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Summary

Recycling of crop residues is essential to sustain soil fertility and crop
production. Despite the positive effect of straw incorporation, the slow
decomposition of that organic substance is a serious issue. The aim of the
study was to assess the influence of winter wheat straws with different
degrees of stem solidness on the rate of decomposition and soil properties.
An incubation experiment lasting 425 days was carried out in controlled
conditions. To perform analyses, soil samples were collected after 7, 14, 21,
28, 35, 49, 63, 77, 91, 119, 147, 175, 203, 231, 259, 313, 341, 369, 397 and
425 days of incubation. The addition of two types of winter wheat straw
with different degree of stem solidness into the sandy soil differentiated
the experimental treatments. The results demonstrate that straw miner-
alization was a relatively slow process and did not depend on the degree
of filling of the stem by pith. Multivariate functional principal component
analysis (MFPC) gave proof of significant variation between the control
soil and the soil incubated with the straws. The first functional principal
component describes 48.53% and the second 18.55%, of the variability
of soil properties. Organic carbon, mineral nitrogen and sum of bases
impact on the first functional principal component, whereas, magnesium,
sum of bases and total nitrogen impact on the second functional principal
component.

Key words: incubation process, multivariate functional principal compo-
nent analysis, soil properties, winter wheat straws with different degree of
stem solidness
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1. Introduction

The decline of soil organic matter, as a consequence of intense soil culti-
vation practices, has been identified as one of the most important threats
to soil quality. To reverse these impacts, the application of organic sub-
stances has been employed. Organic substances such as straw may increase
the input of carbon and nutrients. Besides, returning crop straw into fields
is a common practice to resolve an oversupply of straw and improve soil
organic matter. The application of such organic soil amendments is in line
with the Thematic Strategy for Soil Protection (2006), where the decline
of organic matter was underlined. Microbial decomposition of added crop
straw is affected by many factors including soil moisture content, microbial
activity, straw quality and size (Chen et al. 2014). All Polish varieties of
winter wheat have hollow stems, and are susceptible to wheat stem sawfly
(Cephus pygmaeus L.). Considering the harmful effects of the pest, linked
to stem damage and plant yield reduction, the bringing into cultivation of
varieties with stems filled by pith is reasonable, because these varieties are
more resistant to the pest. However, the degree of stem solidness is closely
associated with different chemical compositions of straw and may influence
its mineralization rate as well as nutrient release. In this context the degree
of filling of stem by pith may play a crucial role, because it is directly re-
lated to higher or lower contents of cellulose and lignin, the most abundant
components of litter, which are slowly decomposed. Moreover, crop residue
decomposition is affected by the physical and chemical characteristics of
both the residue and the soil where the residue is incorporated. We may
suspect that filling of the stem by pith may check these processes and de-
crease the fertilizing effect in comparison with straw with hollow stems.
The aim of this paper is to show how the mineralization processes (taking
place over a long period) can be analyzed with the use of MFPC and other
statistical methods.

Section 2 describes the material used in the experiment presented. In
the third section we develop the theory of multivariate functional principal
component analysis. Section 4 contains calculation results, and in section 5
a discussion is presented.

2. Material and methods

The soil used in the experiment was collected from the top layer (0–25
cm) of arable land. The soil was classified as lessive soil according to IUSS
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Working Group WRB (2007). Winter wheat straw was added to the soil
at doses corresponding to 0 (control soil, T0) and 6 Mg of dry matter per
hectare (T1–straw with stem filled by pith, T2–straw with hollow stem).
Each combination was made in four replications for particular terms. Sam-
ples of 400 g dried soil were weighed in duplicate and mixed with the dose
of straw. Additionally, nitrogen in the form of urea was applied to correct
the C:N ratio in the soil. Each mixture was wetted to 60 % field capacity
and placed in 0.5 L plastic boxes. The samples were incubated at 25oC for
425 days. The particular replications of each experimental treatment were
eliminated, dried and then subjected to analysis. The measurements were
recorded at 20 incubation dates (terms) corresponding to the following days
from the beginning of the experiment: 7, 14, 21, 28, 35, 49, 63, 77, 91, 119,
147, 175, 203, 231, 259, 313, 341, 369, 397 and 425. The following properties
(statistical variables) were determined:
1. physiochemical: soil reaction (pH), hydrolytic acidity (Hh), sum of bases

(SB)

2. chemical: content of organic carbon (Corg), total nitrogen (Ntot),
amounts of available phosphorous, potassium, magnesium, mineral ni-
trogen (sum of N−NH4 and N−NO3) and available microlements (Fe,
Mn, Zn, Cu, Ni).

The above properties were determined with the use of methods commonly
applied in soil science analyses; their detailed descriptions can be found in
Jakubus (2013).

3. Multivariate functional principal component analysis

The character of the data justifies the use of vector stochastic processes
and the need for summarizing of the data into a few functions of the
original components of these processes (functional principal components).
The functional case of PCA (FPCA) is a more informative way of look-
ing at the variability structure in the variance-covariance function for one-
dimensional functional data (Górecki and Krzyśko, 2012). In this section
we present PCA for multivariate functional data (MFPCA) (Jacques and
Preda 2014). Suppose that we are observing a p-dimensional stochastic pro-
cess X (t) = (X1(t), X2(t), ..., Xp(t))

′
, with continuous parameter t ∈ I.

We will further assume that E (X (t)) = 0 and X (t) ∈ L2p(I), where L2p(I)
is a Hilbert space of square integrable functions on the interval I equipped
with the following inner product:
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< u(t), v(t) >=
∫
I
u
′
(t)v(t)dt.

Moreover, assume that the kth component of process X (t) can be repre-
sented by a finite number of orthonormal basis functions {φb}

Xk(t) =
∑Bk
b=0 ckbφb(t), t ∈ I, k = 1, 2, ..., p,

where ckb are random variables such, that E(ckb) = 0, Var(ckb) < ∞,
k = 1, 2, ..., b, b = 0, 1, ..., Bk. Let

c =
(
c10, ..., c1B1 , ..., cp0, ..., cpBp

)′
,

Φ(t) =


φφφ
′

1(t) 0 ... 0
0 φφφ

′

2(t) ... 0
.. ... ... ...

0 0 ... φφφ
′

p(t)

 , (1)

where φφφk(t) = (φ0(t), ..., φBk(t))
′
, k = 1, 2, ..., p. Then, the process X (t)

can be represented as

X (t) = Φ(t)c, t ∈ I, E(c) = 0, Var(c) = Σc.

We are interested to find vector weight functions u(t) such that

U =< u(t), X (t) >=
∫
I
u
′
(t)X (t)dt

has maximum variance for all u(t) ∈ Lp2(I) such that < u(t), u(t) >= 1. It
may be assumed that the vector weight function u(t) and the process X (t)
are in the same space, i.e. the function u(t) can be written in the form:

u(t) = Φ(t)u,

where fixed vector u ∈ RK+p, K = B1 +B2 + ...+Bp. Then

< u(t), X (t) >=< Φ(t)u, Φ(t)c >= u
′
< Φ(t), Φ(t) > c = u

′
c

and

E (< u(t), X (t) >) = u
′
E(c) = u

′
0 = 0

Var (< u(t), X (t) >) = u
′
E(cc

′
)u = u

′
Σcu

Let

λ1 = supu(t)∈Lp2(I)Var (< u(t), X (t) >) =

Var (< u1(t), X (t) >) = u
′
1Σcu1,
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where < u1(t), u1(t) >= u
′
1u1 = 1. As the first principal component will

be called the inner product U1 =< u1(t), X (t) >= u
′
1c, and the vector

function u1(t) will be called the first vector weight function. Subsequently
we look for the second principal component U2 =< u2(t), X (t) >= u

′
2c ,

maximizing Var (< u(t), X (t) >) = u
′
Σcu, such that < u2(t), u2(t) >=

u
′
2u2 = 1, and not correlated with the first functional principal component
U1, i.e. subject to the restriction < u1(t), u2(t) >= u

′
1u2 = 0.

In general, the kth functional principal component Uk =<
uk(t), X (t) >= u

′
kc satisfies the conditions:

λk = supu(t)∈Lp2(I)Var (< u(t), X (t) >) =

Var (< uk(t), X (t) >) = u
′
kΣcuk

and

< uκ1(t), uκ2(t) >= δκ1, κ2 , κ1, κ2 = 1, 2, ..., k.

The expression (λk, uk(t)) will be called the kth principal system of the
process X (t).

Now, let us consider the principal components of the random vector c.
The kth principal component U∗k =< uk, c > of this vector satisfies the
conditions:

γk = supu∈RK+pVar (< u, c >) =

supu∈RK+pu
′
Var(c)u = supu∈RK+pu

′
Σcu

and

u
′
κ1(t)uκ2(t) = δκ1, κ2 ,

where κ1, κ2 = 1, 2, ..., k, K = B1 +B2 + ...+Bp. The expression (γk, uk)
will be called the kth principal system of the vector c.

In consequence, by determining the kth principal system of c, we obtain
the kth functional principal component of the process X(t), because λk = γk
and uk(t) = Φ(t)uk, where k = 1, 2, ...,K + p, K = B1 +B2 + ...+Bp.

Determining the kth principal system of vector c is equivalent to solving
for the eigenvalue and corresponding eigenvectors of the covariance matrix
Σc of that vector, standardized so that u

′
κ1(t)uκ2(t) = δκ1, κ2 .

The covariance matrix Σc can be estimated on the basis of n indepen-
dent realizations x1(t), x2(t), ..., xn(t) of the random process X (t).

Typically data are recorded at discrete moments in time. The process
of transformation of discrete data to functional data is performed for each
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variable X1, X2, ..., Xp separately.
Let xkj denote an observed value of feature Xk, k = 1, 2, ..., p, at the

jth time point tj , where j = 1, 2, .., J . Then our data consist of pJ pairs
(tj , xkj). These discrete data can be smoothed by continuous functions
xk(t), where t ∈ I (Ramsay and Silverman, 2005). Let I be a compact set
such that tj ∈ I, for j = 1, 2, .., J . Let us assume that the function xk(t)
has the following representation

xk(t) =
Bk∑
b=0

ckbφb(t), t ∈ I, k = 1, 2, ..., p, (2)

where {φb} are orthonormal basis functions, and ck0, ck1, ..., ckBk are the
coefficients.
Let xk = ( xk1, xk2, ..., xkJ )

′
, ck = (ck0, ck1, ..., ckBk)

′
and Φk(t)

be a matrix of dimension J × (Bk + 1) containing the values
φb(t), b = 0, 1, ..., Bk, j = 1, 2, .., J , k = 1, 2, ..., p. The coefficient ck in (2)
is estimated by the least squares method, that is, so as to minimize the
function:

S(ck) = (xk −Φk(t)ck)
′
(xk −Φk(t)ck) , k = 1, 2, ..., p.

Differentiating S(ck) with respect to the vector ck, we obtain the least
squares method estimator

ĉk =
(
Φ
′
k(t)Φk(t)

)−1
Φ
′
k(t)xk, k = 1, 2, ..., p.

The degree of smoothness of the function xk(t) depends on the value
Bk (a small value of Bk causes more smoothing of the curves). The opti-
mum value for Bk may be selected using the Bayesian information crite-
rion (BIC); (see Schwarz (1978), Shmueli(2010)). Let us assume that there
are n independent pairs of values (tj , xkij), k = 1, 2, ..., p, i = 1, 2, ..., n,
j = 1, 2, ..., J . These discrete data are smoothed to continuous functions in
the following form:

xki(t) =
Bki∑
b=0

ĉkibφb(t), k = 1, 2, ..., p, i = 1, 2, ..., n, t ∈ I.

Among all the Bk1, Bk2, ..., Bkn one common value of Bk is chosen, as the
modal value of the numbers Bk1, Bk2, ..., Bkn, and we assume that each
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function xki(t) has the form:

xki(t) =
Bk∑
b=0

ĉkibφb(t), k = 1, 2, ..., p, i = 1, 2, ..., n, t ∈ I.

The data {xk1(t), ..., xkn(t)} are called functional data (see Ramsay and
Silverman, 2005).

Finally, each of n independent realizations x1(t), x2(t), ...,xn(t) has
the form xi(t) = Φ(t)ĉi where Φ(t) is given by (1) and the vectors ĉi =(
ĉ10, ..., ĉ1B1 , ..., ĉp0, ..., ĉpBp

)
are centered, i = 1, 2, ..., n.

Let Ĉ = (ĉ1, ĉ2, ..., ĉn). Then

Σ̂c =
1
n

ĈĈ
′
.

Let γ̂1 ­ γ̂2 ­ ... ­ γ̂s be non-zero eigenvalues of the matrix Σ̂c, and
û1, û2, ..., ûs the corresponding eigenvectors, where s = rank(Σ̂c).
Moreover, the kth principal system of the random process X (t) determined
from the sample has the following form:(

λ̂k = γ̂k, ûk(t) = Φ(t)ûk
)
, k = 1, 2, ..., s.

The coordinates of the projection of the ith realization xi(t) of process
X (t) on the kth functional principal component are equal to:

Ûik =< ûk(t), xi(t) >=< Φ(t)ûk, Φ(t)ĉ
′
i >=

û
′
k < Φ(t), Φ(t) > ĉ

′
i = û

′
kĉ
′
i,

for i = 1, 2, ..., n, k = 1, 2, ..., s. Finally the coordinates of the projection of
the ith realization xi(t) of process X (t) on the plane of the first two fun-
ctional principal components from the sample are equal to

(
û
′
1ĉ
′
i, û

′
2ĉ
′
i

)
,

i = 1, 2, ..., n.

4. Calculation results

The analysis relates to 12 statistical objects (n = 12), i.e. three treatments
each in four replications. Each object was characterized by a group of 14
properties (p = 14). The value of each property was measured at 20 time
points (J = 20). In the first step, the original data were transformed to
functional data by the method described in section 3. The calculations
were performed using the Fourier basis system, which is a typical selection,
although others such as splines, polynomials and wavelets can also be used.
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We used the R package fda (Ramsay et al. 2014) to create a Fourier system
in order to convert raw data into a functional object. The optimum degrees
of smoothness were selected using the BIC criterion; for details see
Table 1. In the Figure 1, selected graphs showing the results of transforma-
tion are given.

Table 1. Chosen levels of smoothing.

No. Statistical variables Bk
1. pH 5
2. BS 11
3. Hh 3
4. Corg 11
5. Ntot 7
6. Nmin 3
7. P 5
8. K 5
9. Mg 9
10. Fe 7
11. Mn 5
12. Zn 11
13. Cu 3
14. Ni 3

We also implemented other procedures. In the second step, we construct
the functional principal components. The system of the first two functional
principal components retains 67.08% of the total variation.

The contribution of the original variables to the construction of the
individual principal components is not the same. At a given time point t,
a greater contribution to the structure of a given functional principal com-
ponent comes from the variable X corresponding to that component. The
total contribution of a particular original variable Xi to the structure of
a given functional principal component is equal to the area under the modu-
le weighting function corresponding to that variable. These contributions,
for 14 variables, and the first and second functional principal components,
are given in Table 2.

In the final step we form homogeneous groups of objects applying clus-
ter analysis. We want to divide 12 objects into groups in such a way that
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Figure 1. Original and transformed data (Corg). (a) control soil;
(b) straw with stem filled by pith; (c) straw with hollow stem.

objects belonging to the same group do not significantly differ with respect
to the chosen distance. In the first step, we construct the minimum span-
ning tree (Florek et al. 1951). Two popular algorithms for constructing
the minimum spanning tree are the Kruskal algorithm (Kruskal 1956) and
the Prim algorithm (Prim 1957). Kruskal’s algorithm is a greedy algorithm
that adds edges in order of their lengths, so long as they do not result in
a cycle. Prim’s algorithm starts with a tree consisting of a single vertex, and
keeps adding the smallest edge of the tree. In our computations we used the
Kruskal algorithm. The minimum spanning tree can be used for clustering.
The idea is to break (remove edges from) the minimum spanning tree at
edges that are greater than the common critical value d1. We compute the
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mean x̄ and the standard deviation s of all edge lengths in the minimum
spanning tree, and eliminate edges which are longer than d1 = x̄+s. In our
case the mean x̄ and the standard deviation s are equal to x̄ = 0.96 and
s = 1.31. The value of the common critical value d1 is 2.27. The relative
positions of the 12 objects in the system of the first two functional principal
components, with the minimum spanning tree, are shown in Figure 2. The
points which remain connected in the minimum spanning tree form clus-
ters. From Figure 2, we see that the 12 objects form three homogeneous
groups: control soil, soil incubated with straw with stem filled by pith and
soil incubated with straw with hollow stem. Note moreover that the dis-
tance between objects 1 and 5 is greater than the critical value d2 = x̄+2s.
Thus, the difference between the group of objects with normal soil and the
group with full stemmed straw is highly significant.

Table 2. The ratio of the area under the module of a given weighting
function to the sum of areas under the module

for all weighting functions (in %).

No. Statistical variables Comp. 1 Comp. 2
1. pH 5.77 7.55
2. BS 8.27 11.08
3. Hh 5.20 4.89
4. Corg 19.83 4.43
5. Ntot 5.59 9.34
6. Nmin 10.83 8.36
7. P 5.67 3.89
8. K 8.07 5.18
9. Mg 7.14 13.47
10. Fe 4.72 7.75
11. Mn 6.08 9.08
12. Zn 6.80 9.14
13. Cu 2.15 2.16
14. Ni 3.89 3.67

4. Discussion

The first functional principal component describes 48.53% and the second
functional principal component 18.55% of the variability of soil properties.
Each principal component is the weighted sum of 14 properties and we
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Figure 2. The relative positions of the 12 objects in the system
of the first two functional principal components,

with the minimum spanning tree.

wish to indicate which of them is the most significant. For each functional
principal component, we choose three properties that have a large influ-
ence on the variation between soils. Corg has a 19.83% impact on the first
functional principal component, Nmin 10.83% and BS 8.27%. In the case
of the second functional principal component, Mg has a 13.47% impact, BS
11.08% and Ntot 9.34%.

The location of the 12 objects in the system of the first two functional
principal components indicated that addition of the straws, independently
of the degree of filling of the stems by pith, did not cause significant va-
riation in the soil properties. However, differences between the control soil
and soil incubated with the straws were observed. This differentiation was
expressed by the changes in organic carbon content, mineral nitrogen con-
tent and sum of bases recorded during the incubation process (Figure 2).
At the same time, the type of straw and the related varying quantities
of hard decomposed substances such as cellulose, hemicellulose and lignin
did not significantly influence the rate of mineralization of organic matter
in the soil (Figure 2). A possible explanation may be that the share of
these substances in stems filled by pith was not so considerable and was
comparable to the concentrations in hollow stems. Accordingly, the rate of
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Figure 3. The ratio of the area under the module of a given weighting function
to the sum of areas under the module for all weighting functions, for the first

functional principal component for BS, Corg, Nmin (in %).

Figure 4. The ratio of the area under the module of a given weighting function
to the sum of areas under the module for all weighting functions, for the second

functional principal component for Mg, BS, Norg (in %).
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decomposition of these straws showed the same pattern. Regardless of the
degree of stem solidness, the maximum amounts of Corg, Nmin and sum of
bases were assessed at the end of the incubation experiment (14, 15 terms).
These confirm the slow mineralization of the straws. Ogunniyi et al. (2014)
indicated that the relatively slow decomposition of straw is caused by its
high lignin, cellulose and hemicellulose contents. Chen et al. (2014) added
that effective straw mineralization depends on the activity of fungi and the
intensity of their extracellular depolymerizing enzymes. Organic matter in-
troduced into the soil in the form of straw had a considerable impact not
only on the contents of organic carbon, but also on the sum of bases. As we
can see from Figures 3 and 4, the values of SB significantly differentiated
the control soil and soil incubated with the two types of straw, as well as
the soil incubated with straw with stem filled by pith and the soil incubated
with straw with hollow stem. Although the decomposition of organic mat-
ter causes decreasing pH with accompanying increasing hydrolytic acidity
(Hh), the data in Table 1 show that pH and Hh explained the variability
of soil properties to degrees of only 5.77% and 5.20% respectively. This can
be explained by the presence of organic matter as a strong buffering factor.
Additionally, the maintenance of proper soil reaction depends on buffer ca-
pacity, which is related to high values of SB and amounts of magnesium.
Rezig et al. (2014) proved that the application of nitrogen and phosphorous
is an important management practice to enhance the decomposition of high
C:N crop residues (for example straw) in the soil. Taking into consideration
the above information, the results obtained from the incubation experiment
partly confirmed such a tendency.

The influence of SB and Nmin (Figure 3) as well as SB and Mg
(Figure 4) on differences between soil treatments (T0 versus T1 and T2)
can be explained by the importance of applying straw in controlling the
proper soil reaction and rate of mineralization of supplied organic matter.
Moreover, the degree to which the stems of winter wheat were filled by pith
was not significant.

5. Conclusions

1. Although, by use of principal functional component analysis, 67.08%
of the total variation of soil properties is retained, this analysis is a
very suitable tool for explaining the relations and variation between the
control soil and the soil incubated with the straws.
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2. The content of organic carbon, mineral nitrogen and sum of bases played
the major role in describing the variability of soil properties and the
differences between experimental treatments.

3. The study has confirmed that straw, independently of the degree of
filling of winter wheat stems by pith, may act as a slow decomposing
crop residue.
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