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Summary

In this paper we consider a set of T repeated measurements on p char-
acteristics on each of n individuals. The n individuals themselves may
be divided and randomly assigned to K groups. These data are analyzed
using a mixed effect MANOVA model, assuming that the data on an
individual have a covariance matrix which is a Kronecker product of two
positive definite matrices. Results are illustrated on a data set obtained
from experiments with varieties of winter rye.

Key words: multivariate repeated measures data (doubly multivariate
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1. Introduction

Measurements on a set of p variables (or characteristics) made at several T
time points, or under different treatment conditions on the same experimen-
tal unit, lead to repeated measures (or longitudinal) data. A typical set of
repeated measures data is usually taken on n (= n1+ · · ·+nK) individuals
forming K groups over T time points. The problems of interest are to test
for (i) the time effect, (ii) the group effect, and (iii) the effect of interaction
between time and group.

Analysis of such data is complicated by the existence of correlation
among the measurements of different variables as well as correlation among
measurements taken at different time points. Several approaches to ana-
lyzing these data exist in the literature. In Section 2 we consider a mixed
effect MANOVA model with the effects of the subjects within a group be-
ing random (Naik and Rao, 2001). We begin with the assumption that the
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covariance matrix ΩΩΩ has the structure VVV ⊗ΣΣΣ, where VVV and ΣΣΣ are respec-
tively T × T and p× p positive definite matrices. The number of unknown
parameters of the covariance matrix, in our formulation, is much smaller,
[T (T + 1)/2 + p(p+ 1)/2], as opposed to [pT (pT + 1)/2] in the case of the
general covariance structure.

In Section 3 we derive the maximum likelihood estimators of VVV and ΣΣΣ.
In Section 4 the principal components are constructed on the basis of the
matrix V̂VV ⊗ Σ̂ΣΣ. Next, in Section 5, as an illustration, we apply these results
to an example data set.

2. A mixed effects MANOVA model

Let xxxijk, i = 1, . . . ,K, j = 1, . . . , ni, k = 1, . . . , T be a p × 1 vector of
measurements on the jth individual in the ith group at the kth time point,
and let xxxij = (xxx′ij1, . . . ,xxx

′
ijT )′. Then xxxij is a pT × 1 random observational

vector corresponding to the jth individual in the ith group.
Let xxxij ∼ NpT (µµµi,ΩΩΩ), for j = 1, . . . , ni, i = 1, . . . ,K, where ΩΩΩ is a

positive definite matrix. Its estimate Ω̂ΩΩ is positive definite with probability
one if and only if n > pT , where n = n1 + · · · + nK (see e.g. Giri, 1996,
p. 93). Hence estimation of the matrix ΩΩΩ will require a very large sample,
which may not always be feasible. We therefore assume ΩΩΩ to be of the form
(Roy and Khattree, 2005a, 2005b, 2008):

VVV ⊗ΣΣΣ,

where VVV is a T × T positive definite covariance matrix and ΣΣΣ is a p × p
positive definite covariance matrix. The matrix VVV represents the covariance
between repeated measures on a given subject and for a given characteris-
tic. Likewise, ΣΣΣ represents the covariance between all characteristics on a
given subject and for a given time point. The above covariance structure is
subject to an implicit assumption that for all characteristics, the correlation
structure between repeated measures remains the same and that covariance
between all characteristics does not depend on time and remains constant
for all time points. In this case the estimates of the matrices VVV and ΣΣΣ are
positive definite with probability one if and only if n > max(p, T ).
One method used to analyze multivariate repeated measures data is a mixed
effect MANOVA model (similar to the split-plot design model of the uni-
variate analysis of the usual repeated measures data) with the effects of the
subjects within a group being random. Then the MANOVA table can be
given as in Table 1 (Naik and Rao, 2001).
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Table 1. MANOVA table for mixed effects model
Source df SS and CP Distribution under H0

Between Groups
Groups K − 1 QQQ1 Wp(K − 1,ΣΣΣ)
Individuals n−K QQQ2 Wp(n−K,ΣΣΣ)
Within Groups
Time T − 1 QQQ3 Wp(T − 1,ΣΣΣ)
Time × Groups (T − 1)(K − 1) QQQ4 Wp((T − 1)(K − 1),ΣΣΣ)
Error (T − 1)(n−K) QQQ5 Wp((T − 1)(n−K),ΣΣΣ)
Total nT − 1 XXX(IIInT − 1

nT
JJJnT )XXX ′

Here XXX, the nT × p matrix, is defined as

XXX = (xxx111, . . . ,xxx11T , . . . ,xxx1n11, . . . ,xxx1n1T , . . . ,xxxKnK1, . . . ,xxxKnKT )′.

The matrix quadratic forms QQQ1, . . . ,QQQ5 are

QQQ1 = T
K∑
i=1

ni(x̄̄x̄xi.. − x̄̄x̄x...)(x̄̄x̄xi.. − x̄̄x̄x...)′ = XXX ′AAA1XXX,

QQQ2 = T
K∑
i=1

ni∑
j=1

(x̄̄x̄xij. − x̄̄x̄xi..)(x̄̄x̄xij. − x̄̄x̄xi..)′ = XXX ′AAA2XXX,

QQQ3 = n
T∑
k=1

(x̄̄x̄x..k − x̄̄x̄x...)(x̄̄x̄x..k − x̄̄x̄x...)′ = XXX ′AAA3XXX,

QQQ4 =
K∑
i=1

ni

T∑
k=1

(x̄̄x̄xi.k − x̄̄x̄xi.. − x̄̄x̄x..k + x̄̄x̄x...)(x̄̄x̄xi.k − x̄̄x̄xi.. − x̄̄x̄x..k + x̄̄x̄x...)′ =

= XXX ′AAA4XXX,

QQQ5 =
K∑
i=1

ni∑
j=1

T∑
k=1

(x̄̄x̄xijk − x̄̄x̄xij. − x̄̄x̄xi.k + x̄̄x̄xi..)(x̄̄x̄xijk − x̄̄x̄xij. − x̄̄x̄xi.k + x̄̄x̄xi..)′ =

= XXX ′AAA5XXX

with the appropriate choice of symmetric matrices AAA1, . . . ,AAA5 of order nT ×
nT and with the usual notations for the sample averages. The matrices
AAA1, . . . ,AAA5 can be easily derived (see for example Geisser and Greenhouse,
1958). The matrix quadratic forms QQQ1, . . . ,QQQ5 are independent of each
other, and under the appropriate null hypothesis each has a scale multi-
ple of a Wishart distribution with appropriate degrees of freedom. See the
work of Khatri (1962), Arnold (1979), Reinsel (1982) and Mathew (1989)
in this regard.
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Suppose we want to test H01, the hypothesis that there is no group
effect. Then the Wilks’ Λ for testing H01 is (Naik and Rao, 2001)

Λ1 =
|QQQ2|

|QQQ1 +QQQ2|
. (1)

We have

−[n−K − 1− 1
2

(p−K)] ln Λ1 ∼ χ2p(K−1) approximately, (2)

where n = n1 + · · ·+ nK .

To test H02, the hypothesis that there is no time effect, one can use the
following Wilks’ Λ:

Λ2 =
|QQQ5|

|QQQ3 +QQQ5|
(3)

and the fact that

−[(n−K)h− 1
2

(p+ 1− h)] ln Λ2 ∼ χ2ph approximately, (4)

where

h =

[
tr
(
VVV − 1T JJJVVV

)]2
tr
(
VVV − 1T JJJVVV

)2 .
Similarly, to test H03, the hypothesis that there is no time and group inter-
action, the Wilks’ Λ is

Λ3 =
|QQQ5|

|QQQ4 +QQQ5|
(5)

and the distribution of the test statistic is

−[(n−K)h− 1
2

(p+ 1− (K − 1)h)] ln Λ3 ∼ χ2p(K−1)h approximately. (6)

Since, in practice, VVV is unknown, the degrees of freedom in the χ2 approx-
imations of (4) and (6) are unknown. One needs to estimate these so that
the distributions in (4) and (6) can be utilized in applications. To estimate
these degrees of freedoms, which are functions of VVV − 1T JJJVVV , we simply need
an estimate of VVV .
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3. The maximum likelihood estimators

We consider a model described as follows: all observations xxxij are indepen-
dent and

xxxij ∼ NpT (µµµi,VVV ⊗ΣΣΣ), (7)

where VVV is a T × T positive definite matrix and ΣΣΣ is a p × p positive
definite matrix i = 1, . . . ,K, j = 1, . . . , ni, n = n1 + · · ·+ nK > max(p, T ).
In this case the maximum likelihood estimation equations are of the form
(Srivastava et al., 2008):

µ̂µµi = vec(X̄XXi.) (8)

V̂VV =
1
np

K∑
i=1

ni∑
j=1

(XXXij − X̄XXi.)′Σ̂ΣΣ
−1

(XXXij − X̄XXi.) (9)

Σ̂ΣΣ =
1
nT

K∑
i=1

ni∑
j=1

(XXXij − X̄XXi.)V̂VV
−1

(XXXij − X̄XXi.)′ (10)

where XXXij is a p× T matrix of the form

XXXij = (xxxij1, . . . ,xxxijT ),

i = 1, . . . ,K, j = 1, . . . , ni, n = n1 + · · ·+ nK .
In this case no explicit maximum likelihood estimates of VVV and ΣΣΣ are avail-
able. The MLEs of VVV and ΣΣΣ are obtained by solving simultaneously and
iteratively equations (9) and (10). This is the so-called "flip-flop" algorithm.
The starting value of Σ̂ΣΣ can be based on the estimate

SSS =
1
nT

K∑
i=1

ni∑
j=1

(XXXij − X̄XXi.)(XXXij − X̄XXi.)′. (11)

The following iterative steps are suggested to obtain the maximum likeli-
hood estimates of VVV and ΣΣΣ.

Algorithm
Step 1 Get the initial covariance matrix Σ̂ΣΣ in the form (11).
Step 2 On the basis of the covariance matrix Σ̂ΣΣ compute the matrix V̂VV given
by (9).
Step 3 Compute the matrix Σ̂ΣΣ from equation (10) using the V̂VV obtained in
Step 2.
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Step 4 Repeat Steps 2 and 3 until convergence is attained.

We select the following stopping rule. Compute two matrices: (a) the
difference between two successive solutions of (9), and (b) the difference
between two successive solutions of (10). Continue the iterations until the
maxima of the absolute values of the elements of the matrices (a) and (b)
are smaller than pre-specified quantities.

4. Principal component analysis

Principal components are constructed on the basis of the matrix V̂VV ⊗ Σ̂ΣΣ
(Deręgowski and Krzyśko, 2009). If n > max(p, T ) then V̂VV ⊗ Σ̂ΣΣ is a positive
definite matrix with probability one, and all of the characteristic roots/eigen-
values of V̂VV ⊗ Σ̂ΣΣ are real and positive. One of the main reasons for interest
in the Kronecker product is the beautifully simple connection between the
eigenvalues and the eigenvectors V̂VV and Σ̂ΣΣ and V̂VV ⊗Σ̂ΣΣ (see e.g. Lancaster and
Tismenetsky, 1985, p. 412 or Ortega, 1987, p. 237). If α1, α2, . . . , αT are the
eigenvalues of V̂VV and β1, β2, . . . , βp are the eigenvalues of Σ̂ΣΣ, then eigenvalues
of V̂VV ⊗ Σ̂ΣΣ are the pT numbers αrβs, r = 1, 2, . . . , T , s = 1, 2, . . . , p.

If uuu = (u1, u2, . . . , uT )′ is an eigenvector of V̂VV corresponding to the
eigenvalue α and www = (w1, w2, . . . , wp)′ is an eigenvector of Σ̂ΣΣ corresponding
to the eigenvalue β, then an eigenvector γγγ of V̂VV ⊗ Σ̂ΣΣ associated with αβ is
γγγ = uuu⊗www = (u1www′, u2www′, . . . , uTwww′)′.

Let λ1 > λ2 > · · · > λpT > 0 be the ordered characteristic roots of V̂VV ⊗Σ̂ΣΣ.
Then there exists an orthogonal matrix ΓΓΓ = (γγγ1, γγγ2, . . . , γγγpT ), ΓΓΓΓΓΓ′ = IIIpT ,
such that ΓΓΓ′Ω̂ΩΩΓΓΓ = DDDλ = diag(λ1, λ2, . . . , λpT ).
Hence if we let

yyy =


y1
y2
...
ypT

 = ΓΓΓ′xxx =


γγγ′1
γγγ′2
...

γγγ′pT

xxx =


γγγ′1xxx
γγγ′2xxx
...

γγγ′pTxxx


then Cov(yyy) = DDDλ, and the components y1 = γγγ′1xxx, y2 = γγγ′2xxx, . . . , ypT =
γγγ′pTxxx are uncorrelated. The component y1 = γγγ′1xxx is called the first principal
component, y2 = γγγ′2xxx the second principal component, and so on. The
variance of yi is λi. Since λ1 + λ2 + · · · + λpT = tr(V̂VV ⊗ Σ̂ΣΣ), the sum of
the variance of the pT principal components is the same as the sum of the
variance of the old variables, measured at T different time points. Thus
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Table 2. Characteristics of varieties of winter rye

Characteristic Unit of measurement
Grain yield per plot g
Winterhardiness scale (1–9)

Heading number?
Plant height cm

1000 grain weight g
Falling number s
? number of days from the first of May to heading.

the components with smaller variances can be ignored without significantly
affecting the total variance, thereby reducing the number of variables from
pT to, say, k ¬ pT .

Since tr(V̂VV ⊗ Σ̂ΣΣ) −
∑k
j=1 λj =

∑pT
j=k+1 λj , the proportion of the total

univariate variance accounted for by k PCs is
∑k
j=1 λj/

∑pT
j=1 λj , which may

be used as a criterion for selecting a subspace of k components from pT .

5. Example

An experiment with populations of different varieties of winter rye was
carried out under the project “Analysis of genotypic and environmental
variation and genetic determinants of important characteristics in cereals”
commissioned by the Polish Ministry of Agriculture and Rural Development
(HOR hn 801-24/13), and specifically under task 3: “Analysis of geno-
typic and environmental variation and genetic determinants of important
characteristics in rye.”

Multi-year field and laboratory experiments were carried out in KrakÃşw.
A total of 100 caryopses were sown pointwise in 1 m2 plots, using four rep-
etitions. During vegetation, observations and evaluations were made con-
cerning yield, winterhardiness and susceptibility to disease, measurements
were made of plant height, and the time of heading was recorded as a mea-
sure of earliness. Grains were harvested from the plots using a HEGE 125
micro-harvester. The harvested grains were weighed at 15% humidity, the
weight of 1000 grains was determined, and the falling number was analyzed
as a measure of resistance to premature sprouting prior to harvesting and
as a measure of the baking quality of the flour. (See Table 2.)

The experiment was conducted on the nine most valuable open-pollina-
ting varieties of winter rye from the register of cultivable varieties, as well
as two special populations, SMH-49 and SMH-75, which are used as testers
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in genetic studies (see Table 3). The varieties of winter rye are described
(with reference to a single-year study) in Ukalski and Śmiałowski (2011).

Table 3. Varieties of winter rye

No. Name
1. Dańkowskie Złote
2. Dańkowskie Diament
3. Słowiańskie
4. Bosmo
5. Agrikolo
6. Hegro
7. Kier
8. SMH-49
9. SMH-75
10. Amilo
11. Rostockie

For each of the six characteristics separately, and for all characteristics
simultaneously, the following hypotheses were tested:

1. no variety effect;
2. no year effect;
3. no interaction between varieties and years.
The values of the respective test functions and numbers of degrees of

freedom are given in Tables 4-9.

Table 4. Approximate MANOVA (grain yield per plot

Hypothesis Wilks’ Λ χ2 df p-value
Varieties 0.6801 14.26 10.00 0.1613
Years 0.2325 77.65? 1.65 0.0000
Years × Varieties 0.7675 16.31 16.48 0.4657

Table 5. Approximate MANOVA (winterhardiness)

Hypothesis Wilks’ Λ χ2 df p-value
Varieties 0.5555 21.75 10.00 0.0164
Years 0.5732 30.60? 1.70 0.0000
Years × Varieties 0.8661 9.15 17.01 0.9357

The values of the test function and degrees of freedom for the six char-
acteristics jointly are given in Table 10.
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Table 6. Approximate MANOVA (heading)

Hypothesis Wilks’ Λ χ2 df p-value
Varieties 0.3526 38.57? 10.00 0.0000
Years 0.0240 212.41? 1.76 0.0000
Years × Varieties 0.5506 39.30? 17.59 0.0021

Table 7. Approximate MANOVA (plant height)

Hypothesis Wilks’ Λ χ2 df p-value
Varieties 0.3773 36.07? 10.00 0.0000
Years 0.4630 47.34? 1.89 0.0000
Years × Varieties 0.7219 23.15 18.95 0.2286

Table 8. Approximate MANOVA (1000 grain weight)

Hypothesis Wilks’ Λ χ2 df p-value
Varieties 0.5031 25.42? 10.00 0.0046
Years 0.5567 34.99? 1.84 0.0000
Years × Varieties 0.7157 23.09 18.43 0.2065

Table 9. Approximate MANOVA (falling number)

Hypothesis Wilks’ Λ χ2 df p-value
Varieties 0.4508 29.48? 10.00 0.0010
Years 0.0589 148.97? 1.63 0.0000
Years × Varieties 0.4736 45.54? 16.30 0.0001

? significant at α = 0.01.

Table 10. Approximate MANOVA

Hypothesis Wilks’ Λ χ2 df p-value
Varieties 0.0098 159.50? 60.00 0.0000
Years 0.0018 376.28? 11.46 0.0000
Years × Varieties 0.0784 175.91? 114.64 0.0002

Next, for each characteristic separately and for all characteristics simul-
taneously, principal components were constructed, and the varieties were
presented as points in the system based on the first two principal com-
ponents. A minimum spanning tree (dendrite) (Florek et al. (1951) and
Kruskal (1956)) was constructed on these points (see Figures 1 and 2). The
mean and the standard deviation of the lengths of edges in the dendrite
were computed. Edges whose length is twice as great as the mean plus two
standard deviations are shown with a dotted line. This indicates the division
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Falling number1000 grain weight

Heading Plant height

Grain yield per plot Winterhardiness

Figure 1. Projection of the 11 selected varieties of winter rye onto the first two
principal components, with dendrite (each characteristic separately)

of the varieties into homogeneous groups.
In the case of the six characteristics considered simultaneously, in three

consecutive years, the 11 varieties form three homogeneous groups:
1. variety no. 10 (Amilo);
2. variety no. 3 (Słowiańskie);
3. all other varieties.
Słowiańskie is a winter rye variety bred under a special experimental pro-

gram which aims to increase resistance to fungal diseases of the stalk leaves,
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Figure 2. Projection of the 11 selected varieties of winter rye onto the first two
principal components, with dendrite (all characteristics simultaneously)

and having a short straw to increase resistance to lodging. This means that
in extreme years with significant amounts of rainfall, when the conditions
favor the occurrence of diseases and lodging, this variety demonstrates its
superiority to other open-pollinating varieties of winter rye.
Amilo is a winter rye variety bred under a special experimental program
which aims to increase resistance to premature grain sprouting. It produces
grains with superior baking qualities. Amilo is based on source genetic ma-
terials originating in Sweden, in particular the Othello variety.
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