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The article presents some new aspects and experience on the use of 

computer in teaching general relativity and cosmology for undergraduate 

students (and not only) with some experience in computer manipulation. 

Some years ago certain results were reported [1] using old fashioned 

computer algebra platforms but the growing  popularity of graphical 

platforms as Maple and Mathematica forced us to adapt and reconsider 

our methods and programs. We will describe some simple algebraic 

programming procedures  (in Maple with GrTensorII package) for 

obtaining  and the study of some exact  solutions of the Einstein 

equations in order to convince a dedicated student in general relativity 

about the utility of a computer algebra system. 

 

  

1. Introduction 

Computational physics it is today recognized as  a new branch of physics and. A branch 

of the computational physics I the computational relativity i.e. doing general relativity on the 

computer. Usualy computational relativity includes both algebraic computing (i.e. 

manipulation of mathematical expressions as tensors, polynomials, functions, etc.   in 

symbolic form) and numerical computation (i.e. numerical simulations with/of Einstein 

equations in concrete systems). The main reason for the use of computer facilities in general 

relativity [2] is related to the complex structure of the Einstein equations (10 second order 

nonlinear partial differential equations) which impose long, time consuming, cumbersome 

and not straightforward computing manipulations. The development of computer science with 

advanced computing platforms (as Maple is) done possible both types of computation 

(symbolic and numerical) to do in general relativity for a large spectra of applications. 

On the other side of the story, teaching students (even graduates) general relativity 

could be a difficult task, mainly because of the huge mathematical formalism necessary 

(differential geometry, tensorial algebra etc.). This make students reluctant to enter in such an 

adventure. Some years ago we reported [1] our experience in teaching undergraduate students 
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general relativity using REDUCE platform. Unfortunately, our good results and experience 

was not possible to extend, because REDUCE is no more on the market (if still exist it has a 

primitive graphical interface and restricted facilities to do high level numerical computations 

(simulations, animations, etc.). Maple platform [9] becomes more popular – actually we teach 

in the computational physics lab our students Maple and its use for physics.  As a 

consequence we had to adapt our methods in teaching general relativity with Maple – of 

course using also GrTensorII package, a free software embedded in Maple for use in 

Riemannian geometry, general relativity and cosmology [10]. The article is dedicated to these 

facts and is organized as follows :  the next Section no. 2 describes briefly the Maple and 

GrTensorII facilities while the Section no. 3 describes the program and its use for finding a 

well-known solution of Einstein equations, namely the Schwarzschild solution. The Section 

no. 4 reviews the use of Maple + GrTensorII in cosmology, without great details (reported 

elsewhere [4-6]). A last section is dedicated to some conclusions. 

 

2. Maple+GrTensorII 

Maple is a general-purpose commercial computer algebra system. It was first developed 

in 1981 by the Symbolic Computation Group at the University of Waterloo in Waterloo, 

Ontario, Canada. Since 1988, it has been developed and sold commercially by Waterloo 

Maple Inc. (also known as Maplesoft), a Canadian company also based in Waterloo, Ontario. 

The current version is Maple 15. Maple is an interpreted, dynamically typed programming 

language [9]. As is usual with computer algebra systems, symbolic expressions are stored in 

memory as directed acyclic graphs. Since Maple 6 the language has permitted variables of 

lexical  scope. 

GrTensor II is a computer algebra package [10] for performing calculations in the 

general area of differential geometry. Its purpose is the calculation of tensor components on 

curved spacetimes specified in terms of a metric or set of basis vectors. Though originally 

designed for use in the field of general relativity, GRTensorII is useful in many other fields. 

GRTensor II is not a stand alone package, but requires an algebraic engine. GRTensorII 

runs with all versions of Maple. GRTensor II and related software and documentation are 

distributed free of charge as an aide for both research and teaching; see at [10]. Authors of 

GrTensor are  Peter Musgrave, Denis Pollney (!!!) and Kayll Lake. 

The geometrical environment of GrTensorII is a Riemannian manifold with connection 

compatible with the riemannian metric . Special commands and routines for calculating 

geometrical objects as : 

- the metric and the line element ( qload(), g(dn,dn),,makeg() ) 

- Chrisstoffel symbols and the covariant derivative (Chr(up,dn,dn)) 
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- Ricci tensor and Ricci scalar (R(dn,dn), Ricciscalar) 

- Einstein tensor (G(up,dn)) , etc. 

Other facilities are available, as : several predefined metrics and possibiliy to define 

new ones, manipulating with indices, extracting tensor components, defining new tensors 

using their natural definitions, advanced simplification routines... 

An example  easy to process is  calculating and checking the Bianchi identities , 

namely 0; ij
iG  where    RgRG ijijij

2

1
   is the Einstein tensor and “;” denotes the 

covariant derivative, gij is the metric tensor. Rij and R the Ricci tensor and Ricci scalar 

respectively. Thus we have a simple sequence of Maple+ GrTensorII commands : 

> grtw();   - it starts GrTensorII 

> qload(rob_sons); - loads Robertson Walker metric [3] previously defined 

> grdef(`bia{ ^i }:=G{ ^i ^j ;j }`); - defines above Biabchi object 

> grcalc(bia(up));  gralter(bia(up),simplify); - calculates and simplifies Binachi object 

> grdisplay(bia(up)); 

 

If the metric is compatible with the riemannian connection the components of the 

Bianchi tensor must vanish. For the Robertson-Walker metric above (called "rob_sons") it 

gives:  

For the rob_sons spacetime: 

bi a(up) 

bi a(up) = All components are zero 

 

 

 

3. Finding an exact solution – the Schwarzschild metric 

 

This a metric describing the gravity around a pointlike mass m  

 

 

 

in spherical coordinates and in geometrical units c=G=1 . It is a static, spherical symmetric 

and isotropic metric, and there are two singularities for r=0 and r=m .  The Schwarzschild 

metric is an exact solution of the Einstein equations. It is  the most famous exact solution of 

Einstein equations - actually ot the vacuum Einstein equations, R ij = 0 valuable outside the 

point r=0 where we don’t have any matter (T ij= 0). Today it is intensively used to describe a 

black-holes or other object of this type. 

This example can be used to teach the students Einstein equations and their exact 

solutions and Maple+GrTensorII manipulation.  How we done this ? 
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First we predefine (with makeq command) a static, spherical symmetric and isotropic metric 

(“sfomiz”) having the shape as: 

 

 

Where we have two unknown functions of the radial coordinate, (lr)  and   n(r) . Then 

we solve the Einstein equation with a sequence of maximum 25 command lines. Lets do this 

directly in a Maple worksheet as: 

> restart;  grtw(); starts GrTensorII 

> qload(sfomiz);  loading the static, spherical metric 

>grcalc(R(dn,dn)); 

>gralter(R(dn,dn),simplify);grdisplay(R(dn,dn));  

       calculates, simplifies and displays the Einstein tensor 

 

The next sequence of commands extractats the 4 Einstein equations from Einstein 

tensor obtaining 4 Maple objects, followed by a series of simplifications and substitutions 

commanda usually in Maple manipulations : 

> R00:=grcomponent(R(dn,dn),[t,t]); 

> R11:=grcomponent(R(dn,dn),[r,r]); 

> R22:=grcomponent(R(dn,dn),[theta,theta]); 

> R33:=grcomponent(R(dn,dn),[phi,phi]); 

> R00;R11;R22;R33; 

> expand(simplify(R33/sin(theta)^2-R22)); checks that two of 

the Einstein equations are identical 

> R00;R11;R22; 

Now we solve the first equation in terms of l
’’  

(the second derivative in terms of  the radial 

coordinate r) then check if the solution is good: 

> cccc:=solve(subs(diff(lambda(r),r,r)=cccc,R00),cccc); 

> expand(simplify(subs(diff(lambda(r),r,r)=cccc,R00))); 
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Now we have two differential equations for the the two  unknown functions (after 

substituting the above expression for cccc) : 

>ecu1:=expand(simplify(subs(diff(lambda(r),r,r)=cccc,R11*r/2))

); 

)sin( 22222)(22)(22  ddrdredteds rr 
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> ecu2:=expand(simplify(R22*exp(nu(r))^2)); 

> ecu1;ecu2; 
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We now solve the first of the above equations in terms of the l
’ 
 

> bbbb:=solve(subs(diff(lambda(r),r)=bbbb,ecu1),bbbb); 

> simplify(expand(subs(diff(lambda(r),r)=bbbb,ecu1))); 

Finally we have one single differential equation for n(r) which we will solve it with 

dsolve [9] command : 

> ecuatia:=simplify(expand(subs(diff(lambda(r),r)=bbbb,ecu2))); 

> dsolve(ecuatia,nu(r)); 
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This finally gives (with a proper choose of the constants in order to fit with the 

newtonian limit – see [2]) the two unknown functions and the above Schwarzschild solution. 

 

4. Cosmology using Maple and GrTensorII 

 A very popular topic among modern students is cosmology [2,3] and its implications 

in the knowledge of the behavior of the Universe since Big-Bang till today when 

astrophysicists discovered the accelerated expansion of the actual universe [7,8] called 

cosmic acceleration. Actually cosmology is one of the most active topics of modern physics, 

the cosmic acceleration not fitting with the Standard model of the universe.  

Anyway the study of the Standard model is still a good topic for students. As it is 

known it starts with the Einstein equations written for a homogeneous, isotropic and only 

time depending metric called Friedman-Robertson-Walker: 
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where c is the speed of light and R(t) is called scale factor. As a result the Einstein equations 

can be cast as Friedman equations if we assume the matter in the Universe as an isotropic 

homogeneous fluid  matter (of all kind)  – in the stress energy tensor.  These are perfect 

issues for the use of a computer algebra program (of course in Maple and with GrTensorII) 

and we have an entire library for these purposes (Cosmo library) in all detaile described in a 
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series of articles published by our group [4-6]. This library is currently used in our lectures on 

cosmology and of course for research purposes, because the library can be developed for 

certain more complicated situations, as a scalar field minimally or non-minimally coupled 

with gravity, higher order gravity theories and so on. 

 

5. Conclusions 

We already had more than ten years of experience in teaching general relativity and 

cosmology in the computer lab using computer algebra codes. Of course this cannot replace 

the teaching of the physics which general relativity  implies, but can speed up the 

understanding and the use of the main results and concepts of this beautiful and elegant 

theory. On the other side it can open an easier door to research in the field and some of our 

students already followed this way, with good and striking results. 
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