Sensitivity of transient temperature field in domain of forearm insulated by protective clothing with respect to perturbations of external boundary heat flux

B. MOCHNACKI1 and M. CIESIELSKI2*

1Higher School of Labour Safety Management, 8 Bankowa St., 40-007 Katowice, Poland
2Institute of Computer and Information Sciences, Czestochowa University of Technology, 69 Dabrowskiego St., 42-200 Czestochowa, Poland

Abstract. The problem discussed in the paper is numerical modeling of thermal processes in the domain of biological tissue secured by a layer of protective clothing being in thermal contact with the environment. The cross-section of the forearm (2D problem) is treated as non-homogeneous domain in which the sub-domains of skin tissue, fat, muscle and bone are distinguished. The air gap between skin tissue and protective clothing is taken into account. The process of external heating is determined by Robin boundary condition and sensitivity analysis with respect to the perturbations of heat transfer coefficient and ambient temperature is also discussed. Both the basic boundary-initial problem and the sensitivity problems are solved by means of control volume method using Voronoi polygons.

Key words: bioheat transfer, sensitivity analysis, numerical modeling, control volume method, Voronoi diagram.

1. Introduction

The problem of skin tissue heating can be described by the system of partial differential equations (energy equations), the boundary condition given on the external surface of the system, the boundary conditions between skin tissue and protective clothing, the boundary conditions on the surfaces limiting the successive sub-domains of forearm and the initial conditions. The transient temperature field in tissue subdomains is determined by a Fourier-type equation called the Pennes equation \cite{1-5}. This equation contains two additional components (the source functions) connected with the blood perfusion and metabolism. In the case of tissue freezing, the third source function controlling the evolution of latent heat appears \cite{6, 7}. The Pennes equation belongs to the group of the so-called macroscopic tissue models. It should be pointed out that the tissue models can also be described by the Cattaneo-Vernotte equation \cite{8} or the dual phase lag equation \cite{9, 10}, but the Pennes approach is, so far, the most commonly used. The forearm domain is a non-homogeneous one and represents the composition of skin tissue, fat, muscle, bone and blood vessels (arteries and veins). The successive subdomains differ in the values of thermal parameters; in this paper the data quoted by Fiala et al. \cite{11} are applied. The parameters of textiles can be found in \cite{12}.

2. Mathematical description of the process

The cross section of forearm (middle part) is shown in Fig. 1 \cite{13}.
Heat transfer processes in the domain considered are described by a system of Pennes partial differential equations.

\[c_v(T) \frac{\partial T_v(x,t)}{\partial t} = \nabla \left[\lambda_v(T) \nabla T_v(x,t) \right] + Q_{per}(x,t) + Q_{met}(x,t), \quad e = 1, \ldots, 4 \]

where \(e \) is blood perfusion \([m^3 \text{ blood/}(s \text{ m}^3)]\), \(T_v \) is blood temperature. Metabolic heat source \(Q_{met} \) is the volumetric specific heat and \(Q_{per} \) and \(Q_{met} \) are the capacities of volumetric internal heat sources connected with the blood perfusion and metabolism \([W/m^3]\), \(T_v = [x, y, z] \), \(t \) denotes the temperature, spatial co-ordinates and time. The perfusion heat source is given by the formula

\[Q_{per}(x,t) = c_v G_{be}(T)[T_b - T_e(x,t)], \]

\[T_b = \left(T_{b_\text{artery}} + T_{b_\text{vein}} \right) / 2 \]

where \(G_{be} \) is blood perfusion \([m^3 \text{ blood/}(s \text{ m}^3 \text{ tissue})]\), \(c_v \) is blood volumetric specific heat and \(T_{b_\text{artery}} \) and \(T_{b_\text{vein}} \) are arterial and vein blood temperatures. Metabolic heat source \(Q_{met}(x,t) \) can be treated as a constant value.

Equation describing the transient temperature field in the domain of fabric takes the following form:

\[c_b(T) \frac{\partial T_b(x,t)}{\partial t} = \nabla \left[\lambda_b(T) \nabla T_b(x,t) \right] \]

while the boundary condition between skin surface and fabric is

\[x \in \Gamma_{\text{0j}} : \quad -\lambda_b \frac{\partial T_b(x,t)}{\partial n} = \frac{T_e(x,t) - T_i(x,t)}{R(x,t)} = -\lambda_b \frac{\partial T_b(x,t)}{\partial n} \]

where \(R \) is thermal resistance of the air gap.

On the contact surface between the tissue sub-domains, the continuity of temperature and heat fluxes are assumed:

\[x \in \Gamma_{\text{e1+}} : \quad -\lambda_\text{e1} \frac{\partial T_e(x,t)}{\partial n} = -\lambda_\text{e1} \frac{\partial T_{e1+}(x,t)}{\partial n} = T_{e1+}(x,t) \quad e = 1, 2, 3 \]

where \(\partial / \partial n \) is temperature derivative in normal direction.

On the outer surface of the fabric, the Robin boundary condition is taken into account:

\[x \in \Gamma_{\text{out}} : \quad -\lambda_\text{out} \frac{\partial T_{\text{out}}(x,t)}{\partial n} = \alpha_{\text{out}} \left[T_b(x,t) - T_{\text{amb}} \right] \]

where \(\alpha_{\text{out}} \) is heat transfer coefficient, \(T_{\text{amb}} \) is ambient temperature. The same type of boundary conditions is given on the surfaces between blood vessels and soft tissue sub-domains, in particular

\[x \in \Gamma_{\text{artery}} : \quad -\lambda_\text{artery} \frac{\partial T_{\text{artery}}(x,t)}{\partial n} = \alpha_{\text{artery}} \left[T_b(x,t) - T_{\text{artery}} \right] \]

and

\[x \in \Gamma_{\text{vein}} : \quad -\lambda_\text{vein} \frac{\partial T_{\text{vein}}(x,t)}{\partial n} = \alpha_{\text{vein}} \left[T_b(x,t) - T_{\text{vein}} \right] \]

\[x \in \Gamma_{\text{vein}} : \quad -\lambda_\text{vein} \frac{\partial T_{\text{vein}}(x,t)}{\partial n} = \alpha_{\text{vein}} \left[T_b(x,t) - T_{\text{vein}} \right], \quad e = 2, 3 \]

The initial conditions are also given

\[t = 0 : \quad T_v(x,t) = T_{\text{steady}}, \quad e = 0, 1, \ldots, 4 \]

where \(T_{\text{steady}} \) is temperature distribution corresponding to steady state conditions in the tissue - fabric domain for the initial ambient temperature given and initial external heat transfer coefficient.

3. Sensitivity model

The sensitivity analysis presented in this paper concerns the changes of transient temperature field in domain considered due to perturbations of parameters \(\alpha_{\text{out}} \) and \(T_{\text{amb}} \) appearing in the external Robin boundary condition (6). As it is well known, the sensitivity function \(U_i(x,t) \) is defined in the following way:

\[U_i(x,t) = \lim_{\Delta p_i \to 0} \frac{T(x,t,p_1,\ldots,p_{i-1},p_i+\Delta p_i,p_{i+1},\ldots,p_n) - T(x,t,p_1,\ldots,p_{i-1},p_{i+1},\ldots,p_n)}{\Delta p_i} \]

Thus, the sensitivity model can be created by the differentiation of energy equations and boundary-initial conditions with respect to the parameter considered (a direct approach – e.g. [14‒17]). Differentiation of the Pennes equation with respect to the external heat transfer coefficient gives

\[\frac{\partial}{\partial \alpha_{\text{out}}} \left[c_v \frac{\partial T_e(x,t)}{\partial t} \right] = \frac{\partial}{\partial \alpha_{\text{out}}} \left[\lambda_v \nabla^2 T_e(x,t) \right] - \frac{\partial}{\partial \alpha_{\text{out}}} \left[c_v G_{be} T_b(x,t) \right], \quad e = 1, \ldots, 4 \]

or, using the Schwarz theorem about mixed partial derivative,

\[c_v \frac{\partial U_i(x,t)}{\partial t} = \lambda_v \nabla^2 U_i(x,t) - c_v G_{be} U_i(x,t), \quad e = 1, \ldots, 4 \]

where \(U_i(x,t) = \partial T_v(x,t) / \partial \alpha_{\text{out}} \). A similar equation determines sensitivity function in the domain of fabric:

\[c_b \frac{\partial U_{\text{out}}(x,t)}{\partial t} = \lambda_b \nabla^2 U_{\text{out}}(x,t) \]

One can see that the values of thermal conductivities both for tissue sub-domains and the fabric are assumed to be constant. Differentiation of internal boundary conditions with respect to the external heat transfer coefficient leads to the following equations:

592 Bull. Pol. Ac.: Tech. 64(3) 2016

B. Mochnacki and M. Ciesielski
Sensitivity of transient temperature field in domain of forearm insulated by protective clothing with respect to perturbations...

– between forearm sub-domains

\[
x \in \Gamma_{e,1} : \begin{cases} -\lambda_{e} \frac{\partial U_e(x,t)}{\partial n} = -\lambda_{e,1} \frac{\partial U_{e,1}(x,t)}{\partial n} \\ U_e(x,t) = U_{e,1}(x,t) \end{cases}
\]

(14)

e = 1, 2, 3

– between skin surface and fabric

\[
x \in \Gamma_{0,1} : -\lambda_{0} \frac{\partial U_0(x,t)}{\partial n} = \frac{U_0(x,t) - U_1(x,t)}{R(x,t)} = -\lambda_{1} \frac{\partial U_1(x,t)}{\partial n}
\]

(15)

– between tissue and blood vessels

\[
x \in \Gamma_{\text{artery}} : -\lambda_{3} \frac{\partial U_3(x,t)}{\partial n} = \alpha_{\text{artery}} U_3(x,t)
\]

(16)

and

\[
x \in \Gamma_{\text{vein}} : -\lambda_{e} \frac{\partial U_e(x,t)}{\partial n} = \alpha_{\text{vein}} U_e(x,t), \quad e = 2, 3
\]

(17)

To obtain conditions (16) and (17) in the form analogous to Robin conditions (8) and (9), in the basic model one can write

\[
x \in \Gamma_{\text{artery}} : -\lambda_{3} \frac{\partial U_3(x,t)}{\partial n} = \alpha_{\text{artery}} \left[U_3(x,t) - U_{\text{b,artery}} \right]
\]

(18)

and

\[
x \in \Gamma_{\text{vein}} : -\lambda_{e} \frac{\partial U_e(x,t)}{\partial n} = \alpha_{\text{vein}} \left[U_e(x,t) - U_{\text{b,vein}} \right], \quad e = 2, 3
\]

(19)

while blood sensitivities \(U_{\text{b,artery}}\) and \(U_{\text{b,vein}}\) are equal to zero. The forms presented above and below will allow for using the same computation procedure simultaneously with the basic model and the sensitivity model.

On the external surface of the system one has

\[
x \in \Gamma_{\text{out}} : -\lambda_{0} \frac{\partial U_0(x,t)}{\partial n} = T_0(x,t) - T_{\text{amb}} + \alpha_{\text{out}} U_0(x,t) = \alpha_{\text{out}} \left[U_0(x,t) - U_{\text{amb}} \right]
\]

(20)

Introduced in the contractual way, ambient sensitivity

\[
U_{\text{amb}}(x,t) = \frac{T_{\text{amb}} - T_0(x,t)}{\alpha_{\text{out}}}
\]

(21)

leads to condition (20) in the same form as Robin boundary condition. One can see that the sensitivity model and the basic one are coupled. To determine ambient sensitivity the knowledge of temporary temperature field is necessary.

The only difference in the sensitivity model concerning the ambient temperature is the form of condition (20), namely

\[
U_{\text{amb}}(x,t) = 1
\]

(22)

4. Control volume method

At the stage of numerical computations the control volume method (CVM) is applied; in other words, the domain considered is divided into a certain number of small cells and the governing equations in the integral form are applied individually to each one of them. This procedure guarantees, a priori, the conservation of physical quantities like mass, momentum and energy. It is also extremely flexible and conceptually simple. In this paper, 2D control volumes corresponding to Voronoi polygons (also called the Thiessen or Dirichlet cells in two dimensions) [18] have been used. Such a version of CVM was in details discussed by Ciesielski and Mochnacki in [19, 20]. Here, only basic information concerning this variant of CVM will be presented. So, the domain analyzed is divided into \(N\) volumes (Fig. 2) and the algorithm presented allows for finding the transient temperature field at the set of nodes corresponding to central points of the control volumes.

![Fig. 2. Tissue and fabric sub-domains](image)

The polygon that contains the point \(x_i\) (central point) is denoted by \(CV_i\) (Fig. 3). All of the Voronoi regions are convex.

![Fig. 3. Control volume CV_i](image)
polygons, and each polygon is defined by lines bisecting sectors between the central point and neighbouring points. The bisecting lines and the connection lines are perpendicular to each other (it is very convenient at the stage of CVM equations construction). Let us consider control volume \(CV_i \) with the central node \(x_c \).

It should be pointed out that the mathematical model concerning temperature \(T(x,t) \) and sensitivity models are practically the same. Therefore, CVM equations concern both \(T(x,t) \) and \(U(x,t) \) – the searched distributions of these functions will be denoted as \(W(x,t) \). Below it is assumed that the thermal capacities and capacities of the internal heat sources are concentrated at the nodes representing elements, while thermal resistances are concentrated on the sectors joining the nodes. Additionally, the constant values of the parameters of successive sub-domains are taken into account. The CVM equations result from the integration of equations (1) and (12) with respect to time and volume \(CV_i \). Let us consider the time interval \(\Delta t = t^{i+1} - t^i \).

\[
\int_{t^i}^{t^{i+1}} \int_{CV_i} c_e \frac{\partial W_e(x,t)}{\partial t} \, dV \, dt = \int_{t^i}^{t^{i+1}} \int_{CV_i} \lambda_c \nabla^2 W_e(x,t) \, dV \, dt + \int_{t^i}^{t^{i+1}} \int_{CV_i} Q_e(x,t) \, dV \, dt
\]

(23)

For the basic model

\[
Q_e(x,t) = c_e G_{se} \left[T_e - T_c(x,t) \right] + Q_{me} \left(x,t \right)
\]

(24)

while for the sensitivity one

\[
Q_e(x,t) = -c_e G_{se} U_e(x,t)
\]

(25)

Using the Gauss-Ostrogradsky’s theorem, one obtains

\[
\int_{t^i}^{t^{i+1}} \int_{CV_i} c_e \frac{\partial W_e(x,t)}{\partial t} \, dV \, dt = \int_{t^i}^{t^{i+1}} \int_{CV_i} \lambda_c \nabla W_e(x,t) \, dV \, dt + \int_{t^i}^{t^{i+1}} \int_{CV_i} Q_e(x,t) \, dV \, dt
\]

(26)

where \(A_i \) is the surface (perimeter) limiting \(CV_i \). The integration of the left-hand side of equation (26) gives

\[
\int_{t^i}^{t^{i+1}} \int_{CV_i} c_e \frac{\partial W_e(x,t)}{\partial t} \, dV \, dt \cong c_i \left(W_{i,t}^{f+1} - W_{i,t}^f \right) \Delta V_i
\]

(27)

In a similar way one can approximate the last component in equation (26), namely

\[
\int_{t^i}^{t^{i+1}} \int_{CV_i} Q_e(x,t) \, dV \, dt \cong Q_{f} \Delta V_i \Delta t
\]

(28)

The term determining the fluxes between \(CV_i \) and its neighbourhoods can be written in the form

\[
\int_{t^i}^{t^{i+1}} \int_{A_i} \lambda_c \nabla W_e(x,t) \cdot n \, dA \, dt = \\
= \int_{t^i}^{t^{i+1}} \sum_{j=1}^{n} \lambda_c \left(\nabla W_e(x,t) \right)_{A_i} \, dA \, dt \cong \\
\cong \int_{t^i}^{t^{i+1}} \sum_{j=1}^{n} \lambda_c \left(\nabla W_e(x,t) \right)_{A_i} \, dA \, dt \cong \\
\cong \int_{t^i}^{t^{i+1}} \sum_{j=1}^{n} \left(\nabla W_e(x,t) \right)_{A_i} \, dA \, dt = \\
= \int_{t^i}^{t^{i+1}} \sum_{j=1}^{n} \frac{W_{i,t}^f - W_{i,t}^f}{R_{i,t}^f} \, dA \, dt \cong \\
\cong \int_{t^i}^{t^{i+1}} \sum_{j=1}^{n} \left(\frac{W_{i,t}^f - W_{i,t}^f}{R_{i,t}^f} \right) \, dA \, dt
\]

where \(\lambda_c \) is mean thermal conductivity between two central points of two adjoining control volumes with nodes \(i \) and \(i(j) \), while \(R_{i,t} \) is thermal resistance between these nodes; in the case of internal control volumes it is equal to

\[
R_{i,j} = \frac{h_{i,j}}{\lambda_c} = \frac{0.5 h_{i,j}}{\lambda_c} + \frac{0.5 h_{i,j}}{\lambda_{i(j)}}
\]

(30)

where \(h_{i,j} \) is distance between the nodes \(i \) and \(i(j) \) – see Fig. 3.

The CVM equation written in the convention of “explicit” scheme takes the form

\[
c_i \left(W_{i,t}^{f+1} - W_{i,t}^f \right) \Delta V_i = \sum_{j=1}^{n} \left(W_{i,t}^f - W_{i,t}^f \right) A_{i,t} \Delta t + Q_{f} \Delta V_i \Delta t
\]

(31)

from which

\[
W_{i,t}^{f+1} = W_{i,t}^f + \frac{\Delta t}{c_i \Delta V_i} \sum_{j=1}^{n} \left(W_{i,t}^f - W_{i,t}^f \right) A_{i,t} \Delta t + \frac{\Delta t}{c_i} Q_{f}
\]

(32)

or

\[
W_{i,t}^{f+1} = W_{i,t}^f + \sum_{j=1}^{n} G_{i,j} \left(W_{i,t}^f - W_{i,t}^f \right) + \frac{\Delta t}{c_i} Q_{f}
\]

(33)

where

\[
G_{i,j} = \frac{A_{i,j} \Delta t}{c_i R_{i,j}}
\]

(34)

In order to determine the stability condition of the explicit differential scheme (33), the sum of the coefficients at \(W_{i,t}^f \) must be positive. Hence, this condition for each node \(i \) can be written in the following form:

\[
1 - \sum_{j=1}^{n} G_{i,j} \frac{\Delta t}{c_i} G_{i,j} > 0
\]

(35)
The factor $-c_i G_{bc}$ is enclosed in the definition of formula Q_i'. From inequality (35) one can determine the critical time step Δt:

$$\Delta t < \min_{i=1,2,...,n} \frac{c_i}{G_{bc} c_b + \frac{1}{\Delta V_j} \sum_{j=1}^{n} A_{ij} R_{ij}}$$

(36)

In the case of external CV when the boundary A_{ij} of CV_i covers the surface Γ_{out}, Γ_{story} or Γ_{vis}, the implementation of boundary conditions (6–8) and (18–20) must be introduced. For this reason the following approximation of appropriate term in equation (29) is used:

$$\bar{\lambda}_{ij} \left[\nabla W(x,t) \right]_{ij} A_{ij} = \frac{W_{ij} - W_{ij}'}{R_{ij}} A_{ij}$$

(37)

where W_{ij} is the value of ambient temperature or “ambient sensitivity” and R_{ij} corresponds in this case to the thermal resistance between central point of CV_i and its environment in ij direction. It is defined as follows:

$$R_{ij} = \frac{0.5 h_{ij} + 1}{\lambda_i} + \frac{1}{\alpha}$$

(38)

wherein $\alpha = \{\alpha_{out}, \alpha_{artery}, \alpha_{vein}\}$, respectively.

In the case of control volumes bordering the layer of trapped air (between the skin surface and protective clothing), thermal resistance (30) should be increased by thermal resistance of the air gap.

5. Example of computations

The fabric-forearm domain stays in thermal contact with the environment at temperature equal to $T_{amb} = 20^\circ C$, while heat transfer coefficient $\alpha_{out} = 3.7 \text{ W/m}^2\text{K}$. Thermal resistance of trapped air is assumed to be a constant value $R = 0.077 \text{ m}^2\text{K}/\text{W}$. The authors have developed the procedure of the exact computation of temperature-dependent thermal resistance R, but the preliminary calculations show that the constant value proposed is quite acceptable. Additionally, the following blood temperatures are assumed: $T_{artery} = 36^\circ C$, $T_{vein} = 35^\circ C$, while $\alpha_{artery} = \alpha_{vein} = 5000 \text{ W/m}^2\text{K}$.

Thermophysical parameters of the successive sub-domains are assumed to be constants and are presented in Table 1. Parameters of tissues and textile are taken from [11, 12].

The initial temperature distribution is found using Gauss method (simple iteration method). It corresponds, practically, to the use of the basic computer program for the optional initial condition and continuation of computations until the temperature field becomes stabilized. At the moment $t = 0$, ambient temperature increases to $T_{amb} = 70^\circ C$ (heat transfer coefficient $\alpha_{out} = 100 \text{ W/m}^2\text{K}$). Numerical simulation concerns the process of tissue heating. The basic solution (in the form of heating curves at the selected set of points – see Fig. 2) are shown in Fig. 4.

![Fig. 4. The basic solution](image)

The next figures show the numerical solution of sensitivity problems. In particular, changes of sensitivity function

<table>
<thead>
<tr>
<th>Ω</th>
<th>$\lambda [\text{W/mK}]$</th>
<th>$c [\text{J/kg m}^3]$</th>
<th>$G_i [1/\text{s}]$</th>
<th>$Q_{out} [\text{W/m}^3]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Fabric</td>
<td>0.17</td>
<td>240000</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>Skin</td>
<td>0.47</td>
<td>3680 · 1085</td>
<td>1.1000·10^{-3}</td>
</tr>
<tr>
<td>2</td>
<td>Fat</td>
<td>0.16</td>
<td>2300 · 850</td>
<td>0.0036·10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>Muscle</td>
<td>0.42</td>
<td>3768 · 1085</td>
<td>0.5380·10^{-3}</td>
</tr>
<tr>
<td>4</td>
<td>Bone</td>
<td>0.75</td>
<td>1700 · 1357</td>
<td>0.0000·10^{-3}</td>
</tr>
<tr>
<td></td>
<td>Blood</td>
<td>–</td>
<td>3650 · 1069</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 1
Thermal parameters of sub-domains
Using this equation one can find temporary and local changes of temperature due to the perturbations of the parameter discussed. In Fig. 8 the results concerning the value of $\Delta \alpha_{\text{out}} = \pm 10\text{W/m}^2\text{K}$ are shown, while in Fig. 9 – the results corresponding to $\Delta T_{\text{amb}} = \pm 7\text{K}$.

It is also possible to estimate the changes of temperature due to the simultaneous perturbations of both parameters using formula [21]

$$T(x,t,p_1,...,p_k, \pm \Delta p_1, ..., \pm p_n) = T(x,t,p_1,...,p_k, ..., p_n) \pm U_e(x,t)\Delta p_k$$

(39)
Sensitivity of transient temperature field in domain of forearm insulated by protective clothing with respect to perturbations...

\[\Delta T = \left(\frac{\partial T}{\partial \alpha_{\text{out}}} \Delta \alpha_{\text{out}} \right)^2 + \left(\frac{\partial T}{\partial T_{\text{amb}}} \Delta T_{\text{amb}} \right)^2 \]

(40)

In Fig. 10 the results for \(\Delta \alpha_{\text{out}} = \pm 10 \text{W/m}^2\text{K} \) and \(\Delta T_{\text{amb}} = \pm 7\)K are shown.

6. Final remarks

The variant of CVM with the use of Voronoi polygons has been discussed. This very effective approach to numerical modeling of thermal processes has been adapted to the needs of bioheat transfer problems. Discretization of 2D domain using Voronoi polygons has many advantages. A complex homogeneous or heterogeneous shape can be exactly reconstructed and the mutual position of polygons assures the correct form of the energy balances. Additionally, the possibility of arbitrary distribution of central nodes enables local refinement of the mesh (e.g. close to the boundary). It should be pointed out that the modeling of different types of boundary conditions is very simple. The most significant disadvantage of the approach proposed lies in considerable difficulties at the stage of computer program preparing. The algorithm proposed can constitute the base for the inverse problems solution using the gradient methods (e.g. [22]).

Although the example of numerical simulation presented in this paper does not allow for formulating general conclusions, the number of the information concerning the task discussed is significant. One can see that temperature increase in the domain of fabric proceeds essentially faster as compared to the tissue domain, and temperature stabilization time is considerably shorter. Fabric temperature close to the internal boundary is high (ca. 60°C). In the case of accidental contact between fabric and tissue, such a situation is not preferable. The temperature of skin tissue layer reaches the value more than 45°C. It is said that the critical value of skin tissue temperature is equal to 43°C and above this temperature, tissue burns can take place. There is also the problem of residence time at elevated temperature – see: Henriques integral [16].

Sensitivity analysis provides useful information as well. At first, one can see that the sensitivity of temperature field in a system considered with respect to ambient temperature is much greater than the sensitivity with respect to heat transfer coefficient. The courses of both functions are quite different. Sensitivity with respect to \(T_{\text{amb}} \) is an increasing function for the relevant period of time, while sensitivity with respect to \(\alpha_{\text{out}} \) reaches its maximum value at the initial stages of heating and then rapidly decreases. In the tissue domain, sensitivity \(\partial T(x,t)/\partial \alpha_{\text{out}} \) is practically close to zero. The perturbations of ambient temperature \(\Delta T_{\text{amb}} = \pm 7\)K (possible in the real world) causes essential changes of fabric temperature (as in Fig. 9). Summing up, the insulating properties of the protective clothing considered are too weak. It results from the thermophysical parameters of the fabric and the considerable value of external heat source. Directly after the start of heating process, the boundary heat flux is equal to about 4 kW/m².

Further works in this field will focus on expanding the algorithm presented for the case in which the parameters of biological tissue are treated as the interval numbers [23]. Such an approach results from the fact that tissue parameters are individual features dependent on the gender, age, profession etc., and the differences are noticeable.

Acknowledgement. The paper is part of Project PB3/2013, sponsored by WSZOP Katowice.

REFERENCES

