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Abstract

The paper deals with the meaning of non-equilibrium temperatures in nanosystems

with an internal variable, describing defects inside them, and implications on heat trans-

port. In equilibrium all definitions of temperature lead to the same value, but in nonequi-

librium steady states they lead to different values, giving information on different degrees

of freedom. We discuss the caloric and entropic non-equilibrium temperatures and the

relations among them, in defective nanosystems (crystals with dislocations or porous

channels, carbon nanotubes in a solid matrix and so on), crossed by an external energy

flux. Here, we present a model for nanocrystals with dislocation defects submitted to an

external energy flux. The dislocations may have a strong influence on the effective thermal

conductivity, and their own dynamics may be coupled in relevant way to the heat flux

dynamics. In the linear case the constitutive relations, the rate equations for the internal

variable and the heat flux are worked out and a generalized telegraphic heat equation is

derived in the anisotropic and isotropic case, describing the thermal disturbances with

finite velocity.

Keywords: Non-equilibrium Thermodynamics, internal variables, defects of

dislocation, nanosystems

AMS subject classification: 80A20, 74A20

1. Introduction.

The meaning of temperature in nanosystems is an open problem because
of two main reasons: their small size, which makes that the system exhibits
large fluctuations in contrast to macroscopic systems, and the strong gra-
dients caused by relatively small temperature differences, which make that
the system may be far from local equilibrium. This makes that the meaning
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of temperature, as well as its role on heat transport, is a relevant topic in
nanosystems. On the other side, internal variables may also play an impor-
tant role in the internal energy and the heat conductivity of the system,
which may depend on the internal variables. For instance, the thermal con-
ductivity may depend on the defects or the pores of the material. This
dependence influences the heat flux across the system but, reciprocally, the
heat flux may modify, in some occasions, the dynamics of the defects or the
pores, in such a way that the problem of heat transport may be a strongly
coupled in such systems. This may be especially important when the de-
fects or the pores are very small, of the order of the mean free path of the
heat carriers in the system (as, for instance, the phonon mean free path
in crystals). A relatively high temperature gradient could produce, for in-
stance, a migration of defects inside the system. In this paper, we propose
an analysis of heat transport in a system with dislocations, which will act
as defects on the thermal conductivity. We analyze their possible role on
the internal energy and the entropy and, thus, on the temperature based on
internal energy (caloric temperature) and on the entropy (entropic temper-
ature). For instance, if the heat flux is very high, the effective temperature
of the internal variables could be different than that of the global system,
thus modifying the usual relations between heat transport and temperature
gradients.

In Section 2 of this paper we introduce the equilibrium temperature
versus non-equilibrium temperatures (see [1], [2], [3], [4], [5], [6], [7] and [8]
for applications on this subject).

In Sections 3 and 4, in the framework of extended irreversible thermody-
namics with internal variables (see [7], [8], [9] and [10]), a model, developed
by the author, is presented for defective nanosystems (crystals with dis-
locations or porous channels, carbon nanotubes in a solid matrix and so
on) [11], [12], [13] and [14], submitted to an external energy flux, where
the internal structure is described by a dislocation tensor à la Maruszewski
(see [15] and [16]) and its gradient.

In Section 5 we discuss the caloric and entropic non-equilibrium tem-
peratures, and the relations among them, in these systems.

Finally in Section 6, as new results, in the linear case, the constitutive
relations, the rate equations for the internal variable and the heat flux are
worked out, and a generalized telegraphic heat equation (in presence of a
dislocation field), with finite velocity for the thermal disturbances, is derived
in the anisotropic and isotropic case (see [17], [18] and [19] for studies on the
heat conduction in nanosystems in extended thermodynamics). This study
has a technological interest in very miniaturized systems (nanotechnology),
in high-frequency processes or in the production of new materials with

82



Non-equilibrium temperatures and heat transport in nanosystems

sophisticated microstructures and particular thermal properties.

2. Modeling defective nanosystems in the framework of extended
thermodynamics

In this section we discuss about the limits of validity to model defective
nanosystems in the framework of extended thermodynamics (see [9] and [10]).

In fact, in classical irreversible thermodynamics it is assumed the local equi-
librium hypothesis, implying that all the variables defined in equilibrium thermo-
dynamics remain significant, and the system under consideration can be mentally
split into thermodynamic cells sufficiently large to allow them to be treated as
macroscopic thermodynamic subsystems, but sufficiently small so that each cell
is in thermodynamic equilibrium. In each cell all the variables (like temperature
and entropy) remain uniform but they take different values from cell to cell, they
are also allowed to change in the course of time in such a way that they depend
continuously on the space and time coordinates. The relationships in equilibrium
thermodynamics among state variables remain valid outside equilibrium provided
that they are stated locally at each instant of time. The entropy outside equilibrium
will depend on the same state variables as at equilibrium. Then, thermodynamic
potentials and, consequently, the equations of state of the system, keep their usual
equilibrium form but at a local level, namely, for sufficiently small volume elements.
The size d of these volumes should be bigger than the average distance, traveled
for instance by the heat carriers between two successive collisions, defined mean
free path l (d > l). Furthermore, from the point of view of the temporal behavior,
because these small volume elements have a characteristic time (called relaxation
time), let us say τ , to reach internal equilibrium, it is supposed that inside them
the rate of variation of the studied properties is slower than their relaxation time.

In extended thermodynamics we study the behavior of nanosystems [10], where
we have situations of high-frequency thermal waves. Inside the volume elements
the rate of variation of the physical properties is faster than the time scale charac-
terizing the relaxation of the fluxes towards their respective local-equilibrium value
and the perturbations are so fast that their frequency becomes of the order of the
reciprocal of the internal relaxation time, given, for instance, by the collision time
of heat carriers. Furthermore, the volume element size of these systems along some
direction is so small that it becomes comparable to (or smaller than) the mean-free
path of the heat carriers (d ≤ l). Thus, both situations have a clear physical mean-
ing and, nowadays, a technological interest. Then, in extended thermodynamics it
is essential to incorporates the fluxes among the state variables of the system and
to establish the spatial rate of variation of the intensive thermodynamic variables
in a given non-equilibrium steady state. Such states are the natural generalization
of equilibrium states: in them the values of the variables do not depend on time
but, in contrast to equilibrium states, a continuous flux of energy - or matter, or
momentum, or charge - must be supplied or extracted from the system to keep the
inhomogeneous distribution of the values independent on time.

Also, it is interesting, when we consider a system submitted to a heat flow,
to define the characteristic residence time tres of the energy in a volume element
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of the system (see [10]), i.e. the average time during which the energy supplied to
this volume element of the system will stay in it before leaving it, that is of the
order of U/Aq, U being the internal energy and Aq the total heat flux supplied to
this material volume element (and leaving the system) per unit time, with A the
transverse area through which the heat flux is arriving. Then, in the fast-varying
states but also in steady states, if the heat flux is high enough, the energy residence
time will be of the order, or even shorter, than the relaxation time τ , tres ≤ τ ,
in such a way that the energy entering into the material volume element will not
have time enough to distribute itself among the several degrees of freedom of the
element before leaving it. In local equilibrium hypothesis tres is longer than τ ,
tres > τ .

Thus, in local equilibrium hypothesis for a rigid body, we can use Fourier law
for the heat flow propagation, that leads to a parabolic equation describing a diffu-
sive propagation of thermal disturbances with infinite velocity (see [20] and [21]).
In extended irreversible thermodynamics Vernotte-Cattaneo equation removes this
paradox introducing the relaxation time of the heat flux, leading to the telegraphic
heat conduction equation, that allows a thermal propagation with finite speed.

3. Equilibrium temperatures versus non-equilibrium tempera-
tures

There are different definitions of temperature: thermometric, caloric, entropic,
kinetic, vibrational, configurational, fluctuational, and so on (see [1], [2], [3], [4], [5],
[6], [7] and [8] ). In this section we introduce the definitions of caloric, entropic and
thermometric temperature and we compare them in equilibrium thermodynamics
and in non-equilibrium thermodynamics in steady states.

In fact, equilibrium thermodynamics is restricted to equilibrium states. Non-
equilibrium steady states are different than equilibrium states because in them the
material system is crossed by fluxes of energy, matter, electric current and so on.
Thus, it is interesting to investigate the influence of such fluxes on the thermody-
namics of the system. The presence of fluxes is related to inhomogeneities in the
system: presence of a gradient of temperature, concentration, electrical potential
or barycentric velocity.

The equilibrium and non-equilibrium entropic temperatures θeq and θneq, ap-
pearing in Gibbs equation, are defined by the second law of thermodynamics as
follows

(1) θ−1
eq ≡

(
∂Seq
∂u

)
q̃=0

; θ−1
neq ≡

(
∂S

∂u

)
q̃ 6=0

,

where Seq is the entropy density per unit mass in the local equilibrium hypothe-
sis, introduced in equilibrium thermodynamics, where each thermodynamic state
is an equilibrium state, S is the non-equilibrium entropy density per unit mass,
constitutive function of the independent variables belonging to a thermodynamic
state space, characterizing the version of non-equilibrium thermodynamic theory,
used for the description of the system under consideration (in our case extended
irreversible thermodynamics), and q̃ is a given external energy flux, to which the
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system is submitted. In an equilibrium thermodynamic state the internal produc-
tion of entropy vanishes, all the fluxes, the sources of energy, matter, force, and so
on, are null, the barycentric velocity of the volume element of a system is constant
or vanishing, the spatial gradient and the time derivative of fields present inside
the body are null.

The equilibrium and the non-equilibrium caloric temperatures Teq and Tneq are
based on the first law of thermodynamics and they are called caloric because they
use the so-called caloric equation of state relating internal energy and temperature,
obtained from the internal energy of the different degrees of freedom.

Out of equilibrium, energy equipartition is not valid in general; this is a con-
sequence of the fact that the distribution function has no longer the canonical
distribution form, namely exp−βH , with H the Hamiltonian operator and β the
reciprocal of absolute temperature, β = 1/kBT, in classical systems. Thus, the
average energy of the several different degrees of freedom is different from that they
would have in equilibrium, for a given internal energy of the system. This means,
for instance, that if in an ideal gas kBT = (2/3)U = (1/3)Nmv2, with N the
number of particles, m the mass of a particle, and v the speed of a particle, the
temperatures defined from the average kinetic energy along the different axes x, y
and z will not be necessarily equal. It follows from here that the empirical temper-
ature will depend on the spatial direction of the thermometers (for instance, from
their relative direction with respect to a heat flux in the system). It also follows
that for a given internal energy, the entropy of the system is expected to be lower
if the temperature along each direction is different that if the temperature was
the same; as a consequence, the relation between entropic temperature and caloric
temperature will be different from that in equilibrium.

The equilibrium empirical (thermometric) temperature θemp,eq is defined
by the zeroth law, which states the transitive character of thermal equilibrium.
This principle is not generally valid in non-equilibrium steady states. Indeed, as it
has been said, different thermometers sensitive to different degrees of freedom are
expected to indicate different temperatures. Therefore, the only possible general-
ization of zeroth principle (if any generalization is indeed possible) would be one
restricted to every different degree of freedom, namely, postulating that if systems
A and B are in mutual thermal equilibrium (no heat flows between them) being in
thermal contact through a given degree of freedom, and systems B and C are in
mutual thermal equilibrium being in thermal contact through the same degree of
freedom, then systems A and C will be in mutual thermal equilibrium if they are
in thermal contact through the same degree of freedom as in the above situations.
However, if A and B are in mutual thermal equilibrium through one degree of free-
dom, and B and C are in mutual thermal equilibrium through a different degree
of freedom, A and C will not be necessarily in mutual thermal equilibrium. As we
have commented, it is not logically necessary that any generalization of the zeroth
principle is valid out of equilibrium, neither in the case of restricting it to a given
degree of freedom. However, if this were indeed impossible to generalize the zeroth
principle to non-equilibrium steady states in the restrictive conditions mentioned
here, the use of any kind of thermometer would be useless. It seems however that
thermometers are still being used in non-equilibrium steady states, although with

85



L. Restuccia

some restrictive precautions. This indicates that postulating the validity of the
mentioned restriction version of the zeroth principle, though merely tentative, is
not completely unreasonable.

Then, in equilibrium thermodynamics different definitions of equilibrium
temperature lead to the same value θemp,eq = θeq = Teq.

Out of equilibrium, in presence of an external energy flux, these non-
equilibrium temperatures are different from each other θemp,neq 6= θneq 6= Tneq
(see [7]).

In this contribution, in the framework of extended irreversible thermodynam-
ics, we investigate the caloric and entropic non-equilibrium temperatures and the
relations among them in nanosystems with internal structure, described by a ten-
sorial internal variable (crystals with dislocations or porous channels, carbon nan-
otubes in a solid matrix and so on), when they are crossed by an external energy
flux.

4. Dislocation dynamics, energy flux and non-equilibrium ther-
modynamics

In this section we present a model, developed in the framework of extended
thermodynamics by the author in [11] (see also [12]), to describe a nanocrystal
with dislocations, and we suppose that it is submitted to an external energy flux
q̃. The following fields interact with each other inside the system: the thermal field,
described by the non-equilibrium absolute temperature θneq, its gradient θneq,i and
the heat flux qi; the elastic field described by the stress tensor σij and the small
strain tensor εij , defined as εij = 1

2 (ui,j +uj,i), with ui the components of the
displacement vector; the dislocation field modeled by a dislocation tensor aij and
its gradient aij,k, describing the non-local effects of these dislocation lines. In [11]
also the dislocation flux, describing the selfpropagation of dislocations because of
changed surrounding conditions that are favorable, was taken into consideration
also as internal variable, but here we neglect its influence.

The tensor aij , introduced by Maruszewski in [15], models the local structure
of dislocations lines, which form a network of very thin lines, having the same
geometrical structure of porous channels, disturbing the otherwise perfect period-
icity of the crystal lattice [16] (see Fig.1). Their existence should not be omitted
in the analysis of kinetic processes as diffusion of mass or charges, transport of
heat and so on. In Fig. 1 a representative elementary sphere volume Ω provides
a statistical representation of the properties of a structure of capillary channels,
Ω = Ωs + Ωch, with Ωs the solid-space and Ωch the channel-space. Furthermore,
we indicate by Γ the sphere central section area, with Γ = Γs + Γch, where Γch is
the channel-area of Γ and Γs the solid-area. The orientation of Γ in Ω is given by
the normal vector µ. The analysis is restricted to media which are homogeneous

with respect to the effective channel-volume fv, with fv = Ωch

Ω , constant in the
medium. To avoid confusion, all microscopic quantities are described with respect
to the ξi coordinate system, while macroscopic quantities are described with re-
spect to the xi coordinate system. Then, let α(ξ) be any scalar, spatial vector
or second order tensor quantity, describing a microscopic property of the flux of
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Figure 1. Characteristics of a local channel structure with (h̄ � R), h diameter of the
core and R size of the volume element (after [15])

some physical field, flowing through the channel-space Ωch, with respect to the ξi
coordinates. We assume that such quantity is zero in the solid-space Ωs and on
the solid-area Γs. In such a medium Maruszewski defines the so called dislocation
tensor, Rij , as follows [15] (see also [16])

(2) ᾱ(x)i = Rij(x,µ)
∗
αj (x,µ).

Eq. (2) gives a linear mapping between the bulk-volume average quantity ᾱ(x)

and the channel-area average of the same quantity
∗
α (x,µ), given by

(3) ᾱ(x) =
1

Ω

∫
Ωch

α(ξ)dΩ,
∗
α (x,µ) =

1

Γch

∫
Γ

α(ξ)dΓ,

where the quantities ᾱ(x) and
∗
α (x) describe at macroscopic level the same prop-

erty of the flux of the physical field under consideration. In [16] Kubik gives for a
structure with thin channels an interpretation of Rij , considering the flux of a
quantity ᾱ(x) on a bulk-volume as a superposition of three one-dimensional fluxes

(along three mutually perpendicular channels) having average values
∗
αi (x,µ) on

the orthogonal section areas of these channels. In [15] a new tensor, that refers Rij
to the surface Γ, is defined in the following way

Rij(x,µ) = Γaij(x,µ).

aij is called dislocation core tensor and its unit is m−2. The components of aij
form a kind of continuous representation of the number of dislocations which cross
the surface Γ. Investigations show that during many physical processes occurring
in a defective crystal the temporal evolution of the dislocation field is of great
importance (aij is also dependent on time). But, whereas the classical variables
as θ and εij may be measured and controlled at any moment of time, the internal
variable aij may be measured only by suitable methods and cannot be controlled
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with the same immediateness. They appear in the Gibbs equation like the classical
thermodynamical variables.

In our model we use the standard Cartesian tensor notation in a rectangu-
lar coordinate system and refer the motion of our material system to a current
configuration Kt. Then, the state variables are represented by the set

(4) C = {εij , θneq, θneq,i, aij , aij,k, qi} ,

where the presence of the heat flux permits to take into account thermal relaxation
in nanosystems, where the velocity of thermal disturbances is finite.

Thus, all the processes occurring in the considered body are governed by two
groups of laws. The first group concerns the following balance equations:
the continuity equation

(5) ρ̇+ ρvi,i = 0,

where ρ denotes the mass density, the superimposed dot denotes the material time
derivative and vi is the velocity field;
the momentum balance:

(6) ρv̇i − tji,j − fi = 0,

where fi is the body force and tij is the stress tensor (whose symmetry was demon-
strated in [11]);
the internal energy balance:

(7) ρU̇ − σij ε̇ij + qi,i + q̃i,i = 0,

where U is the internal energy density and q̃ is a given additional external heat
flux, to which the system is submitted.

The second group of laws deals with the evolution equation of the internal
variable (the dislocation core tensor) and the rate equation for the heat flux q ,
that, in field formulation, we may assume to have the form [22], [23], [24] and [25]

ȧij + Vijk,k = Aij(C) + Ãij(q̃),

(8) q̇i = Qi (C) + q̃i.

In (8)1 Vijk is the dislocation flux tensor, Aij(C) is the internal source of dislo-

cations due to the fields present in the system and Ãij(q̃) is the external source
connected with a given heat flux q̃ crossing the system. In (8)2 Qi (C) is the heat
flux internal source due to the fields inside the body, q̃ is the external source and
the flux tensor of q is not taken into consideration.

To be sure that the physical processes occurring in the considered body are
real, all the admissible solutions of the proposed evolution equations have to satisfy
the following entropy inequality

(9) ρṠ +∇ · Js − ρr

θ
≥ 0,
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with Js the entropy flux. The set of the constitutive functions are

(10) W = {σij , U,Aij , Qi, S, Jsi , πij ,Π
q
i } ,

(11) W = W̃(C),

where both C and W are evaluated at the same point and time, πij is the ther-
modynamic potential conjugate to aij and Πq

i is the thermodynamic potential
conjugate to qi. The ensemble of the balance equations, the evolution laws of the
internal variable and the heat flux and the constitutive laws, that we will derive
as new results in Section 6, describes the evolution of the nanosystem with dislo-
cations under consideration.

In [11] the entropy inequality was analyzed by Liu’s theorem [26] and among
the other results the laws of state, the affinities, the entropy flux and the form of
the free energy, defined by Legendre transformation F = U − θneqS, were given in
the form:
the laws of state

(12) ρ
∂F

∂εij
= σij

∂F

∂θneq
= −S, ∂F

∂aij,k
= 0,

∂F

∂θneq,i
= 0,

the affinities

(13) ρ
∂F

∂aij
≡ πij , ρ

∂F

∂qi
≡ Πq

i ,

and the free energy

(14) F = F (εij , θneq, aij , qi),

that is invariant under time reversal.

5. Non-equilibrium temperatures in a crystal with dislocations

In this section we discuss the entropic and caloric non-equilibrium tempera-
tures in defective nanosystems in non-equilibrium steady states, when they are
crossed by a given energy flux (see [7] and [8]).

The reciprocal non-equilibrium entropic temperature θ−1
neq can be expanded

around the reciprocal equilibrium temperature θ−1
eq obtaining the following result,

in first approximation and for given values of the other fields,

(15) θ−1
neq = θ−1

eq − θ−2
eq

∂θeq
∂aij

∆aij ,

with

(16) ∆aij = aij(q̃ 6= 0)− aij(q̃ = 0).
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Then, in the first approximation, the non-equilibrium temperature θneq will be
related to the equilibrium temperature as

θneq =
θeq

1− θ−1
eq

∂θeq
∂aij

∆aij
≈ Teq

(
1 + T−1

eq

(
∂Teq
∂aij

)
∆aij

)
=

(17) Teq +

(
∂Teq
∂aij

)
∆aij ,

where θeq = Teq and we have used the approximation (1−x)−1 ≈ 1+x, for x� 1.
To define the caloric temperature related to the internal variable aij (see [7]

and [8]), first, we consider the caloric equation of state at the equilibrium of the
system for given values of εkl and for vanishing values of the external flux q̃:

Udis = U (aij(Teq, εkl), Teq, εkl) ,

where we have taken into consideration that at equilibrium the internal variable
depends on the temperature and the stress tensor. Then, we define the caloric
non-equilibrium temperature field Tneq related to aij in a steady state, assuming
that out the equilibrium the internal energy has the same form as in equilibrium
in presence of q̃.

(18) Udis (aij(Tneq, εkl, q̃ = 0), Tneq, εkl) ≡ Udis (aij (Teq, εkl, q̃), Teq, εkl) .

Then, in the first approximation the non-equilibrium caloric temperature will be
related to equilibrium temperature by

Tneq = Teq +

(
∂Teq
∂Udis

)
∆Udis = Teq +

(
1

cdis

)
∆Udis =

(19) Teq +

(
∂Teq
∂Udis

)(
∂Udis
∂aij

)
∆aij ,

where cdis = ∂Udis

∂Teq
is the specific heat associated to the changes of the internal

energy of dislocation lines, per unit volume. It is seen that in this order of approx-
imation both non-equilibrium temperatures (entropic and caloric) coincide (see [7]
and [8]).

6. Constitutive theory and heat equation for defective nanosys-
tems: linear case

In this section, as new results, we derive the constitutive relations and the heat
equation for a nanosystem with dislocations (see [17], [18] and [19] for studies on
the heat conduction in nanosystems in extended thermodynamics). Then, let us
consider a reference state of the medium, with an arbitrary (but fixed) uniform
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temperature θ0. We also require that the reference state (indicated by the symbol
”0”) is a state of thermodynamic equilibrium. We choose the tensors εij , aij and
the heat flux vector qi so that they vanish in the reference state, and hence

(S)0 = S0, (σij)0 = 0, (πij)0 = 0, (Πq
i )0 = 0,

(20) for (θ)0 = θ0, (εij)0 = 0, (aij)0 = 0, (qi)0 = 0,

Thus, we expand the free energy around this equilibrium state. Denoting the de-
viations with respect to this state by

(21) θ̄neq = θneq−θ0, αij = aij− (aij)0, ε̄ij = εij− (εij)0, q̄i = qi− (qi)0,

the free energy F takes the form

F−F0 = −S0θneq+
1

2ρ
cijlmεijεlm−

λθij
ρ
θneqεij+

αaεijlm
ρ

εijαlm−
1

2

c

θ0
θ2
neq+

αaθij
ρ
αijθneq+

(22)
αaaijlm

2ρ
αijαlm +

1

2ρ
αqqij qiqj ,

where the order terms higher than the second one are neglected and the deviation
θ̄neq continues to be called θneq. In this equation the property that F is invariant
under time reversal has been used, so that no terms containing qi at first order
are present. Furthermore, c denotes the specific heat, cijlm is the elastic tensor,
λθij are the thermoelastic constants and the other quantities express the inter-
actions among the various fields present in the system. Moreover, the constant
phenomenological coefficients satisfy the following symmetry relations

(23) cijlm = clmij = cjilm = cijml = cjiml = cmlij = cmlji = clmji,

(24) λθij = λθji, αaεijlm = αaεlmji = αaεlmij = αaεjilm, αaaijlm = αaalmij ,

(25) αqqij = αqqji .

Finally, using the laws of state (12) and the definitions of affinities (13), from the
approximated expression for the free energy (22), the following expressions are
derived

(26) σij = cijlmεlm − λθijθneq + αaεijlmαlm,

(27) S = S0 +
λθij
ρ
εij +

c

θ0
θneq −

αaθij
ρ
αij ,
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(28) πij = αaεijlmεlm + αaθij θneq + αaaijlmαlm,

(29) Πq
i = αqqij qj .

Furthermore, from (8) we have the following linearized rate equations for the dis-
location tensor and the heat flux, where the constitutive functions Aij(C) and
Qi(C) have been constructed as linear objective polonomial expressions in terms
of the independent variables (see [27]),

(30) α̇ij = Vijk,k+β1
ijklεkl+β2

ijkθneq,k+β3
ijklαkl+β4

ijklmαkl,m+β5
ijkqk+ Ãij(q̃),

(31) q̇i = δ1
ijkεjk + δ2

ijθneq,j + δ3
ijkαjk + δ4

ijklαjk,l + δ5
ijqj + q̃i,

where βi(i = 1, 2, ..., 5) and δr(r = 1, 2, ..., 5) are assumed constant phenomeno-
logical tensors. The evolution equation for the internal variable (30) could be sim-
plified in the linearized form (see [7], [8])

(32)
dαij
dt
−D∇2αij = Aij,eq + νq̃iq̃j ,

where it is assumed for the dislocation flux the expression Vijk = −D ∂αij

∂xk
, with D

being a diffusion coefficient for dislocations, and the sources of dislocations reduce
to two contributions: an internal source Aij,eq, describing the net formation tensor
of dislocation lines in an equilibrium state, in the absence of an external energy
flux, and a source depending on the external given heat flux q̃i. The form of this
last contribution does not pretend to be especially realistic, but only to illustrate
that thermal stresses related to q̃iq̃j could influence the evolution of dislocation
lines. Equation (31) generalizes Vernotte-Cattaneo relation (see [21]), in presence
of a small deformation field, a dislocation field and its gradient, that allows finite
velocities for thermal disturbances. Denoting by τ a relaxation time associated to
the heat flux, it can take the form

(33) τ q̇i = −qi − χ1
ijθneq,j + χ2

ijkεjk + χ3
ijkαjk + χ4

ijklαjk,l + q̃i,

where we have indicated with χ1
ij the thermal conductivity tensor and with

χ2
ijk, χ

3
ijk, χ

4
ijkl the tensors connected with the influence of the deformation, dis-

location and dislocation gradient fields on the heat flux relaxation, respectively.
Now, we work out the heat conduction equation.
Introducing the free energy F = U−θneqS, considering the material derivative

of this expression

(34) ρθneqṠ = ρU̇ − ρSθ̇neq − ρḞ ,
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and taking into consideration the balance energy equation (7), we obtain

(35) ρ0θneqṠ = σij ε̇ij − qi,i − q̃i,i − ρ0θ̇neqS − ρ0Ḟ ,

where ρ is considered practically constant and denoted by ρ0.
From (35), calculating the material derivative of the free energy

F = F (εij , θneq, aij , qi), we have

ρ0θneqṠ = σij ε̇ij − qi,i − q̃i,i − ρ0θ̇neqS − ρ0
∂F

∂εij
ε̇ij−

(36) −ρ0
∂F

∂θ
θ̇neq − ρ0

∂F

∂aij
ȧij − ρ0

∂F

∂qi
q̇i.

Finally, using the laws of state and the definitions of the affinities, we derive

(37) ρθneqṠ = −qi,i − q̃i,i − πij ȧij −Πq
i q̇i.

Neglecting in equations (27) the influence of the strain deformation field and in
(33) the influence of the strain deformation field and the gradient of dislocation
field, we obtain the following constitutive equation for S and the following rate
equation for the heat flux

(38) S = S0 +
c

θ0
θneq −

αaθij
ρ
αij ,

(39) τ q̇i = −qi − χ1
ijθneq,j + χ3

ijkαjk + q̃i.

Equation (39) is a generalized Vernotte-Cattaneo equation, in presence of a dislo-
cation field and an external energy flux.

Then, we linearize equation (37) obtaining the heat conduction equation in
the form

(40) ρ0θ0Ṡ = −qi,i − q̃i,i, τρ0θ0S̈ = −τ(q̇i,i + ˙̃qi,i).

From (40)2, using (38), (39) and (40)1, we have

τρ0θ0(
c

θ0
θ̈neq −

αaθij
ρ0

α̈ij) = −ρ0θ0(
c

θ0
θ̇neq −

αaθij
ρ0

α̇ij)+

(41) +χ1
ijθneq,ji − χ3

ijkαjk,i,

where we have neglected the influence of the terms containing ˙̃qi,i and q̃i,i.
From (41) we obtain

(42) τ(
c

θ0
θ̈neq−

αaθij
ρ0

α̈ij)+(
c

θ0
θ̇neq−

αaθij
ρ0

α̇ij)−(ρ0θ0)−1(χ1
ijθneq,ji−χ3

ijkαjk,i) = 0
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Finally, introducing

ηij =
θ0α

aθ
ij

ρ0
, kij =

χ1
ij

ρ0
, χijk =

χ3
ijk

ρ0
,

we obtain a generalized telegraphic heat equation for anisotropic crystals in pres-
ence of defects of dislocation

(43) τ θ̈neq + θ̇neq −
ηij
c

(τα̈ij + α̇ij) =
kij
c
θneq,ji −

χijk
c
αjk,i,

where we suppose αij obeys the rate equation (32).
Now, if we consider the case of isotropic defective solids, having symmetry

properties, under orthogonal transformations, which are invariant with respect
to all the rotations and inversions of the frame of axes, for the Curie symmetry
principle we have:
i) the polar tensor of order two must have the form

ηij = ηδij , kij = kδij ,

with k the thermal conductivity,
ii) the polar tensor of order three vanishes

χijk = 0.

The heat equation becomes

(44) τ θ̈neq + θ̇neq −
η

c
(τα̈ii + α̇ii) =

k

c
θneq,ii,

leading to finite speeds of propagation of thermal disturbances. It is a generalized
telegraphic equation for isotropic defective nanosystems. In the case that the solid
is perfect (44) reduces to the telegrafic equation

τ θ̈neq + θ̇neq =
k

c
θneq,ii,

whose solution is well known.

Conclusions

In this paper we have considered a nanosystem with defects submitted to an
external energy flux. We have proposed a model in which the defects of dislocations
or porous channels are considered as an internal variable with its own dynamics.
This allows a richer description of the system than simply assuming the disloca-
tions as a static given parameter. This idea could be also used in simpler systems,
as for instance porous systems, where the pores are usually considered as a set
of fixed spheres inside the bulk of the body, but without a dynamics. The second
point in our model is that we have assumed that an additional heat flux (or an
energy flux, in general) may contribute to the dynamics of the defects. This could
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have interesting consequences on heat transfer. Indeed, the defects obviously have
an influence on the thermal conductivity. If the dynamics of the defects depends
on the heat flux, the latter one may have a static and a dynamic influence on
the thermal conductivity. In particular, if there is some sort of ”phonon drag”
of defects (i.e. if the heat flux was able to produce a slow drift on the defects)
this could open the way to a procedure for improving the so-called ”phononic”
devices, leading, for instance, to a negative differential heat conductivity, which is
necessary to get phononic transistors. This topic is being studied nowadays, and
we hope to report on the results in a near future. Another original point of this
paper is the detailed consideration of the constitutive equations for internal energy
and entropy, and getting, from them, a caloric temperature and an entropic tem-
perature, which are equal at equilibrium but may be different out of equilibrium.
The entropic temperature is related to heat transfer, and it may have influence on
the effective thermal conductivity, whereas the caloric temperature is related to
the energy content and, therefore, it may have an influence on the specific heat.
Careful attention to these aspects should be taken in the future.
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