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SUMMARY 

In this paper, we illustrate an application of Ascendant Hierarchical Cluster Analysis 

(AHCA) to complex data taken from the literature (interval data), based on the 

standardized weighted generalized affinity coefficient, by the method of Wald and 

Wolfowitz. The probabilistic aggregation criteria used belong to a parametric family of 

methods under the probabilistic approach of AHCA, named VL methodology. Finally, 

we compare the results achieved using our approach with those obtained by other 

authors. 

Key words: Ascendant Hierarchical Cluster Analysis, Symbolic Data, Interval Data, 

Affinity Coefficient, VL Methodology. 

1. Introduction 

The increasing use of databases, often large ones, in diverse areas of study 

makes it pertinent to summarize data in terms of their most relevant concepts. 

These concepts may be described by types of complex data, also known as 

symbolic data. In a symbolic data table, lines correspond to symbolic objects 

and columns to symbolic variables, which may assume not just one value, as 

usual, but multiple values, such as subsets of categories, intervals of the real 

axis, or frequency distributions. Furthermore, symbolic data tables may describe 
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heterogeneous data and their cells may contain data of different types that can 

be weighted and linked by logical rules and taxonomies (Bock & Diday, 2000).  

Relational databases are an important source of symbolic objects when we 

wish to study the properties of a set of data units. Symbolic data arise in a 

number of different ways (for example, as the result of aggregation of large data 

sets to obtain a data set of manageable size, or as a result of some scientific 

question(s) of interest).  

Let E= {1,..., N} be a set of data units described by p interval variables, 

Y1,...,Yp . A symbolic variable Yj is regarded as an interval variable if for all kE 

the subset Yj (k) is an interval of the real data set . In this paper, we are dealing 

with this type of variable, often present in real data sets.  

The aim of cluster analysis (of classical data as well as of symbolic data) is 

to build, from a (classical or generalized) data matrix (N   p), a classification 

which is appropriate for a set E of data units (objects) or a set Y of variables, 

with the purpose of obtaining “homogenous” clusters of elements in a 

population  or E, so as to allow elements of the same cluster to present great 

similarity, whereas elements of different clusters will be much more different. 

Hierarchical methods yield a nested sequence of partitions of the elements to be 

classified. On the other hand, the partitional methods seek to obtain a single 

partition of the input data into a fixed number of clusters. The latter usually 

produce clusters by (locally) optimizing an adequacy criterion.  

Many measures of proximity between symbolic objects have been proposed. 

An exhaustive review of some well-known measures of dissimilarity between 

symbolic objects is reported in Esposito et al. (2000). In this paper, we address 

only the case of clustering of symbolic data units described by variables whose 

values are intervals. Some dissimilarity coefficients for the particular case of 

interval data can be found in the literature (see e.g. Chavent and Lechevallier, 

2002; Chavent et al., 2003; Souza and De Carvalho, 2004; De Carvalho et al., 

2006a, 2006b).  

Bacelar-Nicolau et al. (2009) use a similarity coefficient, namely, a 

generalized affinity coefficient (Matusita, 1951; Bacelar-Nicolau, 1980, 1988, 
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2000), for clustering data units described by interval variables, within the scope 

of hierarchical clustering of complex and heterogeneous data. In this paper, we 

again use the generalized affinity coefficient, as the basis of hierarchical 

clustering methods for interval data sets. Given the affinity similarity matrix, an 

interval data set can be classified through classical agglomerative hierarchical 

algorithms or probabilistic ones. The probabilistic aggregation criteria used 

(AVL, AV1 and AVB) under the probabilistic approach of AHCA, named VL 

methodology (V for Validity, L for Linkage), resort essentially to probabilistic 

notions for the definition of the comparative functions. In fact, the VL-family is 

a set of agglomerative hierarchical clustering methods, based on the cumulative 

distribution function of basic similarity coefficients (Bacelar-Nicolau, 1980, 

1988; Nicolau, 1983; Nicolau and Bacelar-Nicolau, 1998).  

Section 2 contains the formula of the weighted generalized affinity 

coefficient for the case of interval variables. Section 3 contains the formula of 

the asymptotic standardized weighted generalized affinity coefficient, 

considering a permutational reference hypothesis R based on the limit theorem 

of Wald and Wolfowitz. In Section 4, we present the main results obtained with 

the application of Ascendant Hierarchical Cluster Analysis (AHCA) to interval 

data, based on the standardized weighted generalized affinity coefficient and on 

probabilistic aggregation criteria in the VL methodology. Finally, Section 5 

contains some concluding considerations about the work and its results. 

2. Weighted Generalized Affinity Coefficient for the Case  

of Interval Data 

Based on the affinity coefficient between two discrete probability distributions 

as proposed by Matusita (1951), Bacelar-Nicolau (1980, 1988) introduced the 

affinity coefficient in Cluster Analysis as a basic similarity coefficient between 

the pairs of columns or lines of a data matrix, according to the set of elements 

that we wish to classify. Later on she extended that coefficient to different types 

of data, including complex data (symbolic data) and variables of mixed types 

(heterogeneous data), possibly with different weights (Bacelar-Nicolau, 2000; 
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Bacelar-Nicolau et al., 2009, 2010). The extension of the affinity coefficient to 

the case of symbolic data (in Symbolic Data Analysis) is called the weighted 

generalized affinity coefficient.  

The weighted generalized affinity coefficient a(k,k) between a pair of 

statistical data units k, k’  D (k, k’=1,…,N), may be defined as follows:  
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where: aff (k,k’;j) is the generalized local affinity between k and k’ over the j-th 

variable, mj represents the number of modalities of a generalized sub-table 

associated with the j-th variable; xkjl is a real non-negative value (a suitable 

adaptation of the formula (1) may be considered if real or frequency negative 

values appear) whose meaning depends on the type of the j-th variable (e.g. a 

discrete variable described by a frequency distribution or histogram, a binary 

vector or an interval variable);  
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and  j are weights such that 0  j  1,   j = 1. Either the local affinities or 

the whole weighted generalized affinity coefficient take values in the interval 

[0,1] and satisfy a set of proprieties which characterize affinity measurement as 

a robust similarity coefficient (e.g. Bacelar-Nicolau (2002), Bacelar-Nicolau  

et al. (2009)). 

It should be emphasized that the weighted generalized affinity coefficient 

a(k,k) supports in a consistent way the use of Cluster Analysis models for 

statistical data units, when mixed and complex variable types are present in a 

database. In other words, the same coefficient – hence a unique algorithm – 

works for those variable types (Bacelar-Nicolau et al., 2009, 2010). However, 

we concentrate here on interval data. In the particular case of symbolic variables 

of interval type, Bacelar-Nicolau defined the weighted generalized affinity 

coefficient in the following way (for details, see Bacelar-Nicolau et al., 2009, 

2010): 
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Let E= {1,..., N} be a set of data units described by p interval variables 

Y1,...,Yp and let Yj be an interval variable, where j belongs to {1,…,p}. Each 

cell (k , j) of the data matrix contains an interval Ikj=[akj, bkj] of the real axis,, 

with k =1,…,N and j=1,…,p, and the k-th row ([ak1, bk1], ..., [akp, bkp]) describes 

the data unit k (see Table 1). 

The weighted generalized affinity coefficient between a pair of data units k, 

k’ (k, k’=1,…,N) is given by: 

,
I.I

II
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where
kjI  and

k'jI  symbolize, respectively, the ranges of the intervals kjI and 

k'jI .  

It should be noted that formula (2) arises as a particular case of formula (1) 

when we are dealing with variables of interval type, as is demonstrated in 

Bacelar-Nicolau et al. (2009, 2010), from the decomposition of each interval 

into a suitable number of elementary intervals. 

3. Asymptotic Standardized Weighted Generalized Affinity 

Coefficient 

The values of a proximity matrix and clustering results are strongly affected by 

the modification of the scales of the variables. Usually, some standardization 

must be performed prior to the clustering process in order to attain an 

‘objective’ or ‘scale-invariant’ result. Under this condition, standardization 

greatly improves the performance of the clustering method (De Carvalho et al., 

2006a).  

On the assumption of a permutational reference hypothesis R based on the 

limit theorem of Wald and Wolfowitz (Fraser, 1975), the random variable 

associated with aff(k,k;j) has asymptotic normal distribution, and a standardized 

weighted generalized affinity coefficient aWW(k,k)  by the method of Wald and 
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Wolfowitz may be used, instead of a(k,k) (see e.g. Bacelar-Nicolau, 1988; 

Bacelar-Nicolau et al., 2009; Bacelar-Nicolau et al., 2010).  

 
Table 1. Symbolic data table (interval data) 

 Y1  Yj  Y1p 

1 [a11,b11]  [a1j,b1j]  [a1p,b1p] 

      
k [ak1,bk1]  [akj,bkj]  [akp,bkp] 

      
N [aN1,bN1]  [aNj,bNj]  [aNp,bNp] 

 

The standardized weighted generalized affinity coefficient by the method of 

Wald and Wolfowitz (Bacelar-Nicolau et al., 2010) is given by the formula: 

);',(.)',()',( *

1

* jkkaffkkakka WWj

p

j
WW 



 ,                                   (3) 

where the local asymptotic normal affinity coefficient );',(* jkkaffWW  also 

satisfies the main properties of a similarity coefficient. Furthermore, the 

coefficient aWW(k,k) allows us to define a probabilistic coefficient within the VL 

methodology, under the approach begun by Lerman (1972, 1981) and developed 

by Bacelar-Nicolau (e.g. 1980, 1987, 1988) and Nicolau (e.g. 1983, 1998).  

4. Case Study: Freshwater fish data set (Ecotoxicology data set) 

The Freshwater fish data set (Ecotoxicology data set) set consists of a set of 12 

species of freshwater fish described by 13 interval variables. Table 2 shows part 

of the corresponding data matrix (De Carvalho et al., 2006b); the complete data 

matrix is available in the SODAS (Symbolic Official Data Analysis System) 

Software. According to De Carvalho et al. (2006b), several studies carried out 

in French Guyana indicated abnormal levels of mercury contamination in some 

Amerindian populations. This contamination was connected to their 

consumption of contaminated freshwater fish. In order to study this 

phenomenon, the data set mentioned above was collected by researchers from 
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the LEESA (Laboratoire d’Ecophysiologie et d’ Ecotoxicologie des Systèmes 

Aquatiques) laboratory.  

 
Table 2. Freshwater fish data set 

Interval Individuals /Labels   

Variable Ageneiosusbrevifili Cynodongibbus … Myleusrubripinis 

Length [22.5:35.5] [19:32] … [12.3:18] 

Weight [170:625] [77:359] … [80:275] 

Muscle [1425:5043] [2393:8737] … [8:35] 

Intestine [333:2980.06] [0:2653] … [0:0] 

Stomach [0:1761.1] [478.34:10860.7] … [10.76:41.93] 

Gills [393.71:853.1] [354.22:1976.38] … [0:9.45] 

Liver [642:7105.77] [2684.83:43014] … [190.12:394.52] 

Kidneys [0:3969.05] [1437.82:27514.6] … [72.3:112.54] 

Liver/Muscle [0.45:1.41] [1.12:4.92] … [7.12:30.35] 

Kidneys/Muscle [0:2.02] [0.6:3.24] … [2.42:10.23] 

Gills/Muscle [0.15:0.3] [0.15:0.24] … [0:0.85] 

Intestine/Muscle [0.23:0.63] [0:0.5] … [0:0] 

Stomach/Muscle [0:0.55] [0.2:1.24] … [0.31:4.33] 

 

The symbolic objects (species) were grouped into four a priori clusters 

according to diet. The a priori classification is as follows (De Carvalho et al., 

2006b):  
 

Carnivorous: 

1-Ageneiosusbrevifili/C   2-   Cynodongibbus/C   3-   Hopliasaimara/C  

4-Potamotrygonhystrix/C 

Detrivorous: 

7-Dorasmicropoeus/D   8-   Platydorascostatus/D   9-   Psedoancistrusbarbatus/D  

10-Semaprochilodusvari/D 

Omnivorous: 

5-Leporinusfasciatus/O   6- Leporinusfrederici/O 

Herbivorous: 

11-Acnodonoligacanthus/H   12- Myleusrubripinis/H 

In order to apply the affinity coefficient aWW(k,k), with equal weights 

(j=1/p), a transformed data matrix was computed, according to that described 

in Bacelar-Nicolau et al. (2009, 2010). Each interval variable (generalized 
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column) gave a sub-table with a suitable number of columns corresponding to a 

set of elementary intervals. The affinity coefficient was combined with three 

probabilistic aggregation criteria, AVL, AV1, and AVB (Bacelar-Nicolau, 1988; 

Nicolau, 1983; Nicolau and Bacelar-Nicolau, 1998).  

Table 3 represents the similarity matrix, and Figures 1 and 2 show the 

dendrograms associated with the AVL and AV1/AVB aggregation criteria 

respectively. 

 
Table 3. Similarity matrix: coefficient aWW(k,k)

  

 1/C 2/C 3/C 4/C 5/O 6/O 7/D 8/D 9/D 10/D 11/H 12/H 

1/C  1.00            

2/C 1.26  1.00           

3/C 2.02 1.53 1.00          

4/C 0.51 0.15 1.17 1.00         

5/O 0.26 -0.16 -0.36 -0.32  1.00        

6/O 0.30 -0.34 -0.36 0.25 0.38  1.00       

7/D 0.92 0.96 0.90 1.49 0.31 0.06  1.00      

8/D 0.46 0.36 0.24 1.68 0.39 0.28 2.01  1.00     

9/D -0.76 -0.30 -0.93 0.39 -0.14 -0.21 -0.15 0.30  1.00    

10/D 0.59 0.33 0.08 0.93 0.12 0.22 0.98 1.15 -0.19  1.00   

11/H -1.22 -0.71 -0.98 -0.12 -0.33 0.03 -0.05 0.54 1.41 -0.11  1.00  

12/H -0.88 -0.41 -0.71 -0.49  0.40 -0.55 -0.38   0.16  0.30 -0.13  0.98 1.00 

 

In this section, we obtain a comparison between the results of AHCA based 

on the generalized affinity coefficient, and those obtained by De Carvalho et al. 

(2006b) based on the dynamic clustering algorithm (partitional method) 

considering different distances between vectors of intervals: adaptive Hausdorff 

distance, non-adaptive Hausdorff distance, one-component adaptive city-block 

distance and non-adaptive city-block distance. These results are also compared 

with the a priori classification. 

Table 4 and Figures 1 and 2 show that the four main clusters obtained from 

the application of the asymptotic standardized generalized affinity coefficient 

aWW(k,k) combined with the AVL, AV1 and AVB methods are all the same, and 

they may explain the partition given by the L1 and Hausdorff adaptive methods 

considered in De Carvalho et al. (2006b): all the methods find the a priori 
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classification, except for the two elements 4/C and 9/D. The L1 and Hausdorff 

non-adaptive methods give a different result. Furthermore, the cluster {9/D 

11/H 12/H} was found in all partitions into four clusters obtained from all of the 

clustering methods.  

 
Table 4. Clustering results for the Freshwater fish data set  

Method Cluster 1 Cluster 2 Cluster 3 Cluster 4 

AHCA (aWW(k,k) + AVL) 

AHCA (aWW(k,k) + AV1) 

AHCA (aWW(k,k)+ AVB) 

 

5/O 6/O 

 

9/D 11/H 

 12/H 

 

1/C 2/C 

 3/C 

 

4/C 7/D 

8/D 10/D 

L1 (non –adaptive) 

Hausdorff (non –adaptive) 

1/C 4/C 

7/D 8/D  

10/D 

2/C 3/C 5/O 6/O 

9/D 11/H  

12/H 

L1 (adaptive)  

Hausdorff (adaptive) 

5/O 6/O 9/D 11/H 

 12/H 

1/C 2/C 

 3/C 

4/C 7/D  

8/D 10/D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Dendrogram obtained with AVL 

                    Levels 1 a 11 

  1/C   --*--*                                                          

             |--------*                                                 

  3/C   --*--*        |-----------*                                     

                      |           |                                     

  2/C   --*-----------*           |                                     

                                  |-----*                               

  4/C   --*-----*                 |     |                               

                |--------*        |     |                               

  7/D   --*     |        |        |     |                               

          |-----*        |--------*     |                               

  8/D   --*              |              |                               

                         |              |                               

  10/D  --*--------------*              |                               

                                        |                               

  5/O   --*--------------------*        |                               

                               |-----*  |                               

  6/O   --*--------------------*     |  |                               

                                     |--*                               

  9/D   --*--------*                 |                                  

                   |--------*        |                                  

  11/H  --*--------*        |--------*                                  

                            |                                           

  12/H  --*-----------------*                                           
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                    levels 1 a 11 

  1/C   --*--*                                                          

             |--------*                                                 

  3/C   --*--*        |--------*                                        

                      |        |                                        

  2/C   --*-----------*        |                                        

                               |--------*                               

  4/C   --*-----*              |        |                               

                |--------*     |        |                               

  7/D   --*     |        |     |        |                               

          |-----*        |-----*        |                               

  8/D   --*              |              |                               

                         |              |                               

  10/D  --*--------------*              |                               

                                        |                               

  5/O   --*-----------------------*     |                               

                                  |--*  |                               

  6/O   --*-----------------------*  |  |                               

                                     |--*                               

  9/D   --*--------*                 |                                  

                   |--------*        |                                  

  11/H  --*--------*        |--------*                                  

                            |                                           

  12/H  --*-----------------*                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Dendrogram obtained with AV1/AVB 

5. Concluding Remarks 

In this paper, we have presented some applied results obtained from Ascendant 

Hierarchical Cluster Analysis (AHCA) of symbolic objects described by 

interval data, in order to illustrate the effectiveness of AHCA based on the 

standardized weighted generalized affinity coefficient by the method of Wald 

and Wolfowitz, for symbolic data.  

We have analyzed a real data set and compared the results obtained using 

this coefficient with the results obtained by other authors with different 

methods. The Ascendant Hierarchical Cluster Analysis (AHCA) methods based 

on the affinity coefficient are shown to be quite robust even in the case of a 

small sample. In fact, similar dendrograms were obtained considering the three 

probabilistic aggregation criteria (AVL, AV1, and AVB), and all of the three 

hierarchical methods found the a priori classification, as did the best non-

hierarchical methods from De Carvalho et al.  
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