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Abstract

Charge transport in graphene is crucial for the design of a new generation of nanoscale electron devices. A reasonable
model is represented by the semiclassical Boltzmann equations for electrons in the valence and conduction bands. As shown
by Romano et al. (J. Comput. Phys., 2015), the discontinuous Galerkin methods are a viable way to tackle the problem
of the numerical integration of these equations, even if efficient DSMC with a proper inclusion of the Pauli principle have
been also devised. One of the advantages of the solutions obtained with deterministic approach is of course the absence of
statistical noise. This fact is crucial for an accurate estimation of the low field mobility as proved by Majorana et al. (J.
Math. Industry, 2016) in the case of a unipolar charge transport in a suspended graphene sheet under a constant electric
field.

The mobility expressions are essential for the drift-diffusion equations which constitute the most adopted models for
charge transport in CAD. Here the analysis by Majorana et al. (J. Math. Industry, 2016) is improved in two ways: by
including the charge transport both in the valence and conduction bands; by taking into account the presence of an oxide
as substrate for the graphene sheet. New models of mobility are obtained and, in particular, relevant improvements of the
low field mobility are achieved.
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1. Introduction

Graphene, a single layer of carbon atoms arranged into a honeycomb lattice, is considered as the
ideal candidate for the ultimate generation of ultra integrated circuits. In fact, replacement of traditional
semiconductors with graphene could allow the fabrication of devices, e.g. MOSFETs, whose channels
(the active part) having a width of just a single atom, reaching in this way the theoretical limit of
miniaturisation. For such a reason, an accurate description of charge transport in graphene is crucial.
A reasonable model is represented by the semiclassical Boltzmann equations for electrons in the valence
and conduction bands. As shown in [1], a viable way to tackle the problem of the numerical solutions
of these equations is the discontinuous Galerkin method, even if efficient DSMC with a proper inclusion
of the Pauli principle have been also devised [1]. One of the advantages of the solutions obtained with a
deterministic approach, with respect to those obtained with DSMC, is of course the absence of statistical
noise. This fact is crucial for an accurate estimation of the low field mobility as proved in [2] in the case
of a unipolar charge transport in a suspended graphene sheet under a constant electric field.

The mobility expressions are essential for the drift-diffusion equations which constitute the most
adopted models for charge transport in CAD. Here the analysis in [2] is improved in two ways: by
including the charge transport both in the valence and conduction bands, and by taking into account the
presence of an oxide as substrate for the graphene sheet. New models of mobility are obtained and, in
particular, relevant improvements of the low field mobility are achieved.

The plan of the paper is as follows. In Section 2 the main features of the semiclassical charge transport
in graphene are sketched and in Section 3 a Discontinuous Galerkin (DG) method is outlined for the
numerical integration of the transport equations [3]. A new mobility model is presented in Section 4 in
the case of suspended monolayer graphene and comparisons with other models already existing in the
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literature are performed. In the last section a further extension is presented for graphene on a substrate
made of silicon dioxide.

2. The semiclassical charge transport in graphene

In a semiclassical kinetic setting, the charge transport in graphene is described, in general, by four
Boltzmann equations, one for electrons in the valence (π) band and one for electrons in the conduction
(π∗) band, that in turn can belong to the K or K ′ valley. By assuming the K and K ′ valleys as equivalent,
then we can consider only the two equations

(1)
∂fs
∂t

+ vs · ∇xfs −
e

~
E · ∇kfs = Q(fs, f−s) (s = ±1) ,

where fs = fs(t,x,k) represents the distribution function of charge carriers in the conduction band (CB),
for s = 1, or in the valence band (VB), for s = −1, at position x, time t and wave-vector k. We denote
by ∇x and ∇k the gradients with respect to the position and wave vector, respectively. In the sequel,
for simplifying the notation, we write also f+ and f− to indicate the distributions of electrons in the
conduction and valence bands. The group velocity vs is related to the energy band εs by

vs =
1

~
∇k εs .

With a very good approximation [4] a linear dispersion relation holds for the energy bands εs around the
Dirac points; so that, choosing the origin of the reference frame in the k-space coinciding with a Dirac
point, we have

εs = s ~ vF |k| ,

where vF is the (constant) Fermi velocity and ~ the Planck constant divided by 2π. The elementary
(positive) charge is denoted by e. Here the electric field E is assumed as external, and therefore we do not
include the Poisson equation. The right hand side of Equation (1) is the collision term representing the
interaction of electrons with acoustic, optical and K phonons. Acoustic phonon scattering is intravalley
and intraband. Optical phonon scattering is intravalley and can be both longitudinal (LO) and transversal
(TO). It can be intraband, that is it leaves electrons in the same band, or interband pushing electrons
from an initial band to the other one. Scattering with optical phonon of type K pushes electrons from
a valley to a neighbor one (intervalley scattering). We assume that phonons are at thermal equilibrium.
Hence, the general form of the collision term can be written as

Q(fs, f−s) =
∑
s′

[∫
R2

Ss′,s(k
′,k) fs′(t,x,k

′) (1− fs(t,x,k)) dk′

−
∫
R2

Ss,s′(k,k
′) fs(t,x,k)

(
1− fs′(t,x,k′)

)
dk′
]

where the total transition rate is given by the sum of the contributions of the several types of scatterings.
Ss,s′ represents the scattering involving the band s and s′ and it is in turn given by the sum of several
type of electron-phonon interactions. More details can be found in [1,3].

At the equilibrium the distribution function of electrons in both bands is the Fermi-Dirac distribution,
given by

f±FD(t,x,k) =
1

1 + exp
(
ε±−εF
kBT

) ,
where εF is the Fermi energy and the sign ± indicates the CB (+) or the VB (−). The Fermi energy is
related to the density. For example at equilibrium for the electrons in the conduction band the density is
given by

n =
2

(2π)2

∫
1

1 + exp
(
ε+−εF
kBT

) dk.
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In the case of space homogeneous solutions, which will be considered for the determination of the
mobilities, the Equation (1) becomes

(2)
∂fs
∂t
− e

~
E · ∇kfs = Q(fs, f−s) (s = ±1) ,

where fs depend only on t and k.
In the valence band it is necessary to consider holes, instead of electrons, in order to avoid an infinite

density of electrons. The distribution function of holes fh is related with f− by

fh(t,x,k) = 1− f−(t,x,−k).

3. The numerical method

Since we expect an exponential decay of f+ and 1 − f−, as |k| → +∞, it is reasonable to choose a
compact domain Ω ⊆ R2, such that f+(t,k) ≈ 0 and 1 − f−(t,k) ≈ 0, for every k /∈ Ω, and for every x
and t > 0.

Now we introduce a finite decomposition {Cα : α = 1, 2, . . . , N} of the domain Ω, with the Cα’s open
sets such that

Cα ⊆ Ω ∀α , Cα ∩ Cβ = ∅ ∀α 6= β ,
N⋃
α=1

Cα = Ω .

We assume a constant approximation for each distribution function fs in every cell Cα. If we denote by
χα the characteristic function relative to the cell Cα, then

fs(t,k) ≈ fαs (t), ∀k ∈ Cα ⇐⇒ fs(t,k) ≈
N∑
α=1

fαs (t)χα(k), ∀k ∈
N⋃
α=1

Cα .

A set of partial differential equations is now derived from the Boltzmann equations (1). The new unknowns
are the fαs (t)’s instead of the distribution functions fs(t,k). Formally integrating Equation (1) over each
cell Cα, we obtain

(3)

∫
Cα

∂fs
∂t

dk−
∫
Cα

e

~
E · ∇kfs dk =

∫
Cα

Q(fs, f−s) dk .

The first integral of Equation (3) can be approximated easily, the integral involving the electric field
is transformed by using the Gauss theorem. Of course, the result is strictly related to the geometry of
the cells. We have used a reconstruction of the fluxes based on a Min-Mod slope limiter. The integral
involving the collisional operator can be solved analytically after performing the discretization. For more
details about the numerical method one can refer to [1,3] for the unipolar case and to [5] for the treatment
of the coupled collisional terms in the bipolar case while all the details about the treatment of the drift
term can be found in [3].

The spatial gradient ∇xfs(t,x,k) can be discretized in the same way as the drift one. In this case
the discretization depends on the geometry of the spatial domain and boundary conditions (see for
instance [6,7]). Since in this paper we consider only space homogeneous solutions, the details are skipped.

The treatment of the term arising from the collision operator is straightforward. If k ∈ Cα, then we
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have

Q(fs, f−s) =
∑
s′

[
(1− fs(t,x,k))

∫
Ss′,s(k

′,k) fs′(t,x,k
′) dk′

−fs(t,x,k)

∫
Ss,s′(k,k

′)
(
1− fs′(t,x,k′)

)
dk′
]

≈
∑
s′

N∑
β=1

[
(1− fαs (t,x))

∫
Cβ

Ss′,s(k
′,k) fs′(t,x,k

′) dk′

−fαs (t,x)

∫
Cβ

Ss,s′(k,k
′)
(
1− fs′(t,x,k′)

)
dk′

]

≈
∑
s′

N∑
β=1

[
(1− fαs (t,x)) fβs′(t,x)

∫
Cβ

Ss′,s(k
′,k) dk′

−fαs (t,x)
(

1− fβs′(t,x)
)∫

Cβ

Ss,s′(k,k
′) dk′

]
.

So, defining

(4) Aα,βs,s′ =

∫
Cα

[∫
Cβ

Ss,s′(k,k
′) dk′

]
dk ,

it is immediate to verify that

(5)

∫
Cα

Q(fs, f−s) dk ≈
∑
s′

N∑
β=1

[
Aβ,αs′,s (1− fαs (t,x)) fβs′(t,x)−Aα,βs,s′ f

α
s (t,x)(1− fβs′(t,x))

]
.

In order to complete the numerical treatment of the Boltzmann equation it is necessary to specify the
numerical domain in the k-space. We choose the circle |k| ≤ kmax, where kmax is a fixed maximum value
such that f+ and 1 − f− are negligible for all k such that |k| > kmax. The parameter kmax is checked a
posteriori by means of numerical experiments.

We use modified polar coordinates by setting k =
√
r (cosϑ, sinϑ), and we introduce a regular de-

composition. Hence the cell Cα is defined by the inequalities

0 ≤ rα < r < rα + ∆r ≤
√
kmax and 0 ≤ ϑα < ϑ < ϑα + ∆ϑ ≤ 2π,

where ∆r and ∆ϑ are constant for every cell Cα.
The use of the variable

√
r instead of the modulus of k is aimed to have integrable parameters arising

from the force term of the Boltzmann equation. Now, one can obtain the explicit expression of the
numerical parameters Aα,βs,s′ . The integrals involving the electric field are derived by means of the same
technique (see [3]). More details about the collisional term of interband transtions can be found in [5].

We observe that considering the distribution fh of holes in the VB instead of the one of electrons,
one gets that also fh ≈ 0 for all k /∈ Ω, similarly to f+, and this helps the numerical approach that we
use for the integration of the transport equations.

From the approximation of the distribution functions, the average values of density n, velocity < ve >
and energy < εe > for electrons are reconstructed as follows

n(t,x) :=
2

(2π)2

∫
f+(t,x,k) dk ≈ 2

(2π)2

N∑
α=1

meas(Cα) fα+(t,x) ,

< ve > (t,x) :=
1

n(t,x)

2

(2π)2

∫
f+(t,x,k)v+(k) dk ≈ 1

n(t,x)

2

(2π)2

N∑
α=1

[∫
Cα

v+(k) dk

]
fα+(t,x) ,
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< εe > (t,x) :=
1

n(t,x)

2

(2π)2

∫
f+(t,x,k) ε+(k) dk ≈ 1

n(t,x)

2

(2π)2

N∑
α=1

[∫
Cα

ε+(k) dk

]
fα+(t,x).

Similarly for the average values of density p, velocity < vh > and energy < εh > for holes

p(t,x) :=
2

(2π)2

∫
(1− f−(t,x,−k)) dk ≈ 2

(2π)2

N∑
α=1

meas(Cα) (1− fα−(t,x)) ,

< vh > (t,x) :=
1

p(t,x)

2

(2π)2

∫
fh(t,x,k)vh(k) dk =

1

p(t,x)

2

(2π)2

∫
(1− f−(t,x,−k))vh(k) dk

=
1

p(t,x)

2

(2π)2

∫
(1− f−(t,x,−k))v+(k) dk

≈ − 1

p(t,x)

2

(2π)2

N∑
α=1

[∫
Cα

v+(k) dk

]
(1− fα−(t,x)) ,

< εh > (t,x) :=
1

p(t,x)

2

(2π)2

∫
(1− f−(t,x,−k)) ε+(k) dk

≈ 1

p(t,x)

2

(2π)2

N∑
α=1

[∫
Cα

ε+(k) dk

]
(1− fα−(t,x)),

where we have used the property of the hole velocity: vh(k) = v+(k). The above integrals are easily
evaluated by taking into account that

meas(Cα) =
1

2
∆r∆ϑ,∫

Cα

vs dk = s vF ∆r

(
cos

(
ϑ+

∆ϑ

2

)
sin

∆ϑ

2
, sin

(
ϑ+

∆ϑ

2

)
sin

∆ϑ

2

)
,∫

Cα

εs(k) dk =
1

3
s vF ~∆ϑ

[√
(rα + ∆r)3 −

√
(rα)3

]
.

Regarding the total current density −eJ, it is given by the sum of the contribution from electrons in
the CB band and holes in the VB

J = Jn − Jp.

The term Jn is given by n < ve > while

Jp =
2

(2π)2

∫
(1− f−(t,x,−k))vh(k) dk = − 2

(2π)2

∫
(1− f−(t,x,k))vh(k) dk.

For other details about the model see [5].

4. The mobility model: the case of suspended monolayer graphene

The direct solution of the Boltzmann equation, even though highly accurate, requires computational
times too long for a practical use in electronic CAD. For applications in electronic device modeling, in
order to reduce the computational effort, macroscopical models are mostly adopted. The simplest and
most popular ones are the drift-diffusion (DD) models. They are constituted by two coupled nonlinear
diffusion equations for the electron density n and the hole density p

∂n

∂t
+∇ · Jn = −R+G,

∂p

∂t
+∇ · Jp = −R+G,
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where

Jn = −µn(UT∇n− n∇φ)

Jp = −µp(UT∇p+ p∇φ)

are the electron and hole currents divided by the elementary charge (- e for electrons and e for holes), with
UT = kBT/e the thermal potential, kB being the Boltzmann constant, T the constant lattice temperature,
e the positive elementary charge. µn and µp are the mobilities for electrons and holes respectively while
R and G are the recombination and generation terms. The function φ(x) is the electric potential which
solves the Poisson equation. Of course, in the case of a constant electric field, due to E = −∇φ, we have
that φ(x) is linear.

The crucial issue is to devise appropriate models for the mobilities and the recombination-generation
terms. However, usually the characteristic times of the recombination-generation terms are much longer
than the typical evolution times. Moreover, for a Fermi energy greater than 0.2 eV, R−G is essentially
negligible because the Pauli exclusion principle prevents the formation of electron-hole couples. For a
Fermi energy less than - 0.2 eV practically there are not electrons around the Dirac point and again
R − G is essentially negligible. Therefore, as first instance, it is more important, to model only the
mobilities, neglecting the electron-hole coupling.

The mobilities are definite through the relations (in the one dimensional case)

(6) vn = µn(E,n)E, vh = µp(E, p)E,

where E, vn and vp are the significant components of the the electric field, the average electron velocity
and the average hole velocity. The velocities are related to the currents as follows

vn = Jn/n, vh = Jp/p.

First we analyze the low field mobility µ0, that is defined as

(7) µ0(n) = lim
E→0

µn(E,n).

In principle the low field mobilities of electron and holes are different. In suspended graphene they take
the same values.

The main concern regarding the low field mobility is that its determination from experimental data is
rather cumbersome on account of the intrinsic statistical noise. A similar issue arises if the results obtained
by DSMC are employed. The use of the results given by the DG approach avoids such difficulties because
reduces (practically avoids) the effects of the statistical noise.

For the determination of the mobility curves it is enough to consider homogeneous solutions. In this
section we examine the case of a suspended single sheet of graphene, as reported in Figure 1. We suppose
that the contacts are deeply infinite and the potential is constant in each of them. Therefore, the electric
field is constant and transversal with respect to the contact. Thus the system can be solved in the interval
[0, L] with Dirichlet boundary conditions

n|x=0 = n0, n|x=L = nL, p|x=0 = p0, p|x=L = pL.

The solution does not depend on space.
For several values of n corresponding to a Fermi level between 0 eV and 0.4 eV, the low field mobility is

extrapolated, by a linear regression model, computing the mobility at different low values of electric field,
between 0.0005 V/µm and 0.0025 V/µm, by using the values of the currents obtained by a direct solution
of the Boltzmann equation with the DG method outlined in Section 3. One observes (see Figure 2) that
the low field mobility behaviour versus the density (or equivalently the Fermi energy) is similar to the
log-normal distribution and therefore we assume the following expression

(8) µ0(n) = µ̃0
exp

(
− (log(n/nref )−m)2

2σ2

)
√

2πσn/nref
,
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Figure 1. Representation of a suspended graphene sheet with contacts.

where µ̃0, nref , m and σ are fitting parameters. The behaviour is the same for holes on account of the
symmetry between the hole and electron distributions.
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Figure 2. Comparison between the low field mobility simulated with the DG method and the fitted one.

We have estimated the parameters by means of the least squares method. The obtained values are
reported in Table 1.

Table 1. Low field mobility parameters.

µ̃0 nref m σ

217.07 µm2/V ps 8951.4 µm−2 -0.0027671 1.3423

As second step, we include the electric field dependence by proposing the same model of Ref. [2]

(9) µ(E,n) =
µ0(n) + vF

E

(
E

Eref

)β1
1 +

(
E

Eref

)β2
+ γ

(
E

Eref

)β3 ,
where Eref , β1, β2, β3 and γ are fitting parameters. In this case we evaluated the mobility by means of
the DG results of the transport equations at different densities, corresponding to the Fermi levels of 0.2
eV, 0.3 eV, 0.4 eV, and for a range of electric fields between 0.025 V/µm and 10 V/µm. The obtained
parameters are reported in Table 2. A comparison between fitted and simulated values of mobility models

Table 2. Mobility model parameters.

Eref β1 β2 β3 γ

0.0421 V/µm 1.2898 1.4050 0.9627 5.0918

and corresponding current densities are plotted in Figure 3
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Figure 3. On the left comparison between the mobility simulated with the DG method and the fitted one. On the right
the comparison of the simulated and fitted current densities for several values of the Fermi energy.

5. Comparison with other mobility models

There are available in the literature several expressions of the mobilities. Most of them are based on
heuristic considerations or experimental data. A widely used model is that of Dorgan et al. [8]

µ(x) =
ν

[1 + (νE/vsat)γ ]1/γ
,

where vsat is the saturation velocity, γ ≈ 2 and

ν(x) =
µ0

(1 + n/nref )α
,

with µ0 the low field mobility, nref = 1.1× 105 µm−2 and α = 2.2.
In [8] the value µ0 = 0.4650 µm2/V ps is taken while the saturation velocity is evaluated as

(10) vsat =
2

π

ωOP√
πn

√
1−

ω2
OP

4πnv2F

1

NOP + 1
,

where ~ωOP is the energy of optical phonons, that here takes the value of 160 meV, and

(11) NOP =
1

exp
(
~ωOP
kBT

)
− 1

is the phonon occupation number. The previous expressions, written for the electron density n, are still
valid for the hole density p. Here for the saturation velocity the values reported in Table 3 have been
adopted.

Table 3. Adopted satu-
ration velocity values.

eF vsat
0.2 eV 0.5841 µm/ps
0.3 eV 0.4393 µm/ps
0.4 eV 0.3426 µm/ps

In Ref. [2] the authors used the model given by the equation (9) but with a different expression of
the low field mobility

µ0 = µ0(n) =
µ̃

1 + (n/nref )α
,(12)
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(a similar expression can be introduced also for holes) with nref = 0.5 × 104 µm−2, α = 1.2916 and
µ̃ = 2µ0(nref ) = 373.4306 µm2/V ps. The reader is referred to [2] for the specific values of the parameters.

In Figure 4 we have compared the different mobility curves among them and with the results of the
direct solution of the transport equations in the case of a Fermi energy 0.2 eV (top left). In the figure we
have also included a modified Dorgan model (MDM) where the low field mobility is taken as that given
by relation (8).

The model of Dorgan et al. underestimates the mobility, in particular for low fields. MDM and the
model in [2] are in good agreement between them but there is a considerable discrepancy with the results
given by the Boltzmann equation. Apparently the inclusion of the interband scattering, neglected in [2],
has a relevant role for a correct determination of the low field mobility. At high fields all the mobility
curves become closer.

In Figure 4 (top right and bottom) Fermi energies of 0.3 eV and 0.4 eV are considered. In these plots
the original model of Dorgan et al. is not reported because of the high discrepancy. In the case of a Fermi
energy of 0.3 eV the model in [2] is more accurate than MDM for low fields. In the case of a Fermi energy
of 0.4 eV the model in [2] is more accurate than MDM for low fields but less accurate for high fields.
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Figure 4. Comparison among the mobility models of Ref. [2] (MMR) and Ref. [8] (MDM) and the fitted one with respect
to the DG simulations at a Fermi level of 0.2 eV (top left), 0.3 eV (top right) and 0.4 eV (bottom). At the Fermi level of
0.2 eV it is also shown the original model of Ref. [8] (DBP).

6. The mobility model: the case of graphene on substrate

In order to include the presence of a substrate as depicted in Figure 5, a further generalization of the
mobility model is required. In this situation usually one observes a degradation of the current due to the
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additional scatterings of the charges in the graphene with the phonons and impurities in the substrate.
We have considered the case of graphene on SiO2 (silicon dioxide) and again used a DG method for
solving the transport equations (the interested reader is referred to [3,9] for details).

Figure 5. Schematic representation of a graphene sheet on a substrate. The dots stand for the impurities in the oxide.

A crucial parameter, entering the expression of the collision term, is the average distance d between
the graphene and the impurities. The value of d is considered to lie in the range between 0 and 1 nm.
We have obtained the mobility curves for some values of d by using again relations (8) and (9).

The fitted parameters are reported in Table 4. The obtained mobilities and current densities are
shown in Figures 6, 7 and 8 considering d = 0, 0.5, 1 nm and several values of the Fermi energy.

Table 4. Mobility model parameters on SiO2.

d Eref β1 β2 β3 γ

0 nm 0.4879 V/µm 2.0736 0.8672 1.6147 4.9884
0.5 nm 0.3875 V/µm 1.9923 2.3816 1.2336 4.8663
1 nm 0.3626 V/µm 1.8753 2.0545 1.1854 5.6979

Table 5. Low field mobility on SiO2.

d µ0 (eF = 0.2 eV) µ0 (eF = 0.3 eV) µ0 (eF = 0.4 eV)

0 nm 2.867 µm2/V ps 1.252 µm2/V ps 0.676 µm2/V ps

0.5 nm 4.106 µm2/V ps 2.123 µm2/V ps 1.353 µm2/V ps

1 nm 5.704 µm2/V ps 3.345 µm2/V ps 2.366 µm2/V ps

As expected we have a degradation of the mobility which reduces by increasing d. The latter effect
is easily explained because there is a reduction of the scattering rate with impurities as the distance
increases between the graphene sheet and the impurities in the oxide.
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Figure 6. On the left comparison between the simulated by DG and the fitted mobility models in the case of graphene on
SiO2 with a distance between the graphene sheet and impurities of d = 0 nm. On the right the same for the densities.
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Figure 7. On the left comparison between the simulated by DG and the fitted mobility models in the case of graphene on
SiO2 with a distance between the graphene sheet and impurities of d = 0.5 nm. On the right the same for the densities.
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Figure 8. On the left comparison between the simulated by DG and the fitted mobility models in the case of graphene on
SiO2 with a distance between the graphene sheet and impurities of d = 1 nm. On the right the same for the densities.

Conclusions

New mobility models for charge transport in graphene have been obtained by resorting to an exten-
sive numerical simulation of the Boltzmann transport equations with a DG method. Both the cases of
suspended graphene and graphene on substrate have been considered. Comparisons with other models
present in the literature show a considerable improvement.

Further developments could include the effects of crystal heating and quantum effects in the mobility
models. Although the subject is still in an early stage, attempts in this direction can be found in [10,11]
regarding the thermal influence on the electric performance, and in [12–15] regarding the inclusion of
quantum corrections.

Acknowledgments

The author V. R. acknowledges the financial support by the project FIR 2016-2018 Modellistica,
simulazione e ottimizzazione del trasporto di cariche in strutture a bassa dimensionalità, University of
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