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Summary

There is a growing need to analyze data sets characterized by several
sets of variables observed on the same set of individuals. Such complex
data structures are known as multiblock (or multiple-set) data sets. Multi-
block data sets are encountered in diverse fields including bioinformatics,
chemometrics, food analysis, etc. Generalized Canonical Correlation Anal-
ysis (GCCA) is a very powerful method to study this kind of relationships
between blocks. It can also be viewed as a method for the integration of in-
formation from K > 2 distinct sources (Takane and Oshima-Takane 2002).
In this paper, GCCA is considered in the context of multivariate func-
tional data. Such data are treated as realizations of multivariate random
processes. GCCA is a technique that allows the joint analysis of several sets
of data through dimensionality reduction. The central problem of GCCA
is to construct a series of components aiming to maximize the association
among the multiple variable sets. This method will be presented for multi-
variate functional data. Finally, a practical example will be discussed.

Key words: multivariate functional data, generalized canonical correla-
tion analysis

1. Introduction

For studying interrelations between two sets of variables, Canonical Correla-
tion Analysis (CCA), proposed by Hotelling (1936), is often used. It consists
in determining a linear transformation of the original variables from both
sets into two new sets of variables not correlated within the sets but most
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highly correlated between them. Pairs of the corresponding new variables
are called canonical variates, and the coefficients of correlation within the
pairs are called canonical correlations.

Carroll (1968a, 1968b) proposed a generalized canonical correlation anal-
ysis. In generalized canonical correlation analysis, K > 2 sets of variables
are analyzed simultaneously. The central problem of GCCA is to construct
a series of components aiming to maximize the association among the mul-
tiple variable sets. Although several generalizations of canonical correlation
analysis have been proposed, some of which are discussed and compared in
Kettenring (1971) and Gower (1989), Carroll’s approach has some attractive
properties that make the method well suited to the analysis of multiple-set
data (van de Velden 2011):

1. Computationally, the method is straightforward and its solution is based
on an eigen-analysis.

2. The method is closely related to several well-known multivariate tech-
niques such as principal component analysis, partial least squares and
multivariate linear regression.

3. When the number of data sets K = 2, Carroll’s GCCA reduces to the
usual canonical correlation analysis.

In recent years, methods for representing data by functions have re-
ceived much attention. Such data are known in the literature as functional
data (Ramsay and Silverman 2005, Horváth and Kokoszka 2012). Examples
of functional data can be found in various application domains, such as
medicine, economics, meteorology and many others. Canonical correlation
analysis for one-dimensional functional data was described by Leurgans et
al. (1993) and Ramsay and Silverman (2005, Chapter 11). Despite its use-
fulness, Functional Canonical Correlation Analysis (FCCA) is limited to
the analysis of two functional data sets. An extension of one-dimensional
FCCA to the analysis of more than two sets of functional data was pro-
posed by Hwang et al. (2012, 2013). Note that Hotelling’s classic method
assumes that the considered objects of two sets of data are characterized by
many variables, whereas the referenced papers on functional data consider
one-dimensional data. There is a discrepancy between the assumptions as-
sociated with the classical method and functional methods. Canonical Cor-
relation Analysis for Multivariate Functional data (MFCCA) was described
by Górecki et al. (2017, 2018). This paper considers a Generalized Canonical
Correlation Analysis for Multivariate Functional data (MFGCCA).
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The paper is organized as follows. Section 2 contains a review of the usual
canonical correlation analysis. Section 3 presents the generalized canonical
correlation analysis given by Carroll (1968a, 1968b). A process of transfor-
mation of discrete data into functional data is described in Section 4. A
generalized canonical correlation analysis for multivariate functional data
is presented in Section 5. Section 6 contains a real example of the proposed
methodology. Concluding remarks are given in Section 7.

2. Canonical correlation analysis

Canonical correlation analysis (Hotelling 1936) is the study of the linear
relations between two blocks of variables.

Let XXX1 = (X11, . . . , X1p1)
> and XXX2 = (X21, . . . , X2p2)

> denote blocks
of random variables (random vectors) with mean vectors µµµ1 and µµµ2 and
covariance matrices ΣΣΣ11 and ΣΣΣ22. Without loss of generality we can assume
that µµµ1 = µµµ2 = 000. A superblock is defined as the concatenation of these
blocks (Tenenhaus and Tenenhaus 2011, Tenenhaus et al. 2017b). Let the
superblock XXX = (XXX>1 ,XXX

>
2 )> have a covariance matrix of the form:

ΣΣΣ =

[
ΣΣΣ11 ΣΣΣ12
ΣΣΣ21 ΣΣΣ22

]
.

Pairs of canonical variables (U1i, U2i), i = 1, 2, . . . , s, s = rank(ΣΣΣ12) are
defined via the pairs of linear combinations of XXX1 and XXX2:

U1i = lll>1iXXX1, U2i = lll>2iXXX2

that maximize the correlation between U1i and U2i, i.e. that maximize

Corr(U1i, U2i) = Corr(lll>1iXXX1, lll
>
2iXXX2) (1)

subject to U1i and U2i having unit variance while for 1 ¬ i1 < i2 ¬ s the
vectors (U1i1 , U2i1) and (U1i2 , U2i2) are uncorrelated.

Let UUU1 = (U11, . . . , U1s)> be the vector containing the s canonical vari-
ables from XXX1, and UUU2 = (U21, . . . , U2s)> be the vector containing the
s canonical variables from XXX2. Moreover, let LLL1 = (lll11, . . . , lll1s), LLL2 =
(lll21, . . . , lll2s). Then

Var

[
UUU1
UUU2

]
=

[
LLL>1 ΣΣΣ11LLL1 LLL>1 ΣΣΣ12LLL2
LLL>2 ΣΣΣ21LLL1 LLL>2 ΣΣΣ22LLL2

]
,
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LLL>1 ΣΣΣ11LLL1 = IIIs, LLL>2 ΣΣΣ22LLL2 = IIIs, and

LLL>1 ΣΣΣ12LLL2 = PPP ,

where PPP is the diagonal matrix with diagonal elements ρ1, . . . , ρs (called
the canonical correlation coefficients), so that ρ21 ­ · · · ­ ρ2s, and ρi =
Corr(U1i, U2i), i = 1, . . . , s.

If we write UUU = LLL>XXX, where LLL = (LLL>1 ,LLL
>
2 )>, then

Var(UUU) = LLL>ΣΣΣLLL = LLL>1 ΣΣΣ11LLL1 +LLL>2 ΣΣΣ22LLL2 + 2LLL>1 ΣΣΣ12LLL2,

and the problem of maximizing the expression (1) is equivalent to the prob-
lem of maximizing

φ(LLL) = tr(LLL>ΣΣΣLLL),

subject to LLL>DDDLLL = IIIs, where

DDD =

[
ΣΣΣ11 000
000 ΣΣΣ22

]
.

3. Generalized canonical correlation analysis

Now, we consider a generalized version of canonical correlation analysis
(Carroll 1968a, 1968b) that allows the analysis of several blocks of variables
simultaneously.

LetXXXk = (Xk1, . . . , Xkpk)
> denote the blocks of random variables (ran-

dom vectors) with zero mean vectors and covariance matrices ΣΣΣkk, k =
1, . . . ,K. Moreover, let the superblockXXX have the formXXX = (XXX>1 , . . . ,XXX

>
K)>,

and

Var(XXX) =


ΣΣΣ11 ΣΣΣ12 · · · ΣΣΣ1K
ΣΣΣ21 ΣΣΣ22 ΣΣΣ2K
...

...
...

ΣΣΣK1 ΣΣΣK2 · · · ΣΣΣKK

 .
Now we seek vectors of canonical variables (U1i, . . . , UKi), i = 1, 2, . . . , s,

s = min
k 6=j

rank(ΣΣΣkj) being linear combinations of XXX1, . . . ,XXXK respectively.

For i = 1, 2, . . . , s, the canonical variables maximize the sum of the corre-
lations between each pair of them, i.e. they maximize

K∑
k,j=1,k<j

Corr(Uki, Uji) (2)
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subject to Uki having unit variances, k = 1, 2, . . . ,K. Moreover, for 1 ¬ i1 <
i2 ¬ s the vectors (U1i1 , . . . , UKi1) and (U1i2 , . . . , UKi2) are uncorrelated.

Let us write Uki = lll>kiXXXk, UUUk = (Uk1, . . . , Uks)>, LLLk = (lllk1, . . . , lllks),
k = 1, 2, . . . ,K, i = 1, . . . , s. Then

UUUk = LLL>kXXXk, k = 1, 2, . . . ,K.

Moreover, let UUU = LLL>XXX, where LLL = (LLL>1 , . . . ,LLL
>
K)>. We have

Var(UUU) = LLL>ΣΣΣLLL =
K∑
k=1

LLL>kΣΣΣkkLLLk + 2
K∑

k,j,k<j

LLL>kΣΣΣkjLLLj .

Similarly to the classical case, the main problem of generalized canonical
correlation analysis may be formulated as that of maximizing

φ(LLL) = tr(LLL>ΣΣΣLLL),

subject to

LLL>DDDLLL = IIIs, (3)

where DDD is a block diagonal matrix formed with the matrices ΣΣΣkk as the
kth diagonal block.

This leads to a generalized eigenequation of the form:

ΣΣΣLLL = DDDLLL∆∆∆2,

where ∆∆∆2 is the diagonal matrix consisting of the s largest generalized eigen-
values of ΣΣΣ with respect to the matrix DDD, and LLL is the matrix of the corre-
sponding generalized eigenvectors.

The details of methods for solving the maximizing problem in general-
ized canonical correlation analysis can be found in Takane et al. (2008) and
Makos and D’enza (2016).

4. The functional data

Now, assume that we wish to analyze several multi-dimensional random
processes XXXk(t) = (Xk1(t), . . . , Xkpk(t))

> ∈ Lpk2 (I), t ∈ I, k = 1, . . . ,K,
where L2(I) is the Hilbert space of square-integrable functions. Moreover,
assume that the lth component of the vector XXXk(t) can be represented
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by a finite number of orthonormal basis functions {ϕb(t)}, where ϕb(t) ∈
L2(I), t ∈ I. Omitting the index k, we may write:

Xl(t) =
Bl∑
b=0

clbϕb(t), t ∈ I, l = 1, . . . , p, (4)

where cl0, cl1, . . . , clBl are the unknown coefficients.
Let ccc = (c10, . . . , c1B1 , . . . , cp0, . . . , cpBp)

> and

ΦΦΦ(t) =


ϕϕϕ>1 (t) 000 . . . 000

000 ϕϕϕ>2 (t) . . . 000
. . . . . . . . . . . .
000 000 . . . ϕϕϕ>p (t)

 ,

where ϕϕϕl(t) = (ϕ0(t), ..., ϕBl(t))
>, l = 1, ..., p. Using the above matrix no-

tation, process XXX(t) can be represented as:

XXX(t) = ΦΦΦ(t)ccc, (5)

where E(ccc) = 000 and Var(ccc) = ΣΣΣc. This means that the realizations of the
process XXX(t) lie in a finite-dimensional subspace of Lp2(I).

We can estimate the vector ccc on the basis of n independent realizations
xxx1(t),xxx2(t), . . . ,xxxn(t) of the random process XXX(t) (functional data). As a
method of estimation we use the least squares method.

Typically, data are recorded at discrete moments in time. Let xlj denote
an observed value of the feature Xl, l = 1, 2, . . . , p at the jth time point
tj , where j = 1, 2, ..., J . Then our data consist of the pJ pairs (tj , xlj).
These discrete data can be smoothed by continuous functions xl(t), and I
is a compact set such that tj ∈ I, for j = 1, ..., J . Details of the process
of transformation of discrete data to functional data can be found in e.g.
Ramsay and Silverman (2005) or Górecki et al. (2018).

5. Generalized canonical correlation analysis for functional data

In the case of random processes, we define the canonical variables U1i, . . . , UKi
as dot products, i.e.

Uki = 〈lllki,XXXk〉 =
∫
I
lll>ki(t)XXXk(t)dt,



Generalized canonical correlation analysis for functional data 7

where lllki(t) ∈ Lpk2 (I), k = 1, . . . ,K. Let the vector weight function lllki(t)
and the process XXXk(t) be in the same space, i.e. the function lllki(t) can be
written in the form

lllki(t) = ΦΦΦk(t)λλλki, (6)

where λλλki ∈ RBk1+...+Bkpk+pk .
Hence

〈lllki,XXXk〉 = λλλ>ki

[∫
I

ΦΦΦ>k (t)ΦΦΦk(t)dt
]
ccck = λλλ>kiccck,

where ccck and λλλki are vectors occurring in the representations (5) and (6)
of process XXXk(t) and function lllki(t), k = 1, . . . ,K. Thus, our problem may
be reduced to a problem involving only random vectors ccck and λλλki. Let

ΛΛΛk = (λλλk1, . . . ,λλλks), UUUk = ΛΛΛ>k ccck, k = 1, 2, . . . ,K,

and

ΛΛΛ = (ΛΛΛ>1 , . . . ,ΛΛΛ
>
K)>, ccc = (ccc>1 , . . . , ccc

>
K)>.

Then

UUU = ΛΛΛ>ccc,

and the case of functional data reduces to the vector data considered in
Section 3.

Note that the canonical weight functions lllki(t), k = 1, . . . ,K do not
give any meaningful information about the data and clearly demonstrate
the need for a technique involving smoothing. A straightforward way of
introducing smoothing is to modify the constraints (3) by adding roughness
penalty terms (Górecki et al. 2018) to give:

Var(Uki) + λPEN2(lllki) = 1,

where the roughness function PEN2 is the integrated squared second deriva-
tive

PEN2(lllki) =
∫
I

(
∂2lllki(t)
∂t2

)>
∂2lllki(t)
∂t2

dt = λλλ>kiRRRkλλλki,

where

RRRk =
∫
I

(
∂2ΦΦΦk(t)
∂t2

)>
∂2ΦΦΦk(t)
∂t2

dt, k = 1, . . . ,K.
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Therefore, the aim of MFGCCA is to obtain the matrix ΛΛΛ which maxi-
mizes

φ(ΛΛΛ) = tr(ΛΛΛ>ΣΣΣcΛΛΛ)

subject to ΛΛΛ>(DDD + λRRR)ΛΛΛ = IIIs, where DDD is a block diagonal matrix formed
of the matrices ΣΣΣckk, RRR is a diagonal matrix formed of the matrices RRRk, and
λ > 0 is a penalty parameter.

The coordinates of the projection of the lth realization xxx1l(t), . . . ,xxxKl(t)
of the processesXXX1(t), . . . ,XXXK(t) onto the space spanned by the superblock
components are equal to

ÛUU l = Λ̂ΛΛ
>
ĉccl,

where ĉccl = (ĉcc>1l, . . . , ĉcc
>
Kl)
> and Λ̂ΛΛ are the estimators of the vectors cccl and

the matrix ΛΛΛ, l = 1, 2, . . . , n respectively.
We may summarize the MFGCCA algorithm in the following way.

MFGCCA algorithm

• Given: data set {(tj ,xxxkjl) : k = 1, . . . ,K, j = 1, . . . , J, l = 1, . . . , n},
where xxxkjl ∈ Rpk .

• Compute the estimators ĉcckl, k = 1, . . . ,K, l = 1, . . . , n, using the least
square method to get the functional data xxx1l(t), . . . ,xxxKl(t), l = 1, . . . , n.

• Choose the penalty parameter λ > 0.

• Solve the eigenproblem with the matrices ΛΛΛ, DDD and RRR.

• Project the functional data onto the space spanned by the superblock
components.

6. Illustrative example

To present the described methodology in practice we use agriculture data for
Polish regions available at the Statistics Poland website (http://stat.gov.pl).
We have crop yields (in quintals per hectare) from 2003–2016 (J = 14 years
and n = 16 regions). The data set (p = 30 variables in total) is split (by
the Polish government) into K = 3 blocks:

• Block 1 (p1 = 9 variables): wheat, rye, barley, oat, triticale, buckwheat,
millet, potatoes and sugar beet.
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• Block 2 (p2 = 6 variables): legume fodder, clover, lucerne, serradella, field
crops, root fodder.

• Block 3 (p3 = 15 variables): cabbage, cauliflower, onion, carrot, cucum-
bers, tomatoes, apples, pears, plums, cherries, sweet cherries, strawber-
ries, raspberries, currants, gooseberry.

In the first step we transformed discrete data into functional data. Dur-
ing the smoothing process we used a Fourier basis with 9 (Bl = 8, l =
1, 2, . . . , 30) components. In the next step we applied the method described
earlier. A graphical display of the regions is presented in Figure 1. We pro-
jected the data onto the space spanned by the first two superblock compo-
nents. The space spanned by the global components is viewed as a compro-
mise space that integrates all the modalities and facilitates the visualization
of the results and their interpretation. In Figure 1 we can see that regions
from the same macroregion are quite close to each other. This is reasonable,
because regions from the same macroregion have similar soil, temperature
and precipitation conditions. The only exception is the Opole region, which
is completely different from the other regions. This may be expected, as
this region is the best for agriculture in Poland. The climate in the region is
characterized by a warm summer, mild and short winter, early spring and
long mild autumn. 62% of the province’s area consists of fertile brown and
clay soils and fluvisols. The high quality of soils, lowland terrain and mild
climate are conducive to the development of agriculture.

Calculations were performed using R 3.6.1 (R Core Team 2019), with the
RGCCA (Tenenhaus and Guillemot 2017a) and fda (Ramsay et al. 2018)
packages.

7. Concluding remarks

In this paper we have presented a technique for analyzing a multivariate
functional multiblock data set. We propose an extension of functional canon-
ical correlation analysis to the analysis of more than two sets of multivariate
functional data. MFGCCA is a very attractive method for the analysis of
such data sets. The proposed method has proved useful in investigating
Polish agricultural regions.

Several points have been passed over in this paper but will be investi-
gated in future research:

• GCCA can be viewed as a special case of the more general Regularized
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Figure 1. Graphical display of the regions obtained by crossing the first two
components of the superblock

Generalized Canonical Correlation Analysis (RGCCA), which is a gen-
eralization of regularized canonical correlation analysis to three or more
sets of variables (Tenenhaus and Tenenhaus 2011). It ought to be possible
to translate the whole RGCCA framework to functional data.

• GCCA captures only linear relations between blocks of variables. To as-
sess nonlinear relations, a kernel extension of GCCA (Tenenhaus et al.
2015) for functional data should be developed.

• Sparse GCCA (Tenenhaus et al. 2014 and Löfstedt et al. 2018) was re-
cently proposed to address the issue of variable selection. It seems that it
should be possible to utilize this idea in the case of functional data.

All of these possibilities warrant future theoretical and empirical work.
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