
1(x) − u′2(x)|dx from which, by

Gronwall’s lemma, we have, ∀t ∈ [−L,L], |u′1(t) − u′2(t)| ≤ 0. Then, ∀t ∈
[−L,L]: u′1(t) − u′2(t) = 0, that is u1 − u2 = constant, and taking into
account that u1(−L) = u2(−L) = u1(L) = u2(L) = 0, we have u1 = u2.
Now we prove 2).
Let us consider u as a solution of the Problem I. Setting v(t) = u(−t),
∀t ∈ [−L,L], we have that also v is a solution of the this problem f and
then , considering the uniqueness above proved, v(t) = u(t), ∀t ∈ [−L,L],
so that u(t) = u(−t) over [−L,L].
Now we prove 3).
Taking into account that u belongs to the class C2,the second member of the
equation belongs to the class C1 and than u ∈ C3([−L,L]). By induction,
we obtain that u ∈ C∞([−L,L]).
In addition, it is easy to prove that u is an analytical function.

7. Some Numerical Tests

In this paragraph,we numerically verify that system (45) admits a so-
lution compatible with the analytical results. The reduction of system (45)
to the inequality (47) is confirmed by both simple remarks on the orders
of amplitude of the involved quantities and numerical tests. In fact, owing
L1 = 1/2 and setting λ = 1, from (44) H is lower than a quantity whose

f In fact: v′(t) = −u′(−t), v”(t) = u”(−t), substituting in the equation u”(−t) =

− [1+(u′(−t))2]3

β1λ2
(1−d∗−u(−t). and, in addition, as above mentioned, v′(−L) = −u′(L) =

u′(−L) ≤ H
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order of amplitude is at least 102, then:

(61)

1 +H6 < Hβ1λ2

4αL1
< 1021012λ2

2α

1 +H6 < β1λ2

4L2
1
< 1012λ2

and, taking into accont that α < 1, β1λ2

4L2
1
< Hβ1λ2

4αL1
so that (45) is equivalent

to (47). In addition, we rewrite (61) as:

(62)

{
H1012λ2

2α −H6 − 1 > 0

1012λ2(1− d∗)−H6 − 1 > 0

and set f1(H) = H1012λ2

2α − H6 − 1 (continuous function). If, for

example, λ2 = 1 and because f1(200) > 0 and f1(230) < 0
(Fig. 2), in [200, 230], the existence of zeros theorem is applicable.
This zero represents the sup of the set of the value of H that ver-
ifies the first inequality of (62) (that is the first inequality of (45)).

50 100 150 200 250
−4

−2

0

2

4

6

8

x 10
13

f 1
, 

f 2

H

WELL−POSED PROBLEM

ILL−POSED PROBLEM

f
1

f
2

Figure 2. Plot of both f1(H) and
f2(H) carried out by (62)

Therefore, applying the Newton-Raphson
procedure g (tolerance equal to 0.0001)
we carry out f1(H) = 0 on H = 223.
Analogously, for the other inequality
of (62) (Fig. 2), referred to interval
[20, 140], with the same tolerance and
d∗ = 0, and defining f2(H) = 102λ2 −
H6 − 1 we obtain f2(H) = 0 when
H = 99. So, to guarantee the existence
of the solution of the problem, it is nec-
essary that sup|H| = 99 corresponding
to 88.92o in dimensionless conditions.
This result is comparable with the con-
dition carried out analytically by (44).
Finally, as shown in Fig. 2, when λ2 in-
creases (towards the arrows), the bigger
is sup|H| as higher λ2 is.
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git is possible because f ′1(H) 6= 0 in [200, 230].

182



Electrostatic field in terms of geometric curvature in membrane MEMS devices

REFERENCES

1. H.C. Nathanson and W.E. Newell and R.A. Wickstrom and J.R. Lewis,
The Resonant Gate Transistor, IEEE Transaction on Electron Devices,
vol. 14, pp. 117–133, 1964.

2. M. Huja and M. Husak, Thermal Microactuators for Optical Purpose,
Coding and Computing, pp. 137–142, 2001.

3. X. Yang and Y.C. Tai and C.M. Ho, Micro Bellow Actuators, Trans-
ducers’97, pp. 45–48, 1997.

4. S. Bhansali and A.L. Zhang and R.B. Zmood and P. Jones and D.K.
Sood, Prototype Feedback Controlled Bi-Directional Actuation System
for MEMS Application, Journal Microeletromechanic Systems, vol. 9,
pp. 245–251, 2000.

5. A. Ludwig and E. Quandt, Giant Magnetostrictive Thin Films for
Application in Microelectromechanical Systems, Journal of Applied
Physics, vol. 87, pp. 4691–4695, 2000.

6. M. Elwenspoek and R. Wiegerink, Micromechanical Sensors. 2001.

7. S.D. Senturia, Microsystem Design. Kluwer Academic Publisher, 2001.

8. E. Schaffer and T Thurn-Albrecht and T.P. Russell and U. Steiner,
Electrically Induced Structure Formation and Pattern Transfer, Nature,
vol. 403, pp. 518–524, 2001.

9. D. Bernstein and P. Guidotti and J. Pelesko, Analytical and Numerical
Analysis of Electrostatically Actuated MEMS Devices, in Proceedings
of MSM 2000, pp. 489–492, 2000.

10. J.A. Pelesko and X.Y. Chen, Electrostatic Deflections of Circular Elastic
Membranes, Journal of Electrostatics, vol. 57, no. 1, pp. 1–12, 2003.

11. M.O. Hasse and M.A. Hawwa and H.M.Alqahtani, Modeling the Elec-
trostatic Deflection of a MEMS Multilayers Based Actuator, Mathemat-
ical Problems in Engineering, vol. 2013, 2013.

12. AA.VV., MEMS for Biomedical Application. Elsevier, 2012.

13. A. Folch, Introduction to Bio-MEMS. Boca Raton, 2013.

14. P. Das Payel and M. Kanoria, Magneto-Thermo-Elastic Waves in an
Infinite Perfectly Conducting Elastic Solid with Energy Dissipation, Ap-
plied Mathematics and Mechanics, vol. 30, no. 2, pp. 221–228, 2009.

15. P. Di Barba and A. Lorenzi, A Magneto-Thermo-Elastic Identification
Problem with a Moving Boundary in a Micro-Device, Milan Journal of
Mathematics, vol. 81, no. 2, pp. 347–383, 2013.

16. R. Selvamani and P. Pommusamy, Wave Propagation in a Transversely
Isotropic Magneto-Electro-Elastic Solid Bar Immersed in an Inviscid
Fluid, Journal of the Egyptian Mathematical Society, vol. 24, pp. 92–
99, 2016.

183



P. DI BARBA, L. FATTORUSSO, M. VERSACI

17. P. Di Barba and S. Wiak, Evolutionary Computing and Optimal Design
of MEMS, IEEE Trans Mechatronics, vol. 20, no. 4, pp. 1660–1667,
2015.

18. P. Di Barba and M.E. Mognaschi and P. Venini and S. Wiak,
Biogeography-Inspired Multiobjective Optimisation for Helping MEMS
Synthesis, Archives of Electrical Engineering, in press.

19. D. Cassani and L. Fattorusso and A. Tarsia, Nonlocal Singular Problems
and Application to MEMS, in Proceedings of WCE 201, 2013.

20. D. Cassani and L. Fattorusso and A. Tarsia, Nonlocal Dynamic Prob-
lems with Singular Nonlinearities and Application to MEMS, Progress
in Nonlinear Differential Equations and their Applications, vol. 85,
pp. 185–206, 2014.

21. D. Cassani and A. Tarsia, Periodic Solutions to Nonlocal MEMS Equa-
tions, Discrete and Continuousd Dynamical Systems - Serie S, vol. 9,
no. 3, pp. 631–642, 2016.

22. S.E. Lyshevski, MEMS and NEMS: Systems, Devices and Structures.
Boca Raton, 2002.

23. D. Cassani and M. d’O and N. Ghoussoub, On a Fourth Order El-
liptic Problem with a Singular Nonlinearity, Nonlinear Studies, vol. 9,
pp. 189–209, 2009.

24. D. Cassani and B. Kaltenbacher and A. Lorenzi, Direct and Inverse
Problem Related to MEMS, Inverse Problems, vol. 25, 2009.

25. C. Cowan and P. Esposito and N. Ghoussoub and Mordifam, The Crit-
ical Dimension for a Fourth Order Elliptic Problem with Singular Non-
linearity, Arch. Ration. Mech. Anal., vol. 198, pp. 763–787, 2010.

26. C. Cowan and P. Esposito and N. Ghoussoub, Regularity of Extremal
Solutions in Fourth Order Nonlinear Eigenvalue Problems on General
Domains, Discrete and Continuous Dynamical Systems, vol. 28, no. 2,
pp. 1–19, 2010.

27. P. Laurencot and C. Walker, A Stationary Free Boundary Problem Mod-
eling Electrostatic MEMS, Arch. Ration. Mech. Anal., vol. 207, no. 1,
pp. 139–158, 2013.

28. J.A. Pelesko and D.H. Bernstein, Modeling MEMS and NEMS. Chap-
man & Hall, 2003.

29. J.D. Jackson, Classical Electrodynamics. John Wiley, 1975.

30. G. Barozzi and F. Gasparini, Fondamenti di Elettrotecnica: Elettromag-
netismo. UTET, 1989.

31. P.B. Bayley and L.F. Shampine and P.E. Waltmman, Nonlinear Two
Point Boundary Value Problems. Academic Press, 1968.

184


