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The information-theoretical entropy, also called the “classical” 

entropy, was introduced by Wehrl in terms of the Glauber coherent states 

(CSs) z| , i.e. the CSs corresponding to the one-dimensional harmonic 

oscillator (HO-1D). In the present paper, we have focused our attention on 

the examination of the information-theoretical entropy, i.e. the Wehrl 

entropy, for both the pure and the mixed (thermal) states of some quantum 

oscillators. 

 

 

1. Introduction 

  The information-theoretical entropy (or Wehrl entropy) was introduced by Wehrl [1] in 

terms of the Glauber coherent states (CSs)  z|  of the one-dimensional harmonic oscillator 

(HO-1D). In the present paper, we shall focus on the examination of the information-theoretical 

entropy for the two types of states: the pure and the mixed (thermal) states of some quantum 

oscillators: the one-dimensional harmonic oscillator (HO-1D) and the pseudoharmonic oscillator 

(PHO).  

       In terms of a general coherent state ,| z  , the Wehrl entropy, defined via the 

Husimi’s function ),|(| 2 zQ , can be written as 

 

),|(|ln),|(|),( 22  zQzQzdSW                                                    (1) 
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where   is a parameter which characterize the CS, );(  zd  is the positive defined integration 

measure in the complex space of variable )iexp(|| zz  , with the corresponding weight 

function );|(| 2 zh ..                                    

       The general structure of a CS ,| z  is [2] 
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where M and the structure constants );(  n  are positive quantities. The normalization 

function   zN  and the overlap of two CSs (where   is also the complex variable) are: 
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        For the pure CSs the corresponding density operator is just the projector onto the complex 

space of these states: 

|,,|);,()(  zzzzpure                                              (4) 

 

and the Husimi’s function is 22)( |;|;|);|(|   znzQ pure

n .
.                                                       

        For a mixed state, the associated density operator   in a diagonal form with respect to the 

CSs is: 

  |,),|(|,|),( 2  zzPzzd                                              (5) 

 

where ),|(| 2 zP  is the normalized P- quasi distribution function.  

        The Q-function or the Husimi’s function is in fact the diagonal element of the density 

operator in the CSs representation and consequently it can be connected with the normalized P- 

quasi distribution function as follows: 
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so that the information-theoretical entropy WS  can be calculated if we know the P- quasi 

distribution function.  

       Our definition of the Husimi’s Q -function is slightly different to other authors (see, e.g. [3]) 

due to the absence of the factor 1 from the integration measure. So, the difference between our 

information-theoretical entropy WS and that of [3], )(Mir

WS is just the term ln , i.e.: 

W

Mir

W SS  ln)( . 

        The aim of the present paper is to calculate the information-theoretical entropy WS
 
by 

beginning on the Husimi’s Q-function for pure and mixed (thermal) states for two kinds of 

quantum oscillators: HO-1D and PHO in the CSs representation ,| z . Due to the presence of  

),|(|ln 2 zQ , some integrals appearing in the expression of WS  are very hard if not impossible to 

be solved in a closed form. Consequently, in order to calculate the information-theoretical 

entropy, it must use some appropriate approximations.  

 

2. General theory 

       a) Pure States 

       The density operator for the pure Fock states is |;;|)(  nnpure

n   and the Husimi’s 

function in the representation of the Fock-vectors is 
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and the information-theoretical entropy of the pure Fock state in the Fock-vectors representation 

is zero: 0)( pureS . Consequently, the information-theoretical or Wehrl entropy in the case of a 

discrete variable coincides with the Shannon entropy so that “the Shannon entropy for any Fock 

state is equal to zero” [4].  

   In terms of the general CSs representation, the normalized Husimi’s function can be 

written as follows: 
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so that the information-theoretical entropy becomes 
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  ),|(|ln),|(|),()( 2)(2)()(  zQzQzdnS pure

n
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n
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          If we consider the pure general coherent states, the corresponding projector is 

|;;|)(  zzpure

z   and the Husimi’s function in representation of  the CSs  ;|  becomes       
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          Consequently, the information-theoretical entropy for this case is 
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          However, in these cases the integrals are complicated because of the presence of some 

special functions (e.g. hypergeometric and Bessel functions). 

 

          b) Mixed States 

          As a representative example of the quantum system in the mixed states we consider a 

quantum oscillator’s ideal gas (of HO-1D or of PHO) in thermodynamic equilibrium with a 

thermostat at temperatureT . For such quantum systems the energy spectrum is 

linear bnaEn )( , with )(),(  bbaa  , and the mixed states are the thermal states 

characterized by the normalized density operator with the canonical probability distribution: 
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          Here the quantity    1
1


 aen  is the mean number of photons (bosons)  or Bose - 

Einstein distribution function, i.e. the mean photon number of thermal (blackbody) radiation at 

thermal equilibrium at temperature T .      
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          The normalized Husimi’s function in the representation of the Fock-vectors ;| n  is 

expressed through the diagonal elements of the density operator for mixed (thermal) states: 
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and the information-theoretical entropy for both cases (HO-1D and PHO) coincides with the von 

Neumann entropy: 
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          As regarded the normalized Husimi’s function for the case of the linear spectra (for which 

 ,...,2,1,0n ) in the general CSs representation, this can be expressed as 
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where the constant )(nC is different for HO-1D  and for PHO.  

          Consequently, the information-theoretical entropy for the mixed states is then 
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By particularizing the normalization constant )(nC of the Husimi’s function ),|(| 2 zQ  

and the normalization function   zN  of the CSs, we can directly compute the information-

theoretical entropy. 
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3. The HO-1D versus the PHO through the information-theoretical entropy 
 

        The potential of the one-dimensional harmonic oscillator (HO-1D) with the mass m  and 

the angular frequency   in the variable x  is  

2
2
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2
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m
xV HO 
                                                          (17) 

 

which allows the construction of three kinds of CSs defined in three manners: a) as the 

eigenvectors of the lowering operator a  ; b) as the result of the action of the displacement 

operator )exp()( azazzD    and c) as the states which minimize the uncertainty relations 
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px  . For HO-1D, all the three manners lead to the same canonical coherent 

state. 

         For the HO-1D, we have 0  and M . Consequently, all the three definitions of CSs 

are equivalent in the sense that they lead to the same expression for the CSs, denoted by z| . 

They have all minimal properties imposed to the CSs by Klauder’s prescriptions [5]: a) 

continuity in the complex variable )iexp(|| zz  ; b) normalization; c) completeness. So, we 

have: 
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          Moreover, the pseudoharmonic oscillator (PHO) potential is a central field potential in 

the coordinate r  :  
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where m  is the reduced mass of the quantum system described by the PHO potential (e.g. the 

diatomic molecule), 0r  is the equilibrium distance, and J  is the rotational quantum number.  

          The quantum group associated with the PHO potential is SU(1,1) [6] and, consequently, 

three different kind of CSs can be built: a) the CSs of the Barut-Girardello kind (BG-CSs); b)  

the CSs of the Klauder-Perelomov kind (KP-CSs)  and c) the CSs of the Gazeau-Klauder kind 

(GK-CSs). 
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3.1 The Information-Theoretical Entropy for Pure States 

Generally, for a pure Fock state ;| n , the Husimi’s function in the general CSs 

representation is: 

2)(2)( |;|;|;||;);|(|   znzzzQ purepure

n   .                               (20) 

 

            For the HO-1D, the Fock vectors are  nn |0;|  ; in the CSs representation, the 

Husimi’s function is just the Poisson distribution with the parameter 2|| z : 
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  and we obtain that the information-theoretical entropy is: 
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            If we denote xz 2|| , here appear an integral which can be solved by using an auxiliary 

integral: 
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            The final result contains Euler’s digamma function )1( n  [3]: 
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           For the PHO, three kinds of CSs exist.  

           a.The Barut-Girardello coherent states (BG-CSs) are defined as eigenvectors of the 
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           The Husimi’s function for a pure Fock-state kn;|  in the representation of BG-CSs is [6] 
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which leads to the following expression for the information-theoretical entropy: 
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          The first integral can be solved exactly, the third integral can be solved only in an 

approximate way, and  for the second one we need an auxiliary integral:   
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        In the end, the following result yields: 
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        b. The Klauder-Perelomov coherent states (KP-CSs) are defined by the action of the 
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development in the Fock-vectors basis is  [8]: 
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        The Husimi’s function for a pure Fock-state kn;|  in the representation of KP-CSs is  
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which leads to the following expression for the information-theoretical entropy: 
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        The first integral are solved by using Eq. (3.251.1) of the book [7] and the last two integrals 

by using an auxiliary integral:
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         Finally, we obtain: 
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where )(/)()( anaa n   are the Pochhammer symbols. 

 

        c.  The Gazeau-Klauder coherent states (GK-CSs) have been built by performing some 

modifications in the usual definition of the CSs [9]: the parametrization of the usual CSs in a 

single complex number  z  is extended by replacing  z  by two independent real numbers 0J  

and   , namely )iexp(  Jz  and obtaining the CSs ;| J  . In a previous paper 

[10] we have concretely obtained the GK-CSs for the PHO as: 
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where )(2 knen   are the dimensionless energy eigenvalues of the PHO,  xkF ;1;111   is the 

confluent hypergeometric function. The integration measure for GK-CSs is 
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           The Husimi’s function for a pure Fock-state kn;|  in the representation of GK-CSs is 

defined as 
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           Consequently, the following expression for the information-theoretical entropy becomes: 
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         Then, the final result is 
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where the last integral can be solved only in a certain approximation.  

        Generally, for a mixed (thermal) state for HO-1D we have   )|exp(| 2zz  N  and 

  1
1)(


 nnC then, we obtain for the information-theoretical entropy [3]: 

)1ln(1)()(  nnS HO
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3.2 The Information-Theoretical Entropy for Mixed (Thermal) States 

         In the case of the mixed (thermal) state for BG-CSs of PHO we have 
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so that Eq. (2.15), with the help of integral (6.575.5) from the book [7], leads to  
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where )()(

3,2 nI BG are integrals of the following manner 
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and where )1/(  nnA  for )()(

2 nI BG  and 1A  for )()(

3 nI BG . Due to the existing logarithm 

function, these integrals can be solved only approximately. 

In the case of the mixed (thermal) state for KP-CSs of PHO we have 
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By applying again Eq. (2.15) and (3.197.3) from [7], the following result yields: 
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The appearing integrals )()(

3,2 nI KP  are of the following kind: 
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with 1)1(  nnC  and 1D  for )()(

2 nI KP  and 1)1(  nnD  for )()(

3 nI KP . These integrals can 

be solved by appealing to the auxiliary integrals, e.g.: 
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 where we have used the integral (3.197.3) from  [7]. For the differentiation we have used the 

following rules: 
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for solving the integrals )()(

3,2 nI KP . Finally, the information-theoretical entropy for the case of the 

thermal states of PHO in the KP-CSs representation is 
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 In the case of the mixed (thermal) state for GK-CSs of PHO we have [10] 

 

     1

11 2/;1;1


 JkFJ(GK)N   ;       1)( )1()(  nnC GK                           (53) 

 

and we lead to the following final expression for the information-theoretical entropy, where 
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         The final result is obtained when by using the integrals of the following kind:  
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and where  1)1(  nnA  and  1)1(  nnB  for  );()(

2 knI GK   and 1B   for );()(

2 knI GK .   

 Of course, these two integrals cannot be solved exactly, only approximately or by 

computational methods. 

 

4. Concluding remarks 

One of the most fundamental concepts of quantum mechanics, with applications in many 

branches of physics (quantum optics, quantum information, atomic and molecular physics  and 

so on) is the quantum entropy, particularly, the Wehrl entropy. The Wehrl entropy is in fact the 

classical informational-entropy associated with a quantum system, in terms (or in representation) 

of coherent states [11]. 

Based on the definition of the informational-theoretic entropy in terms of the Husimi Q -

function, in the paper we have deduced and examined the expressions of this kind of entropy for 

pure as well as mixed (thermal states) for two kinds of quantum systems: the quantum ideal gas 
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of the one-dimensional harmonic oscillators (HO-1D) and the pseudoharmonic oscillators 

(PHO), respectively, at canonical equilibrium at temperature T with the environment. We have 

calculated the informational-theoretic entropy WS  for some common optical fields, in particular, 

Fock states and coherent states for HO-1D and for three kinds of states of PHO: Barut-

Girardello, Klauder-Perelomov and Gazeau-Klauder.  

Due to the presence of the terms containing );|(|ln 2 zQ  in the expression of the 

entropy WS , which implies some special functions (hypergeometric or Bessel functions), some 

integrals are impossible to be solved in a close form. Consequently, in order to calculate them, 

we need to use either some approximations of the special functions or the computational 

methods. One can observe that, on the one hand, all the expressions of the informational-

theoretic entropy for the pure states in the representation of the coherent states strongly depend 

on the energy quantum number n  through the term !ln n . On the other hand, all the expressions 

of the informational-theoretic entropy for the thermal states contain the term )1ln( n  because 

all the Q -functions have the same normalization constant 1)1( n which shows the strong 

dependence on the equilibrium temperatureT .      
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