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Abstract

The invasive capability is fundamental in determining the malignancy of a solid tumor. In particular, tumor invasion
fronts are characterized by different morphologies, which result both from cell-based processes (such as cell elasticity, adhesive
properties and motility) and from subcellular molecular dynamics (such as growth factor internalization, ECM protein
digestion and MMP secretion). Of particular relevance is the development of tumors with unstable fingered morphologies:
they are in fact more aggressive and hard to be treated than smoother ones as, even if their invasive depth is limited, they are
difficult to be surgically removed. The phenomenon of malignant fingering has been reproduced with several mathematical
approaches. In this respect, we here present a qualitative comparison between the results obtained by an individual cell-based
model (an extended version of the cellular Potts model) and by a measure-based theoretic method. In particular, we show
that in both cases a fundamental role in finger extension is played by intercellular adhesive forces and taxis-like migration.
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1. Introduction

Solid tumors are thought to arise from small nodes of cells that have undergone genetic mutations
and/or epigenetic alterations being therefore able to escape from DNA repair mechanisms and to cause
abnormal growth regulatory mechanisms [1,2]. Such primary malignant colonies undergo through a rela-
tively simple, avascular stage of growth, with nutrient and growth factor supply by diffusion from the local
microenvironment [3,4]. However, a further search of available quantities of critical substrates results in a
subsequent aggressive phase of tumor development, with the invasion of the surrounding tissue [5]. This
stage of the disease is characterized by the emergence of different morphologies at the front of the ma-
lignant mass, which result both from cell-based processes (such as cell elasticity, adhesive properties and
motility) and from subcellular molecular dynamics (such as growth factor internalization, ECM protein
digestion and MMP secretion). Such a morphological instability determines the invasive capacity, and
therefore the overall severity of the tumor. In this respect, many malignancies are characterized by the
phenomenon of fingering, i.e., the formation and extension of multicellular tongues from the tumor edge,
see Figure 1. In particular, malignant masses with an unstable fingered morphology are more aggressive
and hard to be treated than smoother ones: in fact, even if their invasive depth is typically limited, they
are difficult to be surgically removed. For instance, recent studies of photo-micrograph have shown that
the “ragged” surfaces of different tumors relate to an increased severity of the disease [6,7].

In this work, we indeed present two hybrid multiscale approaches, able to reproduce the fingering
process of bidimensional tumor masses: an individual cell-based model deriving from a suitable version
of the cellular Potts model (see for instance, [8–12]) and a theoretical framework based on the measure
theory. Although obvious differences in some underlying phenomenological assumptions, the proposed
approaches show a remarkable agreement in describing the phenomenon of interest and in pointing out
the critical role played in finger formation (and in the overall morphological instability of the disease) of
both cell-cell adhesion forces and taxis-like directional migration.
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Modeling of tumor finger extension

Figure 1. High-power photomicrographs of solid tumors with an unstable fingering morphology. Left panel: squamous cell
carcinoma invading the mucosa membrane in the oral cavity. Right panel: a lentiginous and junctional moderate melanocytic
dysplasia in the epidermis overlying the dermal component. At the bottom area of both images, it is possible to observe
aggressive fronts of the malignant cells feature tentacular or finger-like extensions, similar to those reproduced by the
presented computational approaches. Images courtesy of the Institute for Cancer Research and Treatment of Candiolo
(I.R.C.C.).

2. Cellular Potts model

We first present a multilevel modeling framework for reproducing tumor fingering, which is based on
the extensions of the Cellular Potts Model reviewed in [12]. In particular, the single malignant cells are
represented as physical discrete objects, that locally interact with each other and with the microenviron-
ment, whereas the biochemistry is incorporated with a macroscopic description of the evolution of ECM
proteins and tumor matrix metalloproteinasis (MMPs). In this respect, we can say that the extended
CPM is a hybrid-nested environment, as a discrete viewpoint is used to represent cell-scale elements,
while a continuous approximation is employed to describe the molecular level.

2.1. Model description

The invasion of the tumor mass is modeled at the mesoscopic level using an extended version of the
cellular Potts model, a grid-based stochastic approach, which realistically preserves the identity of single
malignant cells and describes their behavior and interactions with the environment in energetic terms and
constraints. The simulation domain is a two-dimensional regular lattice Ω ∈ R2, formed by identical closed
grid sites that, with an abuse of notation, will be identified by their center x ∈ R2. Each site is labeled
by an integer number, σ(x) ∈ N, that can be interpreted as a degenerate spin originally coming from
statistical physics [13,14]. As classically adopted in CPMs, a neighboring site of x is denoted by x′, while
its overall neighborhood by Ω

′
x, i.e., Ω

′
x = {x′ ∈ Ω : x′ is a neighbor of x}. Each tumor cell is identified

by Σσ and consists of a subdomain of contiguous sites with identical spin (i.e., Σσ = {x ∈ Ω : σ(x) = σ}
with σ = 1, ..., N(t), where N(t) is the total number of individuals at time t), and has an associated type
τ(Σσ) = C. The tumor mass resides in an extracellular matrix which, as classically done in these types of
model [12,15–17], is represented as a further special, generalized cell Σσ=0 of type τ = M : it is assumed to
be passive, isotropically distributed throughout the simulation domain, forming no large-scale structures,
as it is composed of a mixture of soluble components (among others, long carbohydrate polymers, and
non-proteoglycan polysaccharides) together with the water solvent.

The malignant cells move and behave to iteratively and stochastically reduce the free energy of the
overall system, given by an hamiltonian H, whose expression will be clarified below. The core algorithm
consists of elementary steps of a modified Metropolis method for Monte Carlo-Boltzmann dynamics
[11,18]. This approach is particularly suitable to implement the natural exploratory behavior of biological
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individuals. Procedurally, at each time step t, called Monte Carlo Step (MCS, the basic unit of time of
the model), a randomly selected lattice site xs (s for source) attempts to copy its spin, σ(xs), into one of
its unlike neighbors, xt ∈ Ω

′
xs

: xt /∈ Σσ(xs) (t for target) which is also randomly selected. In particular,
if τ(Σσ(xs)) = C (i.e., if σ(xs) = 1, ..., N(t)), the cell Σσ(xs) is protruding (i.e., extending its filopods
towards another cell or in the extracellular space). Otherwise, if τ(Σσ(xs)) = M (i.e., if σ(xs) = 0), the
cell Σσ(xt) is retracting. Each trial spin update is accepted with a Boltzmann-like probability function
P (σ(xs)→ σ(xt)):

(1) P (σ(xs)→ σ(xt))(t) = min

{
1 , exp

(
−∆H

TC

)}
,

where ∆H is the net difference of the hamiltonian due to the proposed change of domain configuration
and TC is a Boltzmann temperature, that measures the intrinsic cell motility. We here set a Boltzmann
temperature constant and common for all cells: however, it may be a distinct property of each malignant
individual, as it may be related to its biochemical state (for a detailed comment, see [12]).

For any given time t the free energy of the system, whose minimization drives its evolution, is:

(2) H(t) = Hshape(t) +Hadhesion(t) +Hhaptotaxis(t).

Hshape models the cell geometrical attributes, which are written as relative deformations in the following
form: (see [12] for a more detailed explanation):

Hshape(t) = Hsurface(t) +Hperimeter(t)

=
∑
Σσ

[
κC

(
sΣσ(t)− SC
sΣσ(t)

)2

+ νC

(
pΣσ(t)− PC
pΣσ(t)

)2
]
,(3)

which depend on their actual surface and perimeter, sΣσ(t) and pΣσ(t), as well as on the same quantities
in the relaxed state, SC and PC , which correspond instead to the mean measures of tumor cells in resting
conditions. κC and νC ∈ R+ are mechanical moduli in units of energy: in particular, κC refers to cell
surface changes, while νC relates to cell deformability/elasticity, i.e., the ease with which an individual
is able to remodel changing its perimeter. Assuming that the cells do not significantly grow during
invasion, the fluctuations of their volumes are kept negligible with κC � 1. Moreover, because tumor
cells are typically deformable, as they are able to significantly remodel to invade their surroundings more
efficiently, we set νC < 1.

Hadhesion, deriving from the Steinberg’s Differential Adhesion Hypothesis (DAH) [11,19], measures
the adhesive interactions between different cells or between a cell and Matrigel elements:

(4) Hadhesion(t) =
∑

x∈Σσ ,x′∈Σσ′

Jτ(Σσ(x)),τ(Σσ′(x′))
,

where x and x′ are two neighboring sites while Σσ and Σσ′ , where σ 6= σ′, two neighboring elements.
The coefficients Jτ(Σσ),τ(Σσ′ )

∈ R+ are binding forces per unit area and are obviously symmetric w.r.t.
the indices. In particular, JC,C represents the adhesive strength between the membranes of two nearby
tumor cells, a measure of the quantity of active and exposed cadherins. JC,M evaluates instead the
heterotypic adhesive bonds between the integrins on the cell surface and suitable ligands present in the
extracellular matrix. Since malignant cells have been demonstrated to have reduced cell-cell adhesiveness
but increased cell-ECM adhesiveness, due to a change in the relative expression of the corresponding
adhesive molecules [20], we set JC,M = 2 JC,C .

Hhaptotaxis reproduces the effect of cell preferential movement in the direction of zones with higher
concentration of extracellular matrix proteins (such as fibrin, vitronectin, and some of the collagen family)
and is implemented with a local linear-type relation:

(5) ∆Hhaptotaxis = µ [pt(xt, t)− pt(xs, t)] ,
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where xs and xt are, respectively, the source and the final lattice site randomly selected during a trial
update in a MCS, see (1). pt(x, t) = p(x, t) +

∑
x′∈Ω′x

p(x′, t), where x ∈ {xs,xt}, evaluates the local level
of ECM proteins sensed by the moving cell membrane site, as p(x, t) is their amount at site x (defined
in Equation (7)). Finally, µ ∈ R+ represents the local strength of haptotaxis. The term (5) is similar to
that used in [21] for the chemotactic processes in Dictyostelium Discoideum aggregation.

Malignant cells are also allowed to proliferate. In particular, the time between successive cell divisions
is assumed to have a stochastic distribution, which depends on the time interval from last mitotic process
(i.e., except for extremely rapidly dividing cells, whose likelihood of reentering the S phase is extremely
small, see [1]). We therefore define the present probability PΣσ for cell Σσ to undergo mitosis with the
following functional form, which resembles that used in similar approaches [17]:

(6) PΣσ(t) =


0, if (t− tΣσ) ≤ t0;

(t− tΣσ)2

1 + (t− tΣσ)2
, if (t− tΣσ) > t0.

tΣσ is the last time that cell Σσ underwent mitosis, while t0 is a dormant period during which cells are
prohibited to proliferate (i.e., it corresponds to the G1 phase, during which cells are metabolically active
and grow). Procedurally, the mechanism of cell division is implemented by dividing the proliferating
individual into two identical daughter cells with a halved area with respect to their parent: however, due
to the shape constraints in Equation (3), they will gradually “maturate” into full-size cells. We further
assume that both daughter cells evenly inherit all the parent’s biophysical properties. Finally, the newly
formed individuals are randomly placed around the parent cell center of mass. In particular, t0 is set equal
to 1300 MCS (i.e., ≈ 7 hours): since the mitotic rate varies greatly according to the specific tissue and
type of malignancy, this choice represents a compromise between very slow growing and very aggressive
tumor types.

The matrix substrate is assumed to initially contain saturating levels of soluble proteins, that can
naturally decay and be degraded by the metalloproteinases (MMPs) secreted by malignant cells. The
change in the local amount of ECM proteins is denoted by p(x, t) and described by:

(7)
∂p(x, t)

∂t
= −λpp(x, t)︸ ︷︷ ︸

decay

−χpp(x, t)m(x, t)︸ ︷︷ ︸
degradation

,

where we set λp � χp to indicate a much higher dissolution of ECM proteins due to the activity of cell
proteolytic enzymes than with respect to the physiological decay. The concentration of tumor-secreted
MMPs, indicated by m(x, t), is governed by:

(8)
∂m(x, t)

∂t
= Dm∇2m(x, t)︸ ︷︷ ︸

diffusion

−λmm(x, t)δτ(Σσ(x)),M︸ ︷︷ ︸
decay

+πmδτ(Σσ(x)),C︸ ︷︷ ︸
production

,

where λm is the decay rate in the ECM and Dm the diffusion coefficient, whose low value models the
fact that proteolysis is strongly localized in the regions close to the cell membrane, in agreement with
experimental evidence in [22]. Finally, πm is the constant production rate of degrading enzymes from
malignant cells (i.e., we suppose that initially there are not MMPs dissolved in the matrix).

The coupling between the reaction-diffusion equations for the microenvironmental variables and the
CPM discrete dynamics is achieved at the numerical level. Procedurally, the grid for the numerical solution
of each PDE is in fact matched with the CPM lattice and, at every time step, each computational module
is used as the initial condition for the others. In particular, the main lines of the computational algorithm
are: (i) the discrete CPM evolves through an MCS, following the standard Metropolis rule; (ii) the local
quantities of the chemical variables are computed, based on the new cell configuration (in particular,
after the spin flip, the target site, xt, is assigned the same concentrations of the microscopic variables as
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the moving source site, xs); (iii) the continuous equations of the fields are rederived, according to the new
distribution of the continuous variables themselves and to the new boundaries of the simulated discrete
objects, and solved using a finite element scheme, characterized by 30 diffusion time steps per MCS (this
temporal step is sufficiently small to guarantee numerical stability); (iv) the biophysical properties of
each discrete individual (determined by its Potts coefficients) are updated, given its new intracellular
state and the new configuration of the lattice; (v) the hamiltonian functional of the system is updated,
and the system is ready to evolve again.

Table 1. Parameter setting of the CPM simulations

Parameter Description Model Value

SC mean cell surface 200 [µm2]
PC mean cell perimeter 60 [µm]
TC cell motility 2.5
κC cell volume compressibility 5
νC cell elasticity 0.5
νN nucleus elasticity 10
JC,C cell-cell adhesive strength 5
JC,M cell-matrix adhesive strength 2.5
µ haptotaxis strength 5

λp on-rate constant of ECM protein decay 1.3 · 10−4 [s−1]

χp on-rate constant of ECM protein degradation 3 [h−1]
pext,0 initial extracellular level of ECM protein 4 [µM]

Dm diffusion constant of MMPs 5−4 [µm2s−1]

λm on-rate constant of MMP decay 2 · 10−3 [s−1]

πm on-rate constant of MMP production 5 · 10−3 [s−1]

2.2. Results

The simulation domain Ω represents a 1 mm-size section of tissue. One MCS is set to correspond to
20 sec: the overall simulations stop after 15000 MCS, so that they reproduce a time-lapse of nearly 4
days. The initial condition consists of a layer of tumor cells, which is consistent with a spatially extended
cancer mass invading from an epithelial cell lining down its basement membrane into the surrounding
stroma.

The proposed computational setting allows to capture finger formation and extension from the edge
of the tumor mass. As reproduced in Figure 2, the overall process consists of different phases: initially,
the more external malignant cells, due to the reduced importance of cell-cell adhesion w.r.t. cell-matrix
adhesion and to the haptotactic force, spread in the surrounding tissue as a front of little dissociated
islands. Such cell clusters go on increasing in size, due to cell proliferations, and then come in contact
with the main tumor mass by short and thick (4-5 cell-wide) fingers. The increased cellular density, in
turn, enforces cell-cell adhesive interactions, which balance the effect of the haptotaxis: the formed fingers
therefore do not break and stabilize. Finally, the emerged finger structures are able to elongate across
the extracellular matrix as a consequence of the simultaneous action of further cell divisions and of the
directional haptotactic movement.

We next characterize tumor patterns emerging for different strength of cell-cell adhesive interactions.
As briefly sketched in the previous section, the value of the parameter JC,C has a clear biological relevance
as, at the molecular level, it gives a measure of the expression and the engagement of cadherins. Indeed,
its variation is expected to have a substantial impact on the overall invasiveness and morphology of
the disease. At a lower value of the parameter (i.e., JC,C = 1 < JC,M , which means higher cell-cell
adhesiveness), the tumor remains compact, with also the external cells that clump along the front of
the mass, rather than invading significantly the surrounding tissue, see Figure 3 (right panel). This
phenomenology is due to the fact that cell-cell adhesive interactions are too strong to be overcome by the
other forces experienced by malignant individuals (i.e., haptotaxis and cell-matrix adhesion) and therefore
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Figure 2. Formation and extension of tumor fingers at the edge of a malignant layer.

stabilize tumor morphology. At a large enough values of JC,C (i.e., = 10), the tumor instead expands
and invades deeper: the external cells quickly lose contacts, dissociate, move from their original site and
start wandering in the close proximity, displaying an evident ability to scatter in the surrounding tissue.
A repulsion occurs also among individuals within the main body of the mass. The subsequent formation
of islands of free matrix within the the tumor, which are then only partially filled in again, increases
the overall bias toward invasion, as reproduced in Figure 3 (left panel). The dramatic downregulation of
cell-cell adhesiveness indeed induces a sort of mesenchymal transition able to overcome the physiological
control of the mechanism of contact-inhibition of cell locomotion.
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Figure 3. Resulting morphologies of the microinvasive tumor mass for different intercellular adhesive interactions (i.e.,
given by parameter JC,C).

3. Measure theoretic model

The measure theoretic-based framework for reproducing tumor fingering is based on the approach pre-
sented in [23,24]. The basic idea is that by representing cellular aggregates in terms of abstract measures it
is possible to choose only a posteriori the scale of representation of the system, i.e., miscroscopic/discrete
or macroscopic/continuous. This way, we are allowed to describe each cell population forming a tumor
mass at the most suitable scale, i.e., according to its specific biological phenotype. With respect to the
CPM presented in the previous Section, the measure-based mathematical environment is again hybrid but
no longer nested : continuous and discrete approaches in fact coexist, but they are employed to describe
different subsystems characteristic of cellular level, i.e., different cell clones.

3.1. Model description

We consider a biological system formed by P ≥ 1 cell populations, each of them with a finite and
constant number of individuals Np (i.e., in order to focus on cell motion, we are assuming that cells do not
undergo mitosis or apoptosis). The position at time t ≥ 0 of a generic representative cell of population
p, hereafter called test cell, is described by means of a random variable Xp,t, which takes values in the
measurable space (Rn,B(Rn)), with n = 1, 2, 3 for physical reasons. It means that, once an initial position
Xp,0 = x0 ∈ Rn is assigned, the mapping t 7→ Xp,t(x0) represents the trajectory of the cell placed in
x0 at the initial time t = 0. In order to reduce the complexity of the problem, we assume that the cells
belonging to each population are indistinguishable, i.e., if we switch the initial position of two cells of the
same population, the overall dynamics observed at future instants t > 0 is the same. Then, the total mass
of population p is represented by a Radon positive measure µp,t, that we assume to be defined on the
Borel σ-algebra B(Rn), i.e., for any measurable set E ∈ B(Rn), the value µp,t(E) ≥ 0 measures therefore
the mass of cells located in E at time t ≥ 0. Specifically, assuming that cells can not undergo mitosis or
apoptosis,

(9) µp,t(Rn) = Np ∀t ≥ 0,
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i.e., the total mass of the system is preserved in time. By assuming an overdamped force-velocity response
(as implicitly set also for the CPM), a prototype for the evolution equation of the test cell Xp,t writes as:

Ẋp,t = vchem
p (t,Xp,t) + vint

p (Xp,t) =

= vchem
p (Xp,t) +

P∑
q=1

∫
Rn\{Xp,t}

Kpq(Xp,t, y)dµq,t(y),(10)

where vchem
p denotes a cell preferred velocity and vint

p an interaction-dependent velocity. Specifically,

vchem
p : Rn → Rn is a motion field generated either by the spatial distribution of some diffusive chemical

that test cell is sensitive to (i.e., chemotaxis) or by the topology of the extracellular environment (i.e.,
via durotactic or haptotactic mechanisms). On the other hand, the velocity interaction component vint

p :
Rn → Rn accounts for intercellular adhesive/repulsive interactions performed by the test cell Xp,t of
population p through a scanning of the surrounding mass µq,t of each population q = 1, . . . , P : such
contributions are defined by the interaction kernels Kpq : Rn × Rn → Rn.

An evolution equation for the overall mass measure of each cell population µp,t can be formally derived
from (10). Reminding the reader to [23] for entire procedure, we here simply sketch the idea. Being a
physical quantity of cells, the cellular mass of each population has to move coherently with the motion
of the component individuals, i.e., µp,t is transported by Xp,t. Then, regarding the mapping t 7→ µp,t as
a curve in the space of distributions, one can compute the time derivative of µp,t proceeding like in the
Reynolds’ theorem and obtain the following weak form of the conservation law for the cellular mass:

(11)
d

dt
〈µp,t, ϕ〉 =

∫
Rn
∇ϕ(x) ·

(
vchem
p (t,x) + vint

p (t,x)
)
dµp,t(x),

where ϕ is a test function in the the Banach space C∞c (Rn) and 〈·, ·〉 denotes the duality pairing in
C∞c (Rn). After defining the transport velocity

(12) vp,t(x) := vchem
p (t,x) + vint

p (t,x)

from Equation (11) it is finally possible to obtain the following strong formulation of the problem:

(13)


∂tµp,t +∇ · (µp,tvp,t) = 0 , p = 1, . . . , P ;

vp,t(x) = vchem
p (x) +

P∑
q=1

∫
Rn\{x}

Kpq(x,y)dµq,t(y).

A two population tumor system

As known from the experimental literature, a solid tumor can be distinguished at least in two cell
phenotypes: an external set of few differentiated, aggressive, highly metabolic, individuals and an inter-
nal, quiescent and undifferentiated cellular mass. Indeed, in order to formalize a proper mathematical
description of the fingering infiltration of a solid tumor with the measure theoretic-based approach, it is
straightforward to consider a two-population system (P = 2). On one hand, the undifferentiated central
cell cluster (i.e., population p = 1) can be represented as a distributed group with a low level of detail by
assuming that the corresponding mass measure is absolutely continuous with respect to the n-dimensional
Lebesgue measure Ln:

(14) µ1,t(E) =

∫
E
ρt(y)dy ∀E ∈ B(Rn).

ρt(·) : [0, T ] × Rn → [0,+∞), T > 0 being a certain final time (possibly +∞), is a numerical space
density at time t, whose existence is asserted by the Radon-Nikodym’s Theorem. On the other hand, the
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differentiated cells can be individually described by using an atomic mass measure, constituted of a sum
of Dirac masses centered in each cell position as,

(15) µ2,t(E) =

N2∑
i=1

δxit(E) ∀E ∈ B(Rn),

where the {xit}
N2
i=1 are the differentiated cell positions at time t.

The mathematical structure (13) therefore specifies in a system of coupled discrete-continuous equa-
tions, which consists of a conservation equation for ρt and of a set of ODEs for the xit, i = 1, . . . , N2:

(16)


∂tρt(x) +∇ · (ρt(x)v1,t(x)) = 0,

ẋit = v2,t(x
i
t) i = 1, . . . , N2,

where the velocity fields of the two populations are defined as follows:

(17)


v1,t(x) =

∫
Rn
K11(x,y)ρt(y)dy +

N2∑
j=1

K12(x,xjt ),

v2,t(x
i
t) = vchem

2 (t,xit) +

∫
Rn
K21(xit,y)ρt(y)dy +

N2∑
j=1
j 6=i

K22(xit,x
j
t ).

In particular, we are assuming that only the differentiated cells, which typically express surface receptors,
are sensible to a chemical motility factor, as

(18) vchem
2 (t,x) = k0∇c(t,x),

where k0 is a chemotactic strength and c is the chemical spatial distribution which evolves in time
according to a standard reaction-diffusion equation:

(19) ∂tc(t,x) = D∆c(t,x)− c(t,x)

τ
,

where D is the constant and homogeneous diffusion coefficient and 1/τ the decay rate. Finally, the
hypothesis of isotropic adhesive/repulsive cell interactions, along with the idea that they are respectively
directly/inversely proportional to the distance between interacting individuals, leads to Kpq(x,y) =
Kpq(y − x). Specifically, defining the interaction radial vector r := (y − x), the kernels are set to have
the following form:

(20) Kpq(r) =



−2
F pqR
RpqR

r, if |r| <
RpqR
2

;(
2
F pqR
RpqR
|r| − 2F pqR

)
r

|r|
, if

RpqR
2
≤ |r| < RpqR ;

−4 F pqA
(|r| −RpqR )(|r| −RpqA )

(RpqR −R
pq
A )2

r

|r|
, if RpqR ≤ |r| < RpqA ;

0, otherwise;

where RpqR , R
pq
A > 0 are the repulsive and adhesive radii and F pqR , F pqA > 0 the corresponding interaction

strengths, respectively.
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3.2. Results

We deal with a two-dimensional (n = 2) square bounded domain Ω ⊂ R2, which is set to represent a
900×900 µm2 section of an in vivo tumor disease, typically used for in vitro biological/biomedical assays.
The computational time step ∆t is assumed to correspond to approximately 10 seconds. Simulations are
typically stopped after T = 3600 ∆t, so that they reproduce a time-lapse of nearly 12 hours. The
numerical simulations are produced by a modified version of the numerical scheme developed in [25]
(see also [26–28] for error and convergence analysis), specifically designed for integrating the evolution
of a diffusing substance within the basic measure-theoretic framework. The initial configuration of the
system consists of N2 = 4 differentiated tumor cells distributed on the edge of a homogeneous and round
malignant colony of N1 = 100 inactivated individuals, as shown in the top left panel of Figure 4. In
particular, ρ0(x) = 100/(πR2

0) inside the ball BR0 ⊂ Ω centered in the middle of the domain with radius
R0 = 100 µm and ρ0(x) = 0 otherwise.

The microenvironmental chemical is assumed to diffuse and decay within the entire domain. In partic-
ular, referring to (19), we set D = 10 µm2s−1 and τ = 5000 s: these are typical values for some important
growth factors, such as many isoforms of the Vascular Endothelial Growth Factor (VEGF). Assuming a
constant production of chemical along the entire boundary of the domain we prescribe c = 0.25 µMs−1

on ∂Ω and set the chemotactic strength k0 = 500 µm2(µMs)−1.
The parameters introduced in the interaction kernels (20), describing the biophysical properties of

the cells, can be evaluated consistently with biological considerations. Dealing with two populations that
are clones of the same cell line (i.e., population 2 is the activated counterpart of population 1), we can
consistently take RpqR = RR = 20 µm (that is the average size of most tumor cells) and F pqR = FR =
1 µms−1 for all p, q = 1, 2. Conversely, as cell activation increases the maximal extension of cell filopods
and the quantities of expressed cell adhesion molecules (CAMs), we set

(21) RA =

(
30 45
45 60

)
µm, FA =

(
0.04 0.203

0.0038 0.00025

)
µms−1.

The value of F 11
A assures that population 1 reaches a sort of inner equilibrium, i.e., the continuous

colony does not undergo a dramatic scatter or an unrealistic collapse (see [23,24] for a detailed analysis).
Moreover, this set of parameters allows for a consistent chemotactic migration of the activated cells, as
the heterotypic adhesive forces F 12

A and F 21
A are not strong enough to cause their absorption within the

continuous mass. Further, the asymmetry of FA is due to the different scales chosen to represent the two
populations (for readers convenience, we underline that F pqA defines the adhesive strength of a test cell of
population p in the interaction with a test cell of population q).

As shown in Figure 4, the round tumor initially reorganizes toward a configuration, which results stable
until the chemical diffusive front reaches the colony. Subsequently, the activated malignant cells react
to the chemical stimuli: then, four cellular fingers emerge and fully develop from the undifferentiated
aggregate besides each discrete moving individual. The first difference from CPM is that we do not
observe any front of dissociated islands but a continuous elongation of cellular tongues from main tumor
mass. Further, we recall that the measure-based model is obtained under the assumption that the whole
mass is preserved in time, i.e., cell proliferation is not included in the model. Thus, in this case the finger
formation is uniquely due to the heterotypic interacting term, i.e., it is the result of the differentiation and
the adhesive interactions between leader/activated cells and follower/quiescent individuals (determined
by the proper values of F 12

A and F 21
A which, at molecular level, give the measure of the expression and

engagement of cadherins between the activated cells and the quiescent cells).
In this respect, F 12

A and F 21
A are the counterpart of the CPM parameter JC,C . Indeed, for the sake

of completeness, we investigate how the fingering patterning is affected by variations of F 12
A and F 21

A .
As represented in Figure 5, both a decrement and an increment of two orders of magnitude in the
values of the heterotypic adhesive forces dramatically inhibit the process of fingering. In particular, at
low heterotypic adhesive forces (F 12

A = 0.0203 µms−1 and F 21
A = 0.000038 µms−1), we observe the

scattering of the differentiated cells. The rationale is that the repulsive heterotypic interactions, as long
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Figure 4. Fingering process resulting in a two-population tumors.

as the chemotactic force, prevails and results in a quick detachment of the discrete individuals from
the continuous spheroid. On the other hand, at high heterotypic adhesive forces (F 12

A = 20.3µms−1 and
F 21
A = 0.38µms−1), parts of the quiescent population separate from the original colony and form small

continuous clusters around each activated cell. The remaining quiescent tumor mass instead remains in
the initial position, undergoing only an inner reorganization.

Finally, for a more informative comparison of the numerical results, we simulate with the measure-
theoretic model the same tumor configuration considered in Figure 2. As shown in Figure 6 a rectangular
layer of undifferentiated cells is indeed placed at the bottom part of a two-dimensional bounded domain
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Figure 5. Resulting morphologies of the two-population tumor for different values of the heterotypic adhesive interactions
(i.e., given by the parameters F 12

A and F 21
A ).

Ω ⊂ R2, which is set to represent a 1 mm2 section of a tissue. In particular, N1 = 900 inactivated
individuals, which correspond to the initial density ρ0(x) = 0.003 µm2 inside the subdomain [0; 1000]×
[0; 300] µm2. N2 = 6 differentiated individuals are then initially seeded at the edge of the malignant
mass: they are attracted upwards by a diffusing chemical, which is produced only at the top border of
the domain. The parameters regarding both the chemical substance (i.e., diffusion, decay and production
coefficients) and the cell populations (i.e., homotypic and heterotypic adhesiveness and interaction radii
and chemotactic strength for the activated cells) are the same as in the case of the reference simulation
presented in Figure 4. As it is possible to see from the corresponding images in Figure 6, the mass
of undifferentiated malignant cells remains almost quiescent. Then, buds of macroscopically-described
individuals emerge and extend behind the activated cells, that start migrating upon chemical gradients.
At the end of the observation time, coherently with the simulation presented in Figure 4, quite long and
thin tumor tongues have invaded the tissue. Such a finger pattern is different from the one captured by
the CPM in Figure 2, where the malignant branches are thicker. This discrepancy is due to the different
mechanisms underlying finger formation, as previously commented.

4. Conclusions

Solid tumor invasion is driven by the complex interplay of molecular- and cellular-scale dynamics of
genetically damaged cells, that are able to survive and evolve even under extreme conditions, e.g., hypoxia
and acidosis [29]. In particular, the aggressiveness of a cancer mass is mainly affected by altered biophysical
characteristics of malignant cells, such as their enhanced motility and metabolism and the downregulation
of the intercellular adhesion, as well as by the aggressive interactions with the local microenvironment,
such as the increased consumption of available nutrients and degradation of ECM proteins. A significant
indicator of the invasiveness of a disease is represented by the morphological instability of its edge. In
this respect, many malignancies are characterized by unstable fingered interfaces, which typically result
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Figure 6. Tumor fingers emerging from a malignant cell monolayer initially placed at the bottom part of the domain. Six
differentiated cells are placed at the edge of the tumor mass, i.e., at locations (100 µm; 295 µm), (230 µm; 295 µm), (420
µm; 295 µm), (570 µm; 295 µm), (720 µm; 295 µm), and (900 µm; 295 µm). The chemical substance is produced only at
the top border of the domain. All the model parameters are the same as in the simulation reproduced in Figure 4.

in an enhanced severity of the tumor.
In this work, we have presented two different multiscale hybrid approaches, both able to reproduce

selected features of the phenomenon of tumor fingering. On one side, the proposed version of the cellular
Potts model nests a continuous approximation for molecular variables within an individual-based descrip-
tion of the single malignant cells forming the tumor mass. As a result, the formation and extension of
multicellular fingers is due to the conjunct activity of cell proliferation and adhesion and of cell hapto-
tactic movement, that is facilitated by the digestion of non-soluble matrix proteins. On the other side,
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the described measure theoretic approach interfaces a microscopic/discrete representation of the more
external and highly metabolic tumor cells and a continuous approximation for the internal quiescent
individuals. In this case, finger extension is the consequence of the chemotactic migration of the external
cells, which are followed (due to adhesive interactions) by tongues of internal individuals.

Similarities and differences between the two models. Both computational environments shed light on the
critical role played by cell-cell adhesion and by taxis-like migration in determining the invasive morphology
of the tumor. However, the dynamics underlying the fingering process are quite different. In fact, in the
CPM, the multicellular tongues form as a consequence of the contact between scattered island of external
cells and the rest of the malignant mass. On the opposite, in the measure-based method, they extend
from the tumor edge. Moreover, the two approaches differs for the inclusion/neglection both of cell
proliferation and of cell differentiated behavior and for the time-scale of the process, as the CPM deals
with days while the measure model with hours. Such a last difference is mainly due to the extension of
the tumor represented in the simulations: the lesion accounted in the CPM is much larger and therefore
multicellular fingers take much more time to stabilize and grow.

Comparison with pertinent literature. The phenomenon of fingering has been captured by several modeling
approaches. First, in [17], a suitable version of the cellular Potts model reproduces different morphologies
of tumor invasion fronts. In particular, fingering phenomena are observed only when cell proliferation is
not taken into account: otherwise, the authors observe that the lesion invades the ECM as a compact solid
mass. In [30], finger extensions are reproduced by a cellular automaton model of tumor growth, which
takes into account malignant cell motility, proliferation and death, intercellular adhesion, autocrine and
paracrine growth stimulation and stromal destruction. In this work, finger fractal dimensionality is related
to selected biophysical determinants of tumor and stromal cells. However, the authors are not able to es-
tablish a clear relation between the finger dimensions and the overall biological behavior of the tumor. For
instance, some growth properties considered to be associated with an increased degree of the disease ma-
lignancy influence fractal dimensionality in opposite directions. In [31], fingering phenomena are instead
captured by a diffuse interface continuum model of multispecies tumor growth. The simulations presented
therein show that the tumor nonlinearly evolves with a branched-shape configuration. In particular, such
a complex structure arises from a diffusional instability, which leads to the creation of buds of elongating
fingers. The instability is fundamental for the overall tumor development, as it enables the malignant mass
to increase the exposure to nutrient and therefore to overcome the diffusional limitations of growth. With
this mechanism, the tumor has in principle the potential to grow indefinitely, as the instability repeats
itself on the buds and on the resulting fingers. Finally, in [32], a hybrid discrete-continuum (HDC) model,
in which cells are treated as discrete stochastic variables and the microenvironmental parameters as deter-
ministic concentrations, analyzes tumor morphology and phenotypic evolution under different pressure
conditions. In particular, invasive masses characterized by fingering margins, which are dominated by
few clones with aggressive traits, are observed in harsh conditions of the tumor microenvironment (e.g.,
hypoxia).
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